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Abstract. In this paper, we show that a fast switch is able to lead a complex
dynamical system to being asymptotically stable, although this system is
completely unstable in every switch duration and even the associated connection
matrices are randomly selected. Importantly, we define some new exponents by
which we can figure out the essential patterns that guarantee the stability of fast
switching systems, and besides, their calculations need little computational cost.
More interestingly, we show the efficiency of some random switches in inducing
stability through a comparison of the systems with different switch connection
matrices and switch durations, and we give a design method for obtaining higher
efficient random switch rules. We also investigate the generalization of the
obtained results to a more realistic case where the switch obeys some renewal
process.
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1. Introduction

Models of complex dynamical systems have attained a great deal of attention in various
scientific communities simply because of their broad applications in describing real dynamical
phenomena including physical motions, chemical reactions, biological or ecological evolutions,
and even encoding and decoding procedure through neuronal activities [1–6]. Such types of
models are always characterized by numerous interacting components. Mathematically, the
interactions among the components are described by a set of connection matrices. One simple
model of a complex dynamical system was proposed by May in the early 1970s, where a simple
constraint on the model size and the coupling strength was established for its asymptotical
stability [6, 7]. More recently, a series of investigations following and developing May’s model
have appeared, including studies of the time-delay influence and the realistic interactions
influence on the stability of complex dynamical systems [8–11].

Although the connection matrix in May’s model is random, it never changes with time once
the initial time is fixed. It can always be observed in real systems that, due to the environmental
fluctuations and intrinsic stochastic perturbations, the interactions among the individuals are not
static but vary either slowly or quickly and even randomly. Thus, it is reasonable to introduce
time-varying or switching connection matrices in modeling. Actually, many works of this kind
have appeared in the literature, where it can be found that a fast switch may be beneficial for
the stability of the complex dynamical networks [12–15] and also that systems with switching
configurations can generate a variety of dynamical behaviors different from those observed
in nonswitching systems [16, 17]. The former finding was further used to show the onset of
synchronization among moving chaotic agents [18]. However, systematic discussions of the
randomly time-varying and switching systems are few. One significant result of this kind is on
the synchronization of the blinking networks, where an on–off (two-valued) random switch is
considered [19, 20]. Also some condition for synchronization or stability needs a high cost in
order to compute all the eigenvalues of the average connection matrices over an uncertain period
of time [12–15].

This paper is therefore aimed at considering a complex dynamical system whose
connection matrices are switched either randomly or deterministically. Some exponents that
request little computational cost are designed to show the essential patterns that guarantee the
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Figure 1. The dynamics produced by the controlled chaotic Lorenz system
through static controls (in, respectively, time durations I2, I4 and I6), a
deterministic-switching control (in I8) and a random-switching control (in I10).
The matrices in Me are designed as Se

1 = [2 −2 0; 2 −2 0; 2 −2 0], Se
2 =

[0 −2.7 3
√

2/5; 0 −2.7 3
√

2/5; 0 −2.7 3
√

2/5] and Se
3 = [−1/3 −15.1 −

√
2/5; −142/3 47/30 −

√
2/5; −1/3 47/30 −

√
2/5]. The probabilities for the

random-switching control are selected as p1 = p2 = 0.2 and p3 = 0.6.

stability in fast switching systems. Indeed, in each switch duration, the random dynamical
system can be completely unstable and the connection matrices can take values along
some continuously valued probability density function (PDF). More interestingly, through a
comparison, the systems with randomly switching connection matrices are found to be much
easier to stabilize or synchronize, where the form of the corresponding PDF plays a crucial role.
We give a design method for obtaining higher efficient random switch rules. We also discuss the
generalization of the obtained results to the case when the switch obeys some kind of renewal
process [25, 26].

2. Examples showing the efficiency of a random switch

To begin, we consider the Lorenz system

ẋ = 10(y − x),

ẏ = x(28 − z) − y,

ż = xy − 8z/3

with a simple and linear feedback control: F = Sq(x, y, z)>, where Sq is a 3 × 3 gain matrix
selected from a matrix set Me = {Se

1, Se
2, Se

3} and q = 1, 2, 3. Without the control, the Lorenz
system exhibits chaotic dynamics, as shown, respectively, in the time periods I2k−1(k =

1, 2, . . . , 5) in figure 1. With a static control, i.e. the gain matrix Sq is fixed as either one
of the three matrices in Me all the time, the controlled Lorenz system is stabilized to some
equilibria, as shown, respectively, in the periods I2, I4 and I6 in figure 1. However, for the
origin (x = y = z = 0), the static control is not stable yet, since its instability can be verified
simply by a positive eigenvalue of the matrix DL(0) + Se

q , the Jacobian matrix of the controlled
Lorenz system around the origin. Also in figure 1, with a deterministic-switching control, i.e.
the gain matrix is selected periodically among Se

1, Se
2 and Se

3 with a switch duration 0.001, the
controlled Lorenz system is stabilized to the equilibrium in the period I8. Nevertheless, this
stabilized equilibrium is not the steady state of the uncontrolled Lorenz system, and the origin
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Figure 2. The dynamics of the first state variables xi and the state errors
‖xi − x j ‖ for the three coupled Lorenz system systems, where i 6= j = 1, 2, 3.
In the first two time durations J1,2, static couplings are used; in J3, a periodic-
switching coupling is used; in final duration J4 where the synchronization is
achieved, a random-switching coupling is utilized. The matrices in Ms are
designed as Ss

1 = [−8 8 0; 8 −8 0; 0 0 0] and Ss
2 = [−4 0 4; 0 0 0; 4 0 −4].

The probabilities for the random-switching coupling are selected as p1 = 1/3
and p2 = 2/3.

is still unstable. Strikingly, as shown in the period I10 in figure 1, the unstable origin can be
indeed stabilized when the random-switching control is adopted, i.e. the gain matrix is selected
stochastically among Se

1,2,3 with respective probabilities p1,2,3 and a switch duration 0.001.
Secondly, we consider the synchronization among three coupled Lorenz systems:

ẋi = L(xi) +
3∑

j=1

Si j
q x j , i = 1, 2, 3,

where each state variable xi = (xi , yi , zi)
> and L is the vector field of the Lorenz system as

shown above. The coupling matrix Sq = {Si j
q } is a 3 × 3 Laplacian matrix selected from a matrix

setMs = {Ss
1, Ss

2}. As shown in figure 2, in the first two time durations J1,2, the synchronization
cannot be realized when the connection matrix Sq is fixed as one of the matrices inMs. Either
matrix inMs therefore belongs to unstable coupling. Furthermore, the synchronization cannot
be surely achieved in the time duration J3 if Sq is selected periodically between Ss

1 and Ss
2

with a switch duration 0.01. Interestingly, the chaotic synchronization can be realized in the
last duration J4 if Sq is selected stochastically between Se

1,2 with respective probabilities p1,2

as shown in the caption of figure 2. Here, the random switch shows the special capability of
realizing chaotic synchronization among coupled nonlinear systems.

3. Mathematical configuration of the model

The above simulation results show the capability and efficiency of a random switch among
unstable controls in the stabilization or synchronization of complex dynamical systems to an
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unstable steady state or chaotic state of the original system. To fully illustrate the phenomenon
observed above, we consider an m-dimensional complex dynamical system which is described
by

ẋ(t) = Sσ(t)x(t), t ∈ R+
= [0, +∞), (1)

with an initial condition x(0) = x0 ∈ Rm . Here σ : R+
→ N is an index function of the switching

rule, which can be either random or deterministic. Moreover, the connection matrix Sσ(t)

describes the switching interactions among the m-components of the system, and it takes a
matrix value Sik ∈ Rm×m when the index σ(t) ≡ ik ∈ N and t belongs to the switch duration
Ik = [tk−1, tk), where the time sequence {tk}k∈N → +∞ satisfies 0 < Tk = tk − tk−1 6 T and
t0 = 0. During each switch duration, system (1) becomes simply linear and the interaction matrix
can take a matrix value either randomly or deterministically.

For example, the linearization around the origin of the controlled Lorenz system we
considered above can be regarded as a particular case of system (1), when the connection matrix
Sσ(t) in system (1) is set as the Jacobian matrix of the controlled Lorenz system around origin,
namely Sσ(t) = DL(0) + Se

q . Here, the index function σ(t) = q for t ∈ Ik and tk = 0.001k, and
Se

q is the gain matrix as defined above. More concretely, when the static control is used for the
Lorenz system, σ(t) = q is fixed as one of the three numbers {1, 2, 3} for all t ∈ [0, +∞). When
the deterministic-switching control is considered, the periodic index function is taken as σ(t) =

q = 1 + (k mod 3) for t ∈ Ik and all k ∈ N. When the random-switching control is adopted,
σ(t) = q in each Ik takes a value from {1, 2, 3} with respective probabilities p1,2,3. Moreover,
like the coupled Lorenz systems we investigated above and by adopting the variational technique
along some steady synchronization manifold [1, 4, 21–24], most complex dynamical network
systems of physical relevance which are described by the linear or nonlinear dynamical systems

ẋi = f (xi) +
N∑

j=1

Si j
σ(t)x j , i = 1, 2, . . . , N

could also be formulated into some kind of switching linear systems as system (1). For these
systems, the eigenvalues of the coupling matrix Si j

σ(t) contribute to the finally formulated
connection matrix Sσ(t) as defined in system (1). In addition, May’s model [7] could be even
regarded as a specific case of system (1) since for his model every ik in system (1) is identical,
but each element of the identical Sik = S is selected randomly.

To investigate the asymptotical stability of the switching system (1), we write the solution
of this system as

x(t) = eSik+1 (t−tk) eSik Tk · · · eSi1 T1 x0 , eSik+1 (t−tk)xk

for t ∈ [tk, tk+1). Here, each matrix eSik Tk =
∑

∞

n=0(n!)−1(Sik Tk)
n is written decomposedly as

I + Sik Tk + Fik Tk , where I is an identical matrix and Fik needs to be estimated later. Also, in what
follows, we need a matrix decomposition: Sik = Dik + Aik , where Dik stands for the diagonals of
Sik and the other elements constitute Aik whose diagonals are all 0. This decomposition plays
a crucial role in establishing an exponent as well as criteria for guaranteeing the stability in
sufficiently fast switching systems (1). With this decomposition, each matrix eSik Tk can be further
written as

(I + Dik Tk) + Aik Tk + Fik Tk , D∗

k + A∗

k + F∗

k .

In what follows, we are to establish feasible conditions that guarantee the asymptotical
stability of system (1), that is, x(t) → 0 as t → +∞ in the sense of probability one for a random
complex dynamical system, or x(t) → 0 as t → +∞ for a deterministic system.
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4. The case of random complex systems

For a random complex dynamical system, we consider that the elements of Sik are randomly
and independently selected in each switch duration Ik . More technically, for each fixed ik , Sik

is supposed to be a random and independent matrix S(ω) = D(ω) + A(ω), and thus its elements
Si j(ω) (or Di j(ω) and Ai j(ω)) become random variables on the probability space (�0, F0,P).
In particular, ω ∈ �0 and each Si j(·) maps �0 into an interval J = [−M, M] ⊂ R. For example,
the blinking complex networks investigated in [19, 20] are of specific switching systems with
each Si j(ω) taking two discrete values with probabilities pi j and 1 − pi j . Indeed, each Si j(ω)

is allowed to take multiple or continuously distributed values, obeying some PDF ρ(Si j) whose
compact support is J . In fact, this kind of interaction among the components is even ubiquitous
in the real world.

Now, we are in a position to establish the conditions that ensure asymptotical stability of
the solution of system (1) in the physical sense (i.e. in the sense of probability one). First, as
mentioned above, we make an estimation (E):

max
16i, j6m

|F i j
ik

|6 ‖Fik‖6
∞∑

n=2

‖Sik‖
nT n−1

k (n!)−1 6 m2 M2T,

where ‖·‖ denotes the Euclidean norm, and the last inequality holds if the upper bound of the
switch duration T is sufficiently small, such that T < T ∗

= (mM)−1. Secondly, for the random
system (1), {xk}k∈N, set above, can be regarded as a stochastic process on (�0, Fk,P), where
Fk , the natural filtration of xk , satisfies Fk−1 ⊂ Fk for all k. Thus, we estimate the conditional
expectation as follows:

E[‖xk‖1|Fk−1] = E[‖(D∗

k + A∗

k + F∗

k )xk−1‖1|Fk−1]

6 E

 m∑
i=1

|D∗i i
k | +

m∑
j=1

|A∗ j i
k | +

m∑
j=1

|F∗ j i
k |

 |x i
k−1‖Fk−1


= E

 m∑
i=1

1 +
(

Di i
ik

+
m∑

j=1

|A j i
ik
|

)
Tk +

m∑
j=1

|F j i
ik

|Tk

 |x i
k−1|

6
m∑

i=1

1 +E
[

Di i
ik

+
m∑

j=1

|A j i
ik
|

]
T + m3 M2T 2

 |x i
k−1|

6

1 + max
16i6m

E[
Di i +

m∑
j=1

|A j i
|

] T + m3 M2T 2


m∑

i=1

|x i
k−1|

,
(
1 + χr T + m3 M2T 2

) m∑
i=1

|x i
k−1|, α‖xk−1‖1,

where ‖·‖1 represents the 1-norm, and E[Di i
ik

+
∑m

j=1 |A j i
ik
|] for all ik are identical to E[Di i +∑m

j=1 |A j i |] since in every duration Ik the elements of the connection matrix obey the same
probability distributions as assumed above. Moreover, the independence property of the random
matrix selected in each duration Ik and T < T ∗ are used for obtaining the formula after the third
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equality, and the estimation (E) ensures the formula after the second inequality. Therefore, the
nonnegative stochastic process {‖xk‖1}k∈N becomes a super-martingale provided that α ∈ (0, 1),
that is, conditions (RS): χr < 0 and

T < T̂ = min{T ∗, −χr(m
3 M2)−1

}

are satisfied. Indeed, with these conditions and according to the theory of martingale
[25, 26], ‖xk‖1 is convergent to a nonnegative random variable, denoted by ζ , in the sense
of probability one. Note that

E
[
‖xk‖1

]
= E

[
E

[
‖xk‖1|Fk−1

]]
< αE

[
‖xk−1‖1

]
from the above estimation. Therefore, through recursive arguments and from Fatou’s lemma
[25, 26], it follows that the random variable ζ = 0 in the sense of probability one, which
therefore yields a conclusion that the asymptotical stability of the solution x(t) produced by
the random system (1) is ensured in the physical sense if conditions (RS) are satisfied.

Here, we further provide some illustrations of conditions (RS). Note that the exponent
χr represents the expectation of some combination of the connection matrix elements. The
condition χr < 0 thus means, from the viewpoint of probability, that the diagonal elements need
to be negatively dominant in columns; in other words, the self-interacting intensity of each
component in a complex system should be negatively stronger on average than the summation
of its incoming interacting intensities. Generally, the larger the size of the system, the stronger
the self-interacting intensity that is required to satisfy the condition. As is well known, for a
nonrandom matrix, diagonally negative dominance implies that its eigenvalues are all located
in the left-half complex plane. Nevertheless, the condition χr < 0 we established above does
not lead surely to this kind of eigenvalues distribution for the matrix randomly selected in
every duration Ik . Indeed, it allows that the random matrix be unstable for almost every ik .
For example, consider a complex system with a 2 × 2 random connection matrix S(ω) in
which the diagonals {S11, S22

} = {ξ 11, ξ 22
} + η and Si j

= ξ i j for i, j = 1, 2 and i 6= j . Here,
ξ i j(ω) are mutually independent and continuous random variables, which obey the uniform
distribution on [0, 1]. The function η(ω) is a discrete random vector taking values {−θ, 0.1}

and {0.1, −θ}(θ > 0), respectively, with probabilities p and 1 − p. For this example, the above-
designed exponent

χr = max{−θp − 0.1p + 1.1, −θ(1 − p) + 0.1p + 1},

so that χr < 0 yields

θ > max{(1.1 − 0.1p)p−1, (1 + 0.1p)(1 − p)−1
}.

Hence, for each ω, the matrix S(ω) is unstable with at least one positive eigenvalue, which
is numerically verified in figure 3(a) for θ = 3 and p = 0.5. Therefore, in such a case, the
random dynamical system (1) is unstable in every switch duration Ik . However, according to the
conclusion obtained above, we can still realize the asymptotical stability in the physical sense
for such a system provided that the other condition T < T̂ is fulfilled (figure 3(b)). Interestingly,
this shows that a sufficiently fast switch can induce stability in some kind of not only unstable
but also random complex dynamical systems.

Furthermore, the analytically obtained upper bound T̂ is strongly dependent on the system
size m as well as on the maximal range M of all the random variables. The larger the size of
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Figure 3. (a) The PDF of the maximal eigenvalue of the random matrix S(ω)

shows its instability in each switch duration. (b) The asymptotically stable
trajectories of system (1) with randomly selected initial values from [−1, 1]
and randomly selected switch Tk < 0.1. (c) The upper bound T̂ decreases with
an increase of the system size m. Here, m ∈ [10, 100] with a step size 10,
each Si j obeys the uniform distribution on [−1, 1] independently, and one
of the diagonals is selected to subtract m2 with a probability m−1, so that
χr = −0.5(m + 1) < 0. The analytical bounds T̂ , despite being smaller, are
qualitatively consistent with the numerical bounds.

the system, the faster the switching speed required for asymptotical stability. Figure 3(c) further
shows this relation numerically, which is qualitatively consistent with the analytical bounds.
Also, it is mentioned that the proposed exponent χr , as well as the upper bound T̂ , needs little
computational cost if the probability distributions for the elements of the connection matrix are
specified. In particular, we can compute the exponent directly through

χr = max
16i6m


∫
J

sρi i(s)ds +
m∑

j=1, j 6=i

∫
J

|s|ρ j i(s)ds


as long as ρi j , the a priori or a posteriori PDFs on the interacting intensities among the
components in real systems, are given. Hence, determination of the stability of a fast switching
system no longer needs a high-cost computation of the matrix eigenvalues or the Lyapunov
exponents over an uncertain period of time [12–14].

5. The case of deterministic complex systems

For a deterministic system, the switching rule of the connection matrix is fixed in advance.
Accurately, Sσ(t) takes values along the sequence Sik in every switch duration Ik for k ∈ N,
where both sequences {Ik} and {ik} are given deterministically, and Sik takes values from an
allowable matrix set {Sn}n∈I that can contain a finite or infinite number of elements. For example,
consider an allowable matrix set that contains only two unstable matrices: S1 = [1 1; 1 −4] and
S2 = [−4 1; 1 1], so that I= {1, 2}. Set Ik = [k − 1, k) and ik = 1 + (k mod 2) for k ∈ N. Then,
the constructed switching rule makes system (1) switch periodically between the two unstable
subsystems.
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Now, a question arises: ‘Can we still stabilize a system of this kind when the speed of
the deterministically-fixed switch is adjusted to be sufficiently fast?’. Although the answer to
this question is positive, which could be found in [12–14], we, through a particular argument
below, establish some more direct and relaxable conditions to answer the question. Only with
the conditions established below we are able to make a comparison and identify which kind of
switch is more efficient at stabilization. Hence, we consider the other system as follows:

ẋ(t) = Sσ(t/T̃)x(t), t ∈ R+
= [0, +∞), (2)

where the smaller the value of T̃ (<1), the faster the switching speed. System (2) therefore
could be regarded as an accelerated model of system (1). In the following discussion, suppose
the original duration Tk ∈ [η, 1] for simplicity; otherwise, we can insert some time instants
without changing the real switching rules. Denote the switch duration T̃ Tk of system (2) by
T d

k . Then T d
k ∈

[
ηT̃ , T̃

]
. For system (2), we still adopt the matrix decomposition utilized for

system (1) and analogously implement the argument performed in the estimation (E). Then,
we obtain max16i, j6m |F i j

ik
|6 eδ

− 1 − δ if T̃ < Tδ = δ(maxn∈I ‖Sn‖
2)−1 and δ � 1, so that the

decomposed matrices satisfy

‖A∗

k + F∗

k ‖6 (m − 1)T̃ AM + (eδ
− 1 − δ)T̃ , ζ1 + ζ2.

Here and throughout, X M = maxn∈I,16i, j6m |X i j
n | and Xn denotes a matrix. We further

estimate the solution of system (2) around t = t(k+1)N with some integer N as follows:

‖x(k+1)N‖/‖xk N‖6

∥∥∥∥∥∥
(k+1)N∏
j=k N+1

(D∗

j + A∗

j + F∗

j )

∥∥∥∥∥∥
6

∥∥∥∥∥∥
∏

j

(I + Di j T
d
j )

∥∥∥∥∥∥ +
∑

s

∥∥∥∥∥∥
∏
j 6=s

(I + Di j T
d
j )~h=s (A∗

h + F∗

h )

∥∥∥∥∥∥
+

∑
s 6=l

∥∥∥∥∥∥
∏
j 6=s,l

(I + Di j T
d
j )~h=s,l (A∗

h + F∗

h )

∥∥∥∥∥∥ + · · · +

∥∥∥∥∥∏
s

(A∗

s + F∗

s )

∥∥∥∥∥
6 (1 − cζ1)

N +
N∑

i=1

(
N
i

)
(1 + DM T̃ )N−i(ζ1 + ζ2)

i

6 (1 − cζ1)
N

N∑
i=0

(
N
i

)
ciζ i

1 =
(
1 − c2ζ 2

1

)N
,

where we need two conditions: namely condition (DS1):∥∥∥∥∥∥
(k+1)N∏
j=k N+1

(I + Di j T
d
j )

∥∥∥∥∥∥6 (1 − cζ1)
N

for any integer k > k0 > 0 and some constant c > 1 with cζ1 < 1, and condition (DS2):

c(1 − cζ1)
N > (1 + ζ2/ζ1)(1 + DM T̃ )N−1

with T̃ < Tδ. The notation~h Xh above represents an insertion of the matrix Xh into the position
h of the matrix multiplication in front of this notation. Using the above estimation technique

New Journal of Physics 14 (2012) 083022 (http://www.njp.org/)

http://www.njp.org/


10

0 0.025 0.05
−0.04

−0.02

0

0.02

T

Δ (a)

 

 

~
δT 0 3 6 9

0

1

2

t

||x
(t

)|
| 1 (b)

Figure 4. (a) The difference 1 between the terms on the respective sides of
the inequality in condition (DS2) with c = 1.5. Here, 1 > 0, i.e. T̃ ∈ (0, Tδ),
implies the validity of this condition. (b) The asymptotically stable trajectories of
system (2) with the parameters of the example considered in section 3. Here, the
length of each switch duration is taken as Tk ≡ 0.03 < Tδ and initial conditions
are randomly selected from [−1, 1].

recursively, we finally obtain the asymptotical stability of the solution x(t) of the deterministic
system (2) if both conditions (DS1) and (DS2) are satisfied.

Next, we interpret the two conditions (DS1) and (DS2). On the one hand, condition (DS1)
can be transformed as

χd = max
16 j6m

{
[t(k+1)N − tk N ]−1

∫ t(k+1)N

tk N

D j j
σ(s)ds

}
+

m − 1

η
AM < 0

for all integer k > k0. Here, the negativity of the exponent χd implies that the time average of
the matrix diagonals along the allowable connection matrix set is required to be sufficiently
negative. This condition is somewhat analogous to χr < 0 for the random complex system,
where, however, not AM but the average absolute value of the off-diagonal entries is taken into
account. Moreover, the smallest switch duration η, named the dwell time of system (1), also
restricts the value of χd . Thus, the condition for deterministic systems is somewhat stronger
than that for random systems. Note also that the negativity of the maximal time average does not
necessarily imply the stability of each allowable connection matrix. Still consider the example
provided earlier in this section. Correspondingly, η = AM = 1 and m = N = 2. Therefore, the
exponent χd = −0.5 < 0, although both connection matrices are unstable.

On the other hand, condition (DS2) seems to be complicated; however, it actually implies
a sufficiently small value of T̃ . To intuitively see this, we depict in figure 4(a) the interval of
T̃ with the parameters of the above-imported example. Although this interval is narrow, with
χd < 0, it implies that we are able to stabilize the system if the speed of the deterministic switch
is sufficiently fast (figure 4(b)). Therefore, the question posed above is answered completely.

6. The efficiency of randomness

We use concrete examples to further illustrate the efficiency of random complex systems
in a fast switch-induced stability. Consider the complex dynamical system (1) which
randomly or periodically switches among the three-dimensional connection matrices: S1 =

[−9 0 2; 0 2 0; 2 0 2], S2 = [2 0 2; 0 2 0; 2 0 −9] and S3 = [2 0 2; 0 −9 0; 2 0 2]. These
matrices are all unstable. When the switch duration is set to be sufficiently short and the switch
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Figure 5. (a) The regions of the probabilities p and q in which the stability is
ensured for the example in section 4. Here, the triangle (red) region is obtained
by conditions (RS), while the lightly shaded (yellow) region is obtained by
the numerical experiment for all 500 times. (b) The divergent trajectories for
the systems having, respectively, periodic switch and random switch with the
uniform probabilities p = q = 3−1 (marked by a dot outside the shaded region
in (a)). The initial conditions are randomly selected from [−1, 1], and Tk ≡ 0.01
in both (a) and (b). (c) The PDF ρ(T ) of the renewal process Tk , where T =

0.1 exp(ξ) and ξ obeys a standard normal distribution. (d) The asymptotically
stable trajectories with the random switch produced by the PDF shown in (c).

probabilities for the matrices are given by p, q and 1 − p − q , the stability region for these
probabilities is depicted analytically through conditions (RS), shown by the triangle region in
figure 5(a). However, as shown in figure 5(b), the stability cannot be realized in the system that
switches periodically among the three matrices S1,2,3. Thus, stability induced by fast switching
is more easily realized in random complex systems. In fact, as the switch speed increases, some
random switches are capable of inducing the system trajectory to more frequently visit the stable
manifold generated by a proper combination of the connection matrices, which therefore leads
to the negatively dominant diagonals in the probability sense. Nevertheless, the deterministic
switch rarely possesses such an advantage when the switching order of the connection matrices
is specified in advance. Also in figure 5(a), the stability region through the numerical experiment
for all 500 times is depicted. The numerically obtained region is broader than the analytical
region since conditions (RS) are only sufficient. In addition, not every but a proper designed
PDF is suitable for stabilizing the random complex system. As shown in figures 5(a) and (b),
even the simple uniform probabilities cannot ensure the stability. Finally, the above analyses
also illustrate why the particularly designed random-switching control is capable of stabilizing
the Lorenz system to the unstable origin in the previous section.
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7. The switch obeying a renewal process

In the real world, the switch often obeys some renewal process, unlike the bounded switch
duration used in the above discussion. For example, those intervals between potential spikes
emitted by neurons usually satisfy either the Poisson distribution or some other distributions
[5, 27]. In fact, all the results can be generalized analytically to such a case if some additional
conditions on the PDF of the process are taken into account. The detailed and analytic
generalization will be included in our future work. Here, to illustrate it numerically, we consider
the example used in figures 3(a) and (b). Instead, Tk of the switch is supposed to be a renewal
process obeying the PDF specified in figure 5(c). As shown in figure 5(d), the asymptotical
stability can be realized in the physical sense if there exists a number Tc ∼ M−1 such that∫ +∞

Tc
emMT ρ(T )dT is sufficiently small. This means that to obtain the stability, the switch needs

to be sufficiently fast most of the time and is allowed to be slow occasionally.

8. Concluding remarks

We have defined some exponents by which we are able to analytically identify the essential
patterns that guarantee the stability or synchronization of complex dynamical systems with
either a deterministically or a randomly switching configuration. The analysis of these
exponents has allowed us to describe the capacity and efficiency of the random switch for
stabilizing or synchronizing a complex dynamical system which is indeed unstable in every
switch duration. Also we have emphasized the possibility of generalizing the obtained results
to the more realistic case when the switch obeys some kind of renewal process. We believe that
all the results obtained in this paper are of practical use for the analysis and modulation of the
dynamical behaviors of some real complex systems involving random fluctuations.
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