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In this paper, we study the nonlinear response of the nonlinear mass-spring model with non-
smooth stiffness. For this purpose, we take as prototype model, a system that consists of the
double-well smooth potential with an additional spring component acting on the system only
for large enough displacement. We focus our study on the analysis of the homoclinic orbits for
such nonlinear potential for which we observe the appearance of chaotic motion in the presence
of damping effects and an external harmonic force, analyzing the crucial role of the linear spring
in the dynamics of our system. The results are shown by using both the Melnikov analysis and
numerical simulations. We expect our work to have implications on problems concerning the
suspension of vehicles, among others.

Keywords : Nonlinear oscillations; Melnikov criterion; chaos; nonsmooth dynamical systems.

1. Introduction

There is a rich bibliography on chaotic systems
which are defined by a set of ordinary differen-
tial equations including nonlinear but with smooth
functions of displacement or velocity [Sprott, 2003].
Nonsmooth systems are very common in engineer-
ing [Leine et al., 2000; Wiercigroch & de Kraker,
2000; Radons & Neugebauer, 2004; Litak et al.,
2007; Pavlovskaia & Wiercigroch, 2007] where they
have relevant implications. In the present paper, we
examine the dynamics of the two-stage mass-spring
oscillator as shown in Fig. 1.

In this system, the two considered springs are
connected in a parallel way. One of them is the
nonlinear characteristics that produces the double-
well Duffing potential while the other acts accord-
ing to Hooke’s law, F = −kx, as shown in Fig. 1.
Such connections of springs are often considered in
practical situations as in the suspension of vehicles
[Verros et al., 2000; Von Wagner, 2004], among oth-
ers. The main goal of our paper is to analyze the
effect of the linear spring on the two exterior non-
linear springs. We focus our attention on the physi-
cal situations in which chaotic or periodic behavior
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Fig. 1. Schematic plot of the two-stage spring-mass model.
The effective exterior springs in the figure are assumed to
have nonlinear characteristics, while the interior, which intro-
duces nonsmoothness, has linear characteristics. h denotes
the tip position of the spring-free length with respect to the
equilibrium point x = 0.

takes place, depending on the value of the different
parameters of the system. The study of the bifurca-
tion diagrams and the basins of attraction elucidate
the existence of new attractors into the system and
we add the effect of the asymmetric term. Further-
more, they enlighten the bifurcations by which such
attractors arise.

This paper is organized as follows. Section 2
presents a description of our model. In Sec. 3, we
solve the corresponding differential equations and
discuss the results. We use the Melnikov criterion
[Melnikov, 1963; Guckenheimer & Holmes, 1983]
to predict the existence of periodic solution. The
critical force-to-damping ratio is confirmed by the
numerical simulations. As the examined system is a
nonsmooth example, one has to modify the Mel-
nikov formula by adding the extra terms related
to the singular points of nonsmoothness [Kunze &
Küpper, 2001] (at these points, the functions do
not fulfill the C1 class requirements). On the other
hand, the numerical estimation of the integral can
be done. This concept, used in previous works [Litak
et al., 2008], is used in Sec. 4. After presenting the
numerical results, confirming the estimated critical
parameters, the paper ends with conclusions and
the final remarks are presented in Sec. 5.

2. Model Description

The model we take as prototype, according to
Fig. 1, is given by the nondimensional equation of
motion:

ẍ + αẋ − ax + bx3 + k(x − h)Θ(x − h)

= F sin(ωt), (1)

where α is the damping parameter, a and b are lin-
ear and cubic parts of the nonlinear spring and k is
a linear spring of defined length and a nonsymmetri-
cal contact loss. Θ(x) is the Heaviside step function,
F is the amplitude of a harmonic excitation and h is
the position of the tip of the spring-free length with
respect to the equilibrium point x = 0. We observe
that if k = 0, we have the well known Duffing oscil-
lator [Duffing, 1918; Aguirre & Sanjuán, 2002; Bal-
tanás et al., 2001], that is, the double-well potential.

The restoring force F (x) is defined by the
potential V (x) (Fig. 2) as follows

F (x) = −∂V

∂x

= ax − bx3 − k(x − h)Θ(x − h), (2)

V (x) = −ax2

2
+

bx4

4
+

k(x − h)2Θ(x − h)
2

, (3)

where we have taken x0 + h′ = h with x0 = 1
and h′ = −0.1. From now on and without loss of
generality, we fix a = 1 and b = 1.

Figure 2 shows a profile of the potential in both
cases, the Duffing oscillator and the Duffing oscil-
lator with a linear spring. We clearly observe the
asymmetry (denoted by the dotted curve on the
right-hand side of the figure) produced by the lin-
ear restoring force. Notice that the solid red curve
represents the symmetric double well potential.
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Fig. 2. Solid curve represents the Duffing symmetric poten-

tial V1(x) = −x2

2 + x4

4 and the present potential with an addi-

tional spring V (x) = −x2

2 + x4

4 +k
(x−x0−h′)2Θ(x−x0−h′)

2 , for
k = 1, is represented by the dotted curve. The parameter is
x0 + h′ = h, x0 = 1 is the position of the right-hand side
stable equilibrium point, while h′ = −0.1 denotes the tip
position of the spring-free length.
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Fig. 3. Numerical plots of both (a) and (b) trajectories and (a′) and (b′) Poincaré sections, for the Duffing oscillator case
and for the nonsmooth case with parameter values α = 0.15, F = 0.258, k = 0.2 and h = 0.3, respectively. We observe the
effect of the nonsmooth term on the right-hand side of the images: in the presence of nonsmoothness, both the trajectories
and the attractor look similar to the unperturbed ones, but their right-hand side is slightly compressed.

In order to understand better the behavior of
our system, we show numerical plots of both, tra-
jectories in phase space and Poincaré sections. For
this purpose, we have taken the following values of
the parameters: α = 0.15, ω = 1 and F = 0.258.
Figures 3(a) and 3(a′) represent both the typical
chaotic trajectory and the typical Poincaré section
of the Duffing oscillator for the smooth case. Fur-
thermore, we can see in Fig. 4, the bifurcation dia-
gram of the x variable as a function of the forcing
amplitude F , and we can see that F = 0.258 is well
into the chaotic region.

Figures 3(b) and 3(b′) show the same kind
of plots for the nonsmooth case for k = 0.2 and
h = 0.3. We observe, on the right-hand side (region
in which x > 0) of Figs. 3(a′) and 3(b′), the effect
of the nonsmooth term. Provided that the profile
of the right well of the Duffing oscillator becomes
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Fig. 4. Numerical bifurcation diagram of the Duffing oscilla-
tor in the absence of the linear spring (α = 0.15). We observe
periodic regions and chaotic regions depending on the value
of F . The onset of chaos takes place at F � 0.257.
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steeper due to the nonsmooth term, we see how
both the right-hand side of the trajectories and the
attractor are slightly compressed compared to the
unperturbed case (Fig. 2).

In the next section we provide, by using Mel-
nikov analysis, theoretical arguments in order to
show the different regions of parameters in which
the system is in a chaotic regime or in a periodic
regime.

3. Melnikov Analysis

In this section, we use Melnikov analysis [Moon &
Li, 1985; Baltanás et al., 2002; Almendral et al.,
2004] in order to provide analytical arguments of
the different dynamical behaviors of our system.

According to the Melnikov analysis, we assume
that the force and damping parameter can be
treated as perturbations, so that we can rewrite:

F → εF̃ , α → εα̃. (4)

For our convenience and without any loss of gener-
ality in the results, we choose a = b = k = 1, for
which the equations of the system can be rewritten
as follows:

ẋ = v, (5)

v̇ = x − x3 − (x − h)Θ(x − h)

= ε(−α̃ẋ + F̃ sin(ωt)). (6)

Thus, the unperturbed Hamiltonian, i.e. in the
absence of both forcing and damping, reads as

H0 =
v2

2
− x2

2
+

x4

4
+ k

(x − h)2Θ(x − h)
2

. (7)

Looking for the homoclinic orbits in the Mel-
nikov approach, we obtain the left- (for x ≤ 0) and
right- (for x ≥ 0) hand side loops connecting the
saddle point x = 0 and H0|x=0 = 0 by integrating
the following expression:

dt

dx
=

1
v

=
1√

2V (x)
. (8)

Consequently, the integration of the equation above
leads to

t − t0 =
1√

x2 − x4

2
− k(x − h)2Θ(x − h)

. (9)

In the case of the typical double-well potential
and for the right-hand side half-plane x < 0, we can

easily integrate the above expression to the analytic
formula:

x∗(t) = ±
√

2
cosh(t − t0)

,

v∗(t) = ±
√

2 tanh(t − t0)
cosh(t − t0)

.

(10)

After adding perturbations, the homoclinic
orbits split into the so-called stable and unstable
manifolds, denoted by WS and WU , respectively.
The existence of cross-sections between WS and
WU manifolds signals Smale’s horseshoe scenario of
transition to chaos (see Fig. 7). Consequently, the
distance d between the invariant manifolds can be
estimated in terms of the Melnikov function since
d ∼ M(t0):

M(t0) =
∫ ∞

−∞
h0(x∗, v∗) ∧ h1(x∗, v∗)dt, (11)

where ∧ defines the wedge product (dx ∧ dv =
−dx ∧ dv, dx ∧ dx = dv ∧ dv = 0). The corre-
sponding differential forms h0 mean the gradient of
the unperturbed Hamiltonian

h0 = (−x∗ + (x∗)3 + (x − h)Θ(x∗ − h))dx

+ v∗dv, (12)

while h1 is a perturbation to the same Hamiltonian

h1 = (F̃ sin(ωt) − α̃v∗)dx. (13)

It is important that all differential forms in the
above expressions are defined on the homoclinic
orbits (x, v) = (x∗, v∗). Thus the Melnikov function
M(t0) reads:

M(t0) =
∫ ∞

−∞
v∗(F̃ sin(ωt) − α̃v∗)dt. (14)

Thus a condition for a global homoclinic tran-
sition, corresponding to a horseshoe type, can be
written as:

∨
t0

M(t0) = 0 and
∂M(t0)

∂t0
�= 0. (15)

The above condition is valid [Guckenheimer &
Holmes, 1983] for smooth potential belonging to C2

class (V ∈ C2).
On the other hand, the nonsmooth case for

k �= 0 (Figs. 5 and 6) is difficult for analytic
treatment but the corresponding Melnikov criterion
[Eqs. (11)–(15)] could be found numerically. Note
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Fig. 5. The homoclinic orbit: (red) Duffing symmetric

potential V1(a) = −x
2 + x4

4 , (blue) the right-hand side homo-
clinic orbit for the potential with an additional spring. The
vertical line shows the switching point of the additional spring
potential x = h = x0 + h′ (x0 = 1, h′ = −0.1), and k = 1.

that in this situation the potential is not smooth
enough as it belongs to C1 class functions. Thus
according to Kunze and Küpper [2001] there would
be corrections related to the singular points of non-
smoothness x = h. However, the above corrections
are more important for analytical and precise esti-
mation of a homoclinic bifurcation. In our case, we
solve the integral numerically, and our approxima-
tion will include Kunze and Küpper [2001] correc-
tions within the integration error. It should be noted
that corrections are given, in some sense, by aver-
aging the integral kernel in different limits x → h.

Finally, from Eqs. (14) and (15), the critical
region of the ratio η = F̃ /α̃ = F/α as a function of
ω can be estimated as

η(ω) = min
∣∣∣∣ I1

I2(ω)

∣∣∣∣ , (16)

where integrals I1 and I2 have the following forms

I1 =
∫ ∞

−∞
(v∗(t))2dt and

I2 =
∫ ∞

−∞
v∗(t) sin(ωt + ωt0)dt.

(17)

The condition for the second potential well on the
left-hand side in Fig. 2 with a smooth heteroclinic
orbit (Fig. 5) can be expressed analytically as for
the case k = 0. Introducing v∗(t) to Eq. (17)
[Holmes, 1979; Guckenheimer & Holmes, 1983] we
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Fig. 6. (a) Displacement and (b) velocity for the numerically
obtained right-hand side homoclinic loop for the potential

with additional spring (V = −x2

2 + x4

4 + k
(x−h)2Θ(x−h)

2 ,
with k = 1, h = 0.9).

x=0
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s

Fig. 7. A schematic picture of unperturbed (plotted with
a dotted line) and perturbed homoclinic orbits (stable WS

and unstable WU manifolds plotted with full lines). d is the
distance between Ws and Wu. x = 0 indicates the location
of the saddle point.
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integrate:

I1 =
4
3
, I2 =

√
2πω

cosh
(πω

2

) sin(ωt0), (18)

and we choose the free integration parameter t0 in
such a way that max |sin(ωt0)| = 1.

Finally, for the condition on the left-hand side
of the potential well (Fig. 2), η(ω) [Eq. (16)] could
be expressed analytically as

η(ω) =
2
√

2
3πω

cosh
(πω

2

)
. (19)

The condition for the right-hand side potential
well (nonsmooth case) in Fig. 2 (for k > 0, h <
1.4) has been calculated numerically. By changing
h we could see the effect of an additional spring on
the dynamics (Fig. 1). The results of the Melnikov
analysis are presented in Fig. 8.

Here, we see that the critical separation lines
F/α versus ω are placed in nonmonotonic order.
The main difference can be observed in the limit of
larger ω. For fairly small h [h = 0.3, Fig. 5, line (a)]
the chaotic region is effectively shrunk while for the
medium size h [h = 0.9, Fig. 5, line (c)] the chaotic
region is extended. These results can be compared
to the large h limit [Fig. 5, line (d)] which simultane-
ously represent the initial Duffing potential without
the influence of the additional asymmetric spring
(for k = 0), or the condition for the second potential
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/ α
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Fig. 8. The critical curves η = F/α versus ω that separate
the regular (below the curves) and chaotic (above the curves)
parameter regions for k = 1. Lines (a)–(d) correspond to
different values of h, that is, h = 0.3, 0.6, 0.9, and h = 1.6,
respectively.

well on the left-hand side in Fig. 2. As our potential
possesses two wells, the transition to chaos would
be strongly dependent on the initial conditions. For
the initial system state on the right-hand side of the
potential well (Fig. 2) the Melnikov criterion would
be dependent on h (Fig. 8), while for the system
with initial residence in the left potential well the
analytic formula Eq. (19) would apply.

Finally, we should note that the Melnikov cri-
terion does not guarantee the steady state chaos
appearance, but only the fractalization of the
boundaries of the corresponding basins of attrac-
tion for different solutions which could result in time
series as a transient chaotic motion.

In the next section, we will show numerical sim-
ulations to clarify the situation of the asymmetric
nonsmooth potential (for different k > 0 and h) by
means of the corresponding basins of attraction and
bifurcation diagrams.

4. Numerical Simulations

In this section, we provide numerical evidence on
the results shown previously. For this purpose, we
have solved the examined set of equations by using
the fourth-order Runge–Kutta integration scheme
[Burden & Faires, 1997]. Trajectories in phase space
and their corresponding Poincaré sections resulting
from these calculations are presented in Fig. 9. One
can easily see the difference between the chaotic
and regular solutions. Figures 9(a) and 9(a′) show
a chaotic trajectory for h = 1 and k = 0.2. If we
increase the value of k, say k = 0.7, the influence of
the linear spring becomes crucial since the chaotic
motion disappears and it becomes periodic falling
into an attractor, as shown in Fig. 9(b′). It seems
then that there is a critical value of k for which a
periodic attractor close to the right-hand well of the
system appears, making the orbits periodic.

Figures 10(a) and 10(b) provide a deeper
insight on this phenomenon. In Fig. 10(a), a bifurca-
tion diagram of the system of x versus F with nons-
mooth parameters k = 0.45 and h = 1 is shown, we
can see that for small forcing the system displays
periodic behavior, provided that the linear spring
is a linear system and it induces regular behaviors
into the system. But as F is increased chaos arises
in what seems to be an inverse saddle-node bifur-
cation. Saddle-node bifurcations are widespread in
dynamical systems, for example, it is the bifurcation
that gives rise to the period-three window in the
logistic map [Robinson, 2004]. Figure 10(b) shows
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Fig. 9. Numerical plots of both (a) and (b) trajectories and (a′) and (b′) Poincaré sections, for the nonsmooth case with
parameter values (a) and (a′) k = 0.2 and h = 1, and for (b) and (b′) k = 0.7 and h = 1, respectively. We clearly observe the
strong effect of the linear spring (b) and (b′) in which the motion becomes periodic.

the bifurcation diagram of the variable x versus k
for h = 1 and F = 0.258. We see that the system
is chaotic until the value of k is too large and a
periodic attractor arises in the right well, so the
pre-existing chaotic attractor disappears through
a saddle-node bifurcation. An energetic interpreta-
tion can be provided for this phenomenon: when
adding the nonsmooth stiffness, the system does
not change drastically its behavior until k is suffi-
ciently large, when an attractor arises, it stabilizes
the orbit. After this, the system can be driven again
to the chaotic state by increasing the forcing ampli-
tude F .

The bifurcation diagrams of x versus ω shown
in Figs. 10(c) and 10(d) for k = 0 and k = 1 and
h = 1, respectively, somehow support the previ-
ous considerations. We see that when the system
has a nonsmooth stiffness, the system behaves peri-
odically in a range of ω where there is chaos for

k = 0. However, as ω is increased (i.e. the fre-
quency of the forcing gets sufficiently large) the
system becomes chaotic and it behaves in a way
qualitatively very similar to its behavior for k = 0,
and this holds as ω is increased. The transitions
from periodicity to chaos as ω is increased, seems to
occur again through an inverse saddle-node bifurca-
tion, similarly to what we observed by fixing k and
increasing F . These two situations share then a par-
ticular behavior: if the periodic forcing is sufficiently
strong (either by increasing F or ω) the influence
of the nonsmooth stiffness becomes negligible.

In order to have a better understanding of these
results we have plotted the basins of attraction
in different situations. Figure 12(a) represents, for
α = 0.15, ω = 1, h = 1 and F = 0.258, the typical
basin of attraction of the Duffing system [Aguirre &
Sanjuán, 2002; Aguirre et al., 2009] without the
presence of the linear spring. We observe in green
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(a) (b)

(c) (d)

Fig. 10. Numerical bifurcation diagrams of the variable (a) x versus F for k = 0.45 and h = 1, (b) x versus k for F = 0.258,
(c) x versus ω for k = 0 and h = 0 and (d) x versus ω for k = 1 and h = 1.
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Fig. 11. Plots of the basins of attraction of our system for parameter values: F = 0.258, α = 0.15, ω = 1 and h = 1;
(a) corresponds with the Duffing oscillator without the linear spring, (b) represents the case in which k = 1. Notice that the
strange attractor plotted in green colour is destroyed and the dynamics of the system becomes regular.
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Fig. 12. Plots of the basins of attraction of our system for F = 0.258, F = 0.22 and F = 0.15, respectively. Other parameter
values are: ω = 1, k = 1, α = 0.15 and h = 0.3; (a) represents the case in which η = F

α = 1.72 which corresponds to the chaotic
regime as shown in Fig. 8, (b) corresponds to the situation in which η = 0.8 and therefore the transition between chaotic and
periodic motions, as we suggest in Fig. 8. White color denotes the basin of attraction of the new periodic attractor. Finally,
the last figure represents the case in which the basins become smooth and the dynamics is completely regular.

color the typical strange attractor of this system. If
we add the effect of the nonsmooth term, a com-
plete erosion of the basins takes place as we sug-
gested in Sec. 3. It should be also noted that the
Melnikov criterion indicate rather the appearance of
the basin boundary destruction. This effect is visi-
ble in Fig. 12 where we show the basins of attraction
for three values in the vicinity of critical conditions
that corroborate the results presented in Fig. 8.
Figure 12(a) represents the case η = F

α = 1.72
which corresponds to the chaotic regime shown in
Fig. 8. The green curve shows the chaotic attractor
in phase space. Insofar we decrease the value of η,
say η = 0.5 the motion becomes regular as shown
in Fig. 12(c). The transition between regular and
chaotic motions is represented in Fig. 12(c). In that
picture a new periodic attractor appears (its basin
is plotted in white color) as we suggest in the bifur-
cation diagrams.

5. Conclusions and Discussion

Our results show that the nonsmooth systems can
be studied by the Melnikov criterion. Here, we pro-
pose to rely on the numerical integration of the
Melnikov integral. The advantage of our method
is to use a single formula to obtain the critical
vale of the force-to-damping ratio. Furthermore, we
investigated the difference caused by the additional
spring which is useful in problems related to suspen-
sion of vehicles. We observed it in both analytical
critical curve and also in the series of pictures show-
ing both the bifurcation diagrams and the basins of

attraction evolution. In the analytical part we have
shown the different regions of parameters F , α and
ω in which the dynamics is periodic or chaotic.

The numerical bifurcation diagrams elucidate
clearly the role of F , k and ω for which the onset of
the chaotic motions takes place. Besides, by analyz-
ing the different numerical bifurcation diagrams we
conjecture both, the appearance and destruction of
different attractors. This last result is corroborated
by analyzing the evolution of the basin of attrac-
tion for different values of η. The basins of attrac-
tion show us, for values of η close to the critical
points in which the dynamics changes from periodic
to chaotic or vice versa, these creations and destruc-
tions of the different attractors for which both the
numerical and the theoretical results are in com-
plete agreement.

Finally, these results encourage us to apply
the above approach to other systems with non-
smoothness including the clearance and dry
friction phenomena which have important and
relevant implications in engineering [Wiercigroch &
de Kraker, 2000; Radons & Neugebauer, 2004].
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