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We present an analog circuit implementation of the novel partial control method, that is able
to sustain chaotic transient dynamics. The electronic circuit simulates the dynamics of the one-
dimensional slope-three tent map, for which the trajectories diverge to infinity for nearly all
the initial conditions after behaving chaotically for a while. This is due to the existence of a
nonattractive chaotic set: a chaotic saddle. The partial control allows one to keep the trajectories
close to the chaotic saddle, even if the control applied is smaller than the effect of the applied
noise, introduced into the system. Furthermore, we also show here that similar results can
be implemented on a circuit that simulates a horseshoe-like map, which is a simple extension
of the previous one. This encouraging result validates the theory and opens new perspectives
for the application of this technique to systems with higher dimensions and continuous time
dynamics.
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1. Introduction

Although permanent chaos has been thoroughly
studied, much less attention has been devoted to the
phenomenon of transient chaos [Tél, 1991], which is
also a rather common feature in nonlinear dynami-
cal systems. For example, if we have a system with
a chaotic attractor, by varying one of the system’s
parameters, a bifurcation like a boundary crisis
[Grebogi et al., 1982] can make it lose its attractive
nature. The nonattractive set resulting from this
process, typically a zero-measure set with a chaotic
dynamics, is called a chaotic saddle.

The influence of this chaotic set in the dynam-
ics is typically the appearance of the phenomenon of
transient chaos. What happens is that a trajectory
which typically passes close to the chaotic saddle,
will behave chaotically for a while, after which it
will settle into a coexisting (and possibly periodic)
attractor. The universality of this type of dynamics

has been underlined by a recent work where the
transient chaos can be shown to be formally related
with Poincaré recurrences [Altmann & Tél, 2008],
shedding thus some light on this important aspect
of dynamical systems theory and chaotic dynamics.

As pointed out in [Dhamala & Lai, 1999], tran-
sient chaos appears in models related with species
extinction, voltage collapse on an electrical power
system or undesired bursts on a chemical reaction.
Controlling chaos is another interesting concept in
nonlinear dynamics. Many different control tech-
niques have been used in order to control perma-
nent chaos, though other control schemes have also
been proposed in recent years in order to control
transient chaos. By controlling transient chaos it
is generally meant to perturb the dynamical sys-
tem considered in order to keep the trajectories
close to the nonattractive chaotic set, far from those
undesired attractors. These control schemes, like
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the paradigmatic OGY control scheme [Ott et al.,
1990], aim to achieve this goal by applying small
but accurately chosen perturbations to the system.
Some of them aim at the stabilization of the sys-
tem on any of the periodic orbits embedded in
the chaotic saddle [Tél, 1991; Place & Arrowsmith,
2000a, 2000b] or to keep trajectories always close to
orbits with long-lived chaotic transients [Dhamala
& Lai, 1999; Kapitaniak & Brindley, 1998]. For a
description of nonattractive chaotic saddles, how to
compute them and their corresponding fractal prop-
erties, see [Aguirre et al., 2009].

A major issue in this context is the presence of
noise. It is easy to see that if the class of systems
described above are under the influence of environ-
mental noise, the process by which the trajectories
escape the chaotic saddle and settle into the vicin-
ity of the coexisting attractor will take place faster.
This undoubtedly poses a problem from a control-
ling point of view.

This problem can be stated in a more precise
way as follows. We might assume that the dynamics
of the system are given by the m-dimensional map
pn+1 = f(pn). We suppose that there is a region
Q in phase space that encloses the chaotic saddle,
and from which all trajectories escape after a finite
number of iterations. We consider that there is some
noise un acting on the system, in such a way that
the dynamics become pn+1 = f(pn)+un. The noise
un is assumed to be bounded by 0 < |un| ≤ u0,
where | · | is the norm of the m-dimensional space
considered.

We are interested in keeping trajectories inside
Q. In order to achieve this goal, we consider that
at each iteration we can apply an adequate control
rn correcting the system’s trajectory. This can be
expressed mathematically as follows:{

qn+1 = f(pn) + un

pn+1 = qn+1 + rn(qn+1),
(1)

where the control we apply is also bounded,
|rn| ≤ r0.

With all these ingredients in mind, we can
now consider the possible answers to the following
important question: which will be the amplitude r0

of the control needed to keep the trajectories inside
Q? Its value will typically depend on u0, and one
might expect that given the nonattractive nature
of the saddle, the fact that nearly all trajectories
escape from Q under iterations and the presence
of noise, it would be necessary to have r0 > u0.

However, this is not necessarily true. Recently it
has been shown that there is a technique that allows
one to keep trajectories close to the saddle even if
r0 < u0: partial control of chaos, that is, even if the
control applied is smaller than the applied noise.
This technique is called partial because it allows
one to keep trajectories inside Q with r0 < u0,
although it does not determine where the trajectory
will exactly go inside Q. As we will show shortly, this
is possible if the chaotic saddle is a consequence of
certain geometrical actions that are quite general.
Its first implementation was with the slope-three
tent map [Aguirre et al., 2004], the simplest one-
dimensional system with a nonattractive chaotic
set, and it was extended later to a family of one-
dimensional maps with transient chaotic dynamics
[Zambrano & Sanjuán, 2008]. Some later research
work [Zambrano et al., 2008] showed to be also suit-
able for the important class of maps with a Smale
horseshoe [Smale, 1967], maps that are supposed
to arise anytime that we have a transverse homo-
clinic intersection on a dynamical system. This idea
was later generalized and thoroughly analyzed in
[Zambrano & Sanjuán, 2009].

However, up to now there are only numerical
implementations of this technique. The aim of this
paper is to present an electronic circuit implemen-
tation of the partial control technique. The simple
fact of simulating the equations in a circuit is a
solid argument for the robustness of the method.
Furthermore, it is a first step toward the possi-
ble application to continuous dynamical system in
higher dimensions. We present here the first imple-
mentation of this technique in an electronic device
based on discrete dynamics.

The structure of the paper is as follows: in Sec. 2
we present the system that we will deal with and
the control technique. In Sec. 3, we explain how
the experimental implementation was performed. In
Sec. 4 the experimental results are provided, and in
Sec. 5 we explain how an analogous result can be
obtained in a circuit simulating a linearly expansive
horseshoe-like map. Finally in Sec. 6 we draw the
main conclusions of this work.

2. The System and the Partial
Control Technique

The system on which we mainly focus in this paper
is a paradigmatic example of dynamical system
with transient chaos and was already described in
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Fig. 1. Inductive construction of the chaotic saddle for the
slope-three tent map. The set I∞ = limk→∞ Ik is a Cantor
set, that is, a fractal.

[Aguirre et al., 2004]: The slope-three tent map

xn+1 = T (xn) = 3(1 − |xn|) − 1. (2)

The graph of the map is sketched in Fig. 1.
The dynamics of this map is particularly interesting
inside the interval I = [−1, 1]. Notice that any tra-
jectory starting out of I will never come back to it
and diverge very fast to −∞. In order to understand
the type of dynamics arising in this system, we can
define the intervals Ik as the intervals such that
points inside it are mapped outside I after more
than k iterations. They are depicted in Fig. 1. It
can be easily observed that the length of those inter-
vals decreases exponentially with k. In the limit as
k → ∞, we find the set of trajectories that remain
bounded forever in the interval, the zero-measure
set I∞, that is the classical Cantor set. The dynam-
ics inside this nonattractive set are chaotic (the set
is dense in periodic orbits and it has sensitive depen-
dence on the initial conditions): it is the chaotic
saddle for this system.

Moreover, for a typical orbit, if the initial con-
dition is located in the interval I, the numerical
value of xn will escape from I and then diverge
to −∞. The number of iterations needed to escape
from I will depend on how close the initial con-
dition was to the chaotic saddle. The chaos-like
behavior that trajectories have before escaping from

the interval I are what we have called previously
transient chaos.

As we said above the purpose of the control
technique is to maintain the trajectory in an infinite
chaotic transient inside the interval I. However, we
will assume that, as stated in Eq. (1), the system
is affected by noise un bounded by u0, and that at
each iteration we will use a control rn bounded by r0

to keep trajectories inside it, so that the equations
of the system read{

qn+1 = T (xn) + un

xn+1 = qn+1 + rn(qn+1).
(3)

Now we can explain how the partial control
technique allows one to keep the trajectory inside
the interval I even if r0 < u0. The key idea in order
to achieve this goal is to keep the trajectories inside
a given safe set Sk of a family of safe sets {Sj},
j = 0, 1, . . . that we describe below. In other words,
the control must be such that xn ∈ Sk for all n.
The geometrical properties of this set allow to keep
trajectories inside I with r0 < u0. Now, we will
describe the structure of these safe sets.

The safe sets can be defined as the set of preim-
ages of x = 0, which are Sk ≡ T−k(0), so obviously
their structure depends basically on the form of the
map. We take set S0 as the point x = 0. It can
be shown that the safe set Sk is formed by 2k safe
points of the form

±2
3
± 2

32
± · · · ± 2

3k
(4)

for k ≥ 1, so the 2k possible combinations of + and
− in the equation above correspond to the 2k points
in the set Sk. A pictorial representation of the safe
sets S0, S1, S2 and S3 is shown in Fig. 2.

−1 1

S 0

S

S

S

1

2

3

Fig. 2. A pictorial representation of the safe sets S0, S1, S2

and S3 in the interval I = [−1, 1] for the slope-three tent
map. Each point in Sk has two points of Sk+1, one to its left
and another to its right, that is, closer to it than any other
point of Sk.

1250032-3



March 9, 2012 11:46 WSPC/S0218-1274 1250032

A. Wagemakers et al.

For a better and a detailed analysis of the struc-
ture of these safe sets, it is important to emphasize
first that the set Sk+1 is the preimage of Sk, in
other words all points in Sk+1 are mapped into Sk

under the map xn+1 = T (xn). From Eq. (4), it is
easy to see that two consecutive points of Sk are
separated by a distance equal to 4

3k . The second
and most important property of these sets, that can
also be understood from Eq. (4) and visualized in
Fig. 2, is that each point in Sk has two preimages
of Sk+1, one to its left and another one to its right,
closer to it than any other point in Sk, at a distance
δk+1 = 2

3k+1 . The value of δk obviously decreases to
zero with k.

Considering these geometrical properties, the
partial control strategy is then the following. Given
the maximum value of the noise u0, assume that the
nth iterate is on a point of the set Sk, where k sat-
isfies δk < u0. The action of the map will take it to
a point T (xn) ∈ Sk−1. Noise is also present and will
displace the trajectory to a point qn+1 = T (xn)+un.
However, we have noticed that any point in Sk−1 is
surrounded by two points on Sk, one to its left and
another to its right at a distance δk < u0. Thus, in
all possible cases, it is possible to see that a cor-
rection rn such that |rn| ≤ r0 < u0 can put the
resulting iterate xn+1 = qn+1 + rn(qn+1) back on
Sk, so that the same process can be repeated for
xn+1, and this can be repeated ad infinitum. This
method will be detailed in Sec. 3 and illustrated
in Sec. 4.

In order to make the above strategy work, it is
clear that the considered trajectory should start at
Sk. As in other problems where the aim is to sus-
tain an unstable state, starting somehow close to
that unstable state is necessary. However, it can be
proved that the technique has a remarkable rate of
success. In other words, that it can keep trajecto-
ries bounded with r0 < u0, if the trajectories start
sufficiently close to the chaotic saddle.

In the next section we show an experimental
implementation of this control technique and some
experimental realizations that illustrate clearly all
these ideas.

3. Analog Circuit Implementation

Our aim is to build a circuit reproducing the
dynamics described by Eq. (3). We must empha-
size that the circuits do naturally have noise. How-
ever, due to the fact that the tipical voltages in
the circuit are much higher than the electronic

Table 1. List of intervals where the safe sets lie.

Interval Where qn Lies Safe Point Associated

−∞ < qn ≤ −2

3
−2

3
− 2

32

−2

3
< qn ≤ 0 −2

3
+

2

32

0 < qn ≤ 2

3

2

3
− 2

32

2

3
< qn < +∞ 2

3
+

2

32

noise intensity, the signal to noise ratio can exceed
30 dB. Consequently, we opt here to introduce the
noise externally. This will allow an analysis of the
performance of the control technique.

We are going to use a noise amplitude u0 so
that the adequate safe set will be S2, that has four
safe points. Furthermore, we know that using our
control strategy, depending on the value of qn+1 we
have to steer the trajectory to a different safe point,
following the criteria described in Table 1, that gives
a systematic way to find the closest safe point.

With these safe points (this safe set), the tra-
jectory can be maintained in a infinite chaotic tran-
sient with r0 < u0 if 2

32 < u0. After each iteration
(including the effect of the noise) the system is

Fig. 3. Block diagram of the circuit. This schematic view of
the algorithm shows the relation and the order between each
block. The electronic circuit is constructed according to this
representation.

Fig. 4. State flow diagram of the implementation of the con-
trol method with the circuit, where “s.p.” means safe point.
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driven back to the closest safe point according to
Table 1.

The block diagram in Fig. 3 represents the sys-
tem with functional blocks. The implementation of
the electronic circuit is based on this sketch. The
first block on the left represents the function T with
the input xn on the left side and the output T (xn)
on the right side. In the second block, the noise is
summed up to T (xn) and subsequently the control
is applied in the third block. The last block on the
right represents the delay unit which implements
the recurrence xn+1 = T (xn) + un + rn.

The circuit works as follows:

(1) First we consider the value of xn at the entry
of the function T . The value T (xn) is obtained
at the output of the block almost immediately.

(2) The noise is added to T (xn).
(3) The control is computed and summed up. At

this point, we have T (xn)+un+rn. This numer-
ical value is available at the input of the sample
and hold block.

(4) The sample and hold block takes at its input
T (xn)+un+rn and holds it until the next clock
ticks. The block releases it at the next clock
tick so that we obtain at the output xn+1 =
T (xn) + un + rn and the cycle repeats.

The electronic circuit is a modification of the
logistic map circuit proposed in [Hellen, 2004]. The
schematic diagram of the circuit is shown in Fig. 5,
where each functional block is delimited by dashed
lines.

The tent map block function is based on a
simple nonlinear circuit with operational amplifiers
(op-amps) and diodes which reproduces the shape
of the function. This first block computes the abso-
lute value function with op-amps and diodes so that
we obtain |xk|. Then the signal is scaled and we sum
up an offset such that the output is T (xn). The noise
is generated with an Agilent function generator and
summed up to T (xn) with an op-amp.

The control block is based on a series of op-
amps used as comparators to locate the closest safe
point. With two comparators, we can locate four
safe points. The number of comparators establishes
the number of safe points that can be stored, so
that 2n safe points (and thus the safe set Sn) can
be used with n comparators.

The implementation of the algorithm appears
in the state flow diagram of Fig. 4. The algorithm
operates as follows:

(1) First the input yn = T (xn) + un is compared
to zero such that the result of the comparison
is φ1 = 2

3 V when yn > 0 and φ1 = −2
3 V when

y ≤ 0.
(2) The second comparator takes the input yn and

compares it to φ1 (the result of the previ-
ous comparison). The result of this compari-
son, which we will call φ2 is φ2 = + 2

32 V when
y > φ1, else the result is φ2 = − 2

32 V.
(3) The last op-amp sums up the results of the two

comparisons φ1 and φ2 which gives us the safe
point.

The control that we will apply to the trajectory
is rn = φ1 +φ2−yn so that the corrected trajectory
is on the safe point φ1 + φ2. The control circuit
is implemented with op-amps set as comparators.
Zener diode clamps regulate the voltage stability
for the comparisons. A simple op-amp set as adder
sums up the results of the comparisons.

The sample and hold block is based on the
LF398 sample and hold circuit. The two sample and
hold LF398 circuits act as a delay unit. While the
circuit is releasing the value xn at the output, it
samples the value T (xn) + un + rn at the input in
order to release this value at the next cycle. At the
next clock tick the numerical value T (xn)+ un + rn

becomes xn+1 at the output.
We need two additional blocks to make the cir-

cuit work properly. The first block is a voltage ref-
erence of 1 V necessary to compute the function T .
This block is made up of a couple of bipolar transis-
tors and some resistors that set a constant voltage
of 1V at the output of the block. The second block
is a clock that sets the pace of the iterations of the
circuit. The implementation of the clock is based on
a LM555 integrated in a circuit set in multivibrator
mode.

4. Experimental Results

In this section, we present some results obtained
with the electronic circuit. In Fig. 6 the time series
of the iteration of the system without control is
shown. For a particular initial condition, the time
series tends to −5 V, which is the saturation voltage
for this system. It means that the voltage cannot
increase or decrease any further than +5 V or −5V.
The escape from the interval [−1, 1] V is exactly
what could be expected for this type of map.

Once the control is switched on, the trajec-
tory of the system is maintained on a stable chaotic

1250032-6
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Fig. 6. Time series without control. The trajectory of the
time series tends rapidly after a few iterations to −5V which
is the saturation voltage of the circuit. The initial condition
is displayed as I.C. in the figure and is marked with a red
dot. The order of the iterations are marked with an arrow.

transient trajectory. An example of such time series
is shown in Fig. 7. We have chosen a value of
u0 > 2

32 , and we have considered the initial con-
dition of a point on S2. The map should take it
to a point T (xn), that is plotted with blue dots.
However noise displaces it to T (xn) + un (iterates
with noise) which are plotted with red dots. In spite
of this, we can see how for each iteration, the tra-
jectories are driven to the closest point on the set

90 100 110 120 130 140 150 160

−0.8
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−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x
n

Fig. 7. Time series of the controlled system. Blue dots: iter-
ates, red dots: iterates with noise, green dots: controlled tra-
jectory. If we follow the green dots, we can observe that the
trajectory is maintained on the safe points and that the cor-
rection needed for this is always smaller than the maximum
value of noise, u0.

Fig. 8. The figure shows measurements of the maximum
noise u0 against the maximum control r0. Each point rep-
resents the maximum of a time series with different noise
standard deviation. The solid line represents the unit line
u0 = r0. All the points below this line satisfy r0 < u0.

S2 with a correction smaller than the maximum
deviation induced by noise. The controlled iterates
xn+1 = T (xn) + un + rn, are displayed in green in
that figure. This allows to obtain a stabilized tra-
jectory with r0 < u0.

Provided that u0 > δ2, the theoretical results
predict that the maximum value of the control r0

should be lower than the maximum value of the
noise u0. Figure 8 represents the measurements
made with the circuit of the maximum noise value
against the maximum control applied during the
trajectory. Each point in Fig. 8 was obtained with a
time series with different noise standard deviation.
All the points shown lie under the solid line r = 0,
so they meet the condition r0 ≤ u0, confirming thus
the result mentioned above.

5. Control of a Horseshoe-Like Map

With the circuit shown before, we can extend our
work easily to a simple but important type of two-
dimensional map: a linear Smale horseshoe-like map
[Smale, 1967]. A good description of the dynamics
for this type of maps can be found in [Alligood et al.,
1996; Yang, 2009]. Furthermore, recent works have
shown the existence of horseshoes in hyperchaotic
circuits [Yang et al., 2007]. This way, we can achieve
experimental confirmation of the results obtained in
[Zambrano et al., 2008; Zambrano & Sanjuán, 2009].
The typical Smale horseshoe map, pn+1 = h(pn),

1250032-7
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Q

h

H

h(Q)

∆

H(Q)

Fig. 9. Geometrical action on a square Q of a typical
horseshoe map pn+1 = h(pn) and the horseshoe-like map
pn+1 = H(pn) that we consider here. The first one stretches
and folds back into itself Q. The second one stretches, cuts
and pastes it back into itself. The action of both maps differs
just on the mapping of the middle third of the square.

stretches linearly the square and then folds it back
into itself, as shown in Fig. 9. This implies that
nearly all the trajectories escape from Q under iter-
ations and that there is a nonattractive chaotic set
inside Q, where the dynamics is chaotic. A good
description of the dynamics for this type of maps
can be found in [Alligood et al., 1996]. The geomet-
rical action of the horseshoe map can be observed
in Fig. 9.

The horseshoe-like map that we describe here
is a map pn+1 = H(pn), where pn ≡ (xn, yn). The
equations of the map are the following

xn+1 = T (xn) = 3(1 − |xn|) − 1 (5)

yn+1 = P (yn) =




1
6
yn + 1 − ∆ if xn ≤ 0

1
6
yn − 1 + ∆ if xn > 0

, (6)

with ∆ = 0.5. The geometrical action of the map
on Q is shown in Fig. 9. Note that the geometrical
action of this map in the square Q ≡ [−1, 1]×[−1, 1]
is identical to that of the horseshoe map, except for
the middle third (x ∈ (−1/3, 1/3) of the interval).
Of course, it fulfills the general conditions for the
application of the partial control technique given in
[Zambrano & Sanjuán, 2009].

This system will be particularly easy to imple-
ment because we notice that the equation for
the x-variable is identical to the one-dimensional
map described in the previous section. The second
equation takes x as an input. The term ∆ gives the
distance between the top and bottom sides of Q and
H(Q), as shown in Fig. 9.

Moreover, using some of the ideas given for
the slope-three tent map, we can sketch the main

characteristics of this map. First, we see that nearly
all trajectories inside Q will escape from it under
some iterations: only a zero-measure Cantor set of
vertical segments will remain inside it forever.

If we add a small amount of noise to the sys-
tem, this escaping process will be accelerated. As
we did before, we assume that the system will be
affected by noise un bounded by u0 and a control
perturbation rn bounded by r0 is applied on each
iteration, so that the global dynamics is given by
the equations{

qn+1 = H(pn) + un

pn+1 = qn+1 + rn(qn+1).
(7)

The aim here is to keep the trajectories inside the
square Q with r0 < u0. As with the one-dimensional
map, the partial control strategy needed to achieve
this goal will consist of maintaining the trajectories
on a given safe set Sk.

Considering the analogies between this map
and the slope-three tent map, it is not surprising
that their safe sets share lots of features. The set S0

is defined as the vertical segment inside Q placed in
the position x = 0. The safe sets {Sk} are then the
preimages inside Q of S0. It can be verified that the
safe set Sk consists of 2k vertical segments inside
Q whose position along the x-axis is equal to the
x-value of the safe points of the map xn+1 = T (xn)
described above. They are depicted in Fig. 10.

The geometrical properties are then evident:
first, by definition each point on Sk is mapped into
a point in Sk−1 under H. Second, each segment of
Sk is surrounded by two segments of Sk+1, one to
its left and another to its right, and the distance to
each of them is again δk+1 = 2

3k+1 .

S 0

S

S
S

1

2

3 (  )

(  )
(  )

(  )

Fig. 10. A pictorial representation of the safe sets S0, S1,
S2 and S3 in the square Q for the horseshoe-like map. The
x-coordinate of each segment of each safe set corresponds to
the x-value of the safe points of the safe sets for the tent
map, which are represented for the sake of clarity. Note that
each segment in Sk has segments of Sk+1, one to its left and
another to its right, that is, closer to it than any other point
of Sk.
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The strategy that we can follow to keep
trajectories bounded is the following. Considering
by simplicity that u0 < ∆, what we have to do
is to consider the initial condition on Sk such that
u0 > δk. Each iteration will be mapped to a point on
Sk−1 and then deviated by the noise. However, due
to the fact that each segment in Sk−1 is surrounded
by two segments of Sk, we can steer the trajectory
onto the closest segment of Sk with r0 < u0 for each
iteration [Zambrano et al., 2008].

From an experimental point of view, we notice
that the second equation remains stable as long as
xn is driven on a stable trajectory. If we control xn,
the value of yn is also controlled, which means that
we will apply the control only on the first variable.
In other words, for this system the only variable
physically relevant is the x coordinate.

Figure 11 represents the block diagram of the
system. The upper block is identical to the diagram
of the one-dimensional system while the inferior
part implements the iterations of yn. The func-
tion block P takes as input yn and xn to produce
the iterates P (yn). The electronic implementation
is similar to Fig. 5 with an additional block for the
iterates of yn. The function P comprises a compara-
tor and op-amps. Since the design is simple and
similar to Fig. 5, we do not reproduce the diagram
here.

In order to test our results, we use a value of
u0 such that the adequate safe set is S2, that con-
sists of four vertical segments. In Fig. 12 we show
the controlled trajectory of the two dimensional
system. In this figure the iterates are plotted with
blue dots, the iterates with noise with red dots and
the controlled value is displayed with green dots. We
notice that no matter how noisy the perturbation

Fig. 11. Block diagram of the 2D system. The diagram
is similar to the one-dimensional system but with an addi-
tional block that implements the function P and samples the
variable yn.
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Fig. 12. (a) Time series of the two-dimensional system with
control. Blue dots: iterates, red dots: iterates with noise,
green dots: controlled trajectory. If we follow the green dots,
we can observe that the trajectory is maintained always on
the safe set S2 and the correction needed is always smaller
than the amplitude of the applied noise u0. (b) Picture of the
oscilloscope with xn against yn. We observe how the noise
spreads the trajectory around the safe points.

is, the correction needed to take the trajectory back
into the set S2 is always smaller than the maximum
value of noise u0.

In Fig. 13 the time series of the control in abso-
lute value of the variable xn is shown. The dashed
line in the figure represents the maximum absolute
value of the noise in the system. The control of
the linear horseshoe map remains lower than the
maximum as predicted by the theory. In the same
figure, the noise trajectory is shown in light color,
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Fig. 13. Time series of the absolute value of the control for
a particular trajectory (in solid red). The dashed blue line
represents the maximum value of the noise u0 in the system.
The control remains lower than the noise in this situation. In
light color the time series of the absolute value of the noise
is shown.

the amplitude of the noise is in general higher than
the control.

6. Conclusions

We have provided an experimental implementa-
tion of the partial control scheme, as described in
[Aguirre et al., 2004; Zambrano et al., 2008; Zam-
brano & Sanjuán, 2009]. We have shown that it
can be implemented in electronic circuits simulating
the slope-three tent map and a linearly expansive
horseshoe map. The main features of this control
scheme are recovered, so we expect that this tech-
nique might be used in other situations and experi-
mental settings where transient chaotic dynamics
exist in a bounded region in phase space in the
presence of noise.
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