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Many discrete-time dynamical systems have a region Q from which all or almost all trajec-
tories leave, or at least they leave in the presence of perturbations that we call disturbances.
We partially control systems so that despite disturbances the trajectories of a dynamical
system stay in the region Q at least for some initial points in Q. The disturbances can be
thought of as either noise or as purposeful, hostile efforts of an enemy to drive the trajec-
tory out of the region. Our goal is to keep trajectories inside Q despite the disturbances and
our partial control of chaos method succeeds.

Surprisingly this goal can be achieved with a control whose maximum allowable size is
smaller than the maximum allowed disturbance. A fundamental step towards this goal is to
compute a set called the safe set that had, until now, been found only in certain very special
situations.

This paper provides a general algorithm for computing safe sets. The algorithm is able to
compute the safe sets for a specified region in phase space, the maximum disturbance
value, and the maximum allowed control. We call it the Sculpting Algorithm. Its operation
is analogous to removing material while sculpting a statue. The algorithm sculpts the safe
sets. Our Sculpting Algorithm is independent of the dimension and is fast for one- and two-
dimensional dynamical systems. As examples, we apply the algorithm to two paradigmatic
nonlinear dynamical systems, namely, the Hénon map and the Duffing oscillator.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

When trajectories escape. Transient chaos [1,2] is present in many different situations in nonlinear dynamical systems.
In such systems, for f a continuous map of phase space to itself,
qnþ1 ¼ f ðqnÞ; ð1Þ
there are trajectories that behave chaotically in some region Q of phase space for a while before eventually leaving that re-
gion or reaching a stable periodic state. The topological structure inside Q that causes this behavior to occur is a zero-mea-
sure set known as a chaotic saddle [2,3].

In various real-life applications, it may be necessary to keep the orbits away from certain regions, that is, to keep trajec-
tories from leaving the region Q. Examples can be found in Refs. [4–6]. Sometimes there are disturbances nn that cause the
trajectory qn to leave Q; that is,
qnþ1 ¼ f ðqnÞ þ nn: ð2Þ
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We always assume jnnj 6 n0 for some specified number n0 > 0. Our goal is to choose a un such that partially controlled
trajectories
qnþ1 ¼ f ðqnÞ þ nn þ un ð3Þ
can guarantee that qn remain in Q for appropriate choices of un, where the feedback control un can be chosen with knowledge
of f ðqnÞ þ nn. Hence the goal is to find a feedback control algorithm uðxÞ so that un ¼ uðf ðqnÞ þ nnÞ.

We make four assumptions throughout this paper:

1. Q is a closed, bounded region in the phase space.
2. There is a bound n0 > 0 such that the disturbances nn in phase space satisfy jnnj 6 n0. We say that such nn are admissible

disturbances.
3. There is a bound u0 > 0 such that the (feedback) control un in phase space satisfies junj 6 u0. We say that such un are

admissible controls.
4. The bound of the control to keep the trajectories inside Q, is smaller than the bound of the disturbances, that is u0 < n0.

A basic and fundamental ingredient is the use of certain sets referred to as safe sets [7] that are subsets of Q. We will say a set
S � Q is safe, if for each q 2 S, the distance of f ðqÞ þ n from S is at most u0. That implies there exists an admissible u such that
f ðqÞ þ nþ u is in S. We emphasize that whether a set is safe depends heavily on u0 and n0. By repeating, we find it is possible
to keep the entire trajectory qn of Eq. (3) in S and hence in Q. Then if q is in a safe set S � Q , the trajectories can be made to
stay in S and therefore in Q by choosing un so that qnþ1 is in S.

An example of a safe set is shown in Fig. 1, for the Duffing oscillator €xþ 0:15 _x� xþ x3 ¼ 0:245sinðtÞ with the smallest
possible ratio.

We write q for the ratio u0=n0 and call it the safe ratio. If there is a safe set for some choice of n0 and u0, then we try to
decrease u0 until there is no safe set and we report that minimum value here where there is a safe set with two-digit
precision.

A surprising achievement of the partial control technique is that it allows us to keep trajectories inside a region Q even
when the maximum amplitude of the control u0 is smaller than the maximum amplitude n0 of the disturbances (the noise or
attacks of an enemy), even when almost every trajectory of the deterministic system (Eq. 2) leave Q.

Until now, safe sets have only been found for certain one-dimensional maps [8] and for horseshoe maps [7]. Even if horse-
shoe maps typically arise in nonlinear dynamical systems, finding them is not always a simple task [9].

In practice, we use a grid of points for the region that needs to be partially controlled, and find the largest safe set that will
be a subset of that of grid points.

What safe sets look like. We have worked special cases of the problem of finding safe sets for 6 years [7,8,10], and we can
now report that we have found an algorithm that always works whenever there is a safe set (always for specified bounds n0

and u0). It finds the maximum safe set, that is, the largest safe set in Q. We find that maximum safe sets are geometrically
more complicated than we expected.

In the second and third sections, we infer the main property that the points belonging to a safe set should satisfy. This will
be used to develop the algorithm to compute safe sets. This algorithm is a recursive algorithm that seems to find a safe set
whenever there is a chaotic saddle in Q, the region of the phase space considered. To demonstrate our algorithm we have also
chosen the Hénon map with a choice of parameters where no periodic attractor exists and all the trajectories diverge after
some iterations. Using the algorithm described in the paper, we have found a safe set that can avoid the escape to infinity
with a control that is smaller than noise. As an example of a return map of a flow, we have chosen the forced Duffing
Fig. 1. This is the safe set found for the Duffing oscillator €xþ 0:15 _x� xþ x3 ¼ 0:245sinðtÞ with the smallest possible ratio.
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oscillator with a choice of parameters where the Wada property [11] arises in the phase space for all the basins of attraction.
We show a safe set that allows the system to behave chaotically for an indefinite time, avoiding the periodic attractors.
2. The ‘‘Sculpting Algorithm’’ for computing the largest safe set in Q.

Given a closed bounded set C and values u0 and n0, we declare a point p in C ‘‘bad’’ (for C) if there exists an admissible n
such that the distance of f ðpÞ þ n from C is more than the distance u0 from C. Notice that such f ðpÞ þ n has no admissible
control u for which f ðpÞ þ nþ u is in C. We define the sculpting operator W that cuts away the bad part of C; that is, WðCÞ
is the set of points in C that are not bad for C.

We iterate the procedure. To find the largest safe set in Q, write Q0 ¼ Q , and Q1 ¼ WðQ0Þ, discarding bad points in Q 0, and
Q2 ¼ WðQ1Þ, discarding bad point in Q 1, etc., defining Q nþ1 ¼ WðQ nÞ, discarding bad points in Q n for each n > 0. These sets are
all compact since f is continuous. It is possible that Q n is the empty set for some n, in which case there is no safe set in Q. If all
Qn are non empty, then the intersection, defined as Q1 ¼

T
Qn is non-empty since the intersection of nested non-empty

compact sets is non-empty.
We claim Q1 is a safe set. Let p be in Q1. All we need to do is show that p is not bad for Q1. Since p will not be bad for any

Qn, for each n, there will be some point pn in Q n such that the distðf ðpÞ þ n; pnÞ 6 u0. Since the sequence pn will have a limit
point in Q1 (since all the sets are compact), distðf ðpÞ þ n; Q1Þ 6 u0. Since that is true for each n; p is in Q1.

We claim Q1 is the largest safe set in Q. First, notice that any safe set S in Q is a subset of each Q n and so of Q1, since if p
is in S, then for each n; p is not bad for any larger set such as Qn, so it is in Qnþ1, so it is in Q1.

For any set C and distance d P 0, we write C þ d for the set of points that are no more than distance d from C. When C is a
set of grid points, we restrict this set C þ d to grid points. For any set C and distance d P 0, we write C � d for the set of points
that are in C and are at least distance d for the exterior of C. Then a set S is safe if the set f ðSÞ is a subset of ðSþ u0Þ � n0. (In
practice, we use a grid and restrict attention to points on the grid.).

Using this notation, we can now write WðQnþ1Þ to be the set of points x 2 Qn for which f ðxÞ is in ðQn þ u0Þ � n0. Hence the
problem essentially reduces to computing the sets ðQn þ u0Þ � n0, which is not hard in dimension one or two.
3. Implementation of the algorithm

In practice, we use a grid of points on Q, of some thousands of points by thousands points, if phase space is two-dimen-
sional, in a region that includes Q. In all cases the grid size (the distance between nearest neighbor grid points) should be
small compared to u0. We will at times check grid points beyond this array but the safe set we seek will be restricted to
be in this array. We choose Q 0 to be the set of grid points in Q. At each successive step, the subsets Qnþ1 ¼ WðQnÞ are subsets
of the grid. Since the grid is a finite set, for some n we will have Q1 ¼ Q n. Indeed, we know we have found Q1 when
Qnþ1 ¼ Qn since Qm remains the same for all m > n.

We write [[v]] for (one of) the closest grid point to v 2 C. Let V be the set of grid points which are within admissible values
of n for a given grid point [[v]]. We will only work with admissible n in V and will call these V-admissible.

For a set of grid points C, we compute WðCÞ as follows. First, we create the set C þ u0 of grid points that are within the
distance u0 of C, as we show in Fig. 2(a). (Here may need to include grid points that are beyond Q.) Second we create the
set ðC þ u0Þ � n0, that are the grid points in C þ u0 with at least a distance n0 from the exterior of C þ u0, as shown in
Fig. 2(b). We check each p in C as follows. We compute ½½f ðpÞ��. Next we determine if ½½f ðpÞ�� is in ðC þ u0Þ � n0. If ½½f ðpÞ�� is
not in ðC þ u0Þ � n0, is bad, because ½½f ðpÞ�� þ n is too far from C to be pushed into C by an admissible u. This is equivalent
to determine if there is a V-admissible n such that ½½f ðpÞ�� þ n is not in C þ u0. In Fig. 3, we can see schematically which
Fig. 2. (a) The set of points C þ u0, is the extension of the set C in the grid of points to include also the points that are within a distance u0 of C. (b) A set C is
safe if the set f ðCÞ is a subset of ðC þ u0Þ � n0. In practice, we use a grid and restrict attention to points on the grid.



Fig. 3. Here we can see the points of the grid that are within an admissible n of ½½f ðpÞ��. Here the small points represent the grid points. The big point is ½½f ðpÞ��
which is the closest grid point to f ðpÞ. And the V-admissibles n, are those such that ½½f ðpÞ�� þ n are also a grid point and within the circle of radius n0.

J. Sabuco et al. / Commun Nonlinear Sci Numer Simulat 17 (2012) 4274–4280 4277
are the V-admissible n for ½½f ðpÞ��. If there is one, then p is bad because ½½f ðpÞ�� þ n is too far from C to be pushed into C by an
admissible u. Then WðCÞ is the set of points p in C that are not bad, that is ½½f ðpÞ�� 2 ðC þ u0Þ � n0.

The errors resulting from the use of ½½f ðpÞ�� instead of f ðpÞ. Let � be maximum distance of any point in Q from the nearest
grid point. For example, in dimension 1, that would be half the distance between consecutive grid points. Then
j½½f ðpÞ�� � f ðpÞj 6 �. In the above algorithm, it is easy to adjust for such errors, so that any point p that might possibly be
bad – if we had corrected for such errors – is declared bad. Then W1ðCÞ can be defined to be the set of points p in C that
are not bad and are not possibly bad. The set W1ðCÞ is a smaller set as a result, more conservative, and the resulting Q1
is reliably safe but may be smaller than the true largest safe set in Q. And we can define W2ðCÞ to be the set of points p
in C that are definitely not bad even allowing for errors in substituting ½½f ðpÞ�� for f ðpÞ. Then W1ðCÞ � WðCÞ � W2ðCÞ. As we
sculpt using these, we get upper and lower bounds for Q1. That is, we can first compute Q1 using W1ðCÞ and then W2ðCÞ
separately – using a coarse grid. Then, when we have an idea about Q1 from the two estimates we can refine the grid
and examine points that are W1ðCÞ but not W2ðCÞ. We can iterate the process, looking at every finer grids affecting less
and less space.

In our computational experiments, the typical smallest safe ratio q ¼ u0=n0 that we have found is usually between 0.5 and
0.6 depending on the system. A major factor in computation speed is the number of points of the initial grid in Q 0. A finer
grid means much computation. An increase in the resolution of the initial set increases the probability of finding a safe set.
However, if the number of initial points chosen is too big, the algorithm is slowed down considerably. We believe the true
largest safe set in Q will be closely approximated by the safe set we find using a grid. Furthermore, we note that our proce-
dure would be valid for maps of any dimension, although the computational effort for the application of the algorithm in-
creases exponentially with an increase in the number of dimensions. If such a set exists, some originality might be required
in displaying such a higher dimensional set.

4. Some examples of safe sets

We have tested this new algorithm with two paradigmatic nonlinear dynamical systems, namely, the Hénon map which
is a discrete-time dynamical system, and the Duffing oscillator which is a continuous-time dynamical system. The choice of
parameters for both are such that they possess a chaotic saddle, which implies the existence of transient chaos.

Hénon map. We consider the Hénon map with a choice of parameters close to the boundary crisis, which occurs for
xnþ1 ¼ 2:12� 0:3yn � x2

n; ynþ1 ¼ xn,
xnþ1 ¼ 2:16� 0:3yn � x2
n

ynþ1 ¼ xn:
ð4Þ
For this choice of parameters, we observe that almost all of the initial conditions escape from the square Q ¼ ½�5; 5� � ½�5; 5�
after a finite number of iterations. The presence of a disturbance in the system typically complicates the survival probability
of the orbits inside the square, since a small disturbance can drive the orbit outside the square. If this happens, the orbit
would go into the infinity very fast.

To apply the algorithm to the Hénon map, we have chosen this Q as the region of the phase space from which we want to
avoid the escapes. This square completely covers the chaotic saddle formed in the parametric region which is close to the
boundary crisis.

No sink points exist inside the square, only the saddle points of the chaotic saddle can be found in this region. Then, using
the Sculpting Algorithm recursively on the initial set of Fig. 4, we obtain the safe set shown in blue in Fig. 5, after 11



Fig. 4. We use a grid of 3000� 3000 points in the square ½�5; 5� � ½�5; 5� as our initial set for the Hénon map, xnþ1 ¼ 2:16� 0:3yn � x2
n; ynþ1 ¼ xn . Applying

the Sculpting Algorithm over several iterations we will obtain the desired safe set. We consider that n0 ¼ 0:3 is the worst possible disturbance that we can
face.

Fig. 5. In this figure we can see the result of applying the Sculpting Algorithm to the Hénon map, xnþ1 ¼ 2:16� 0:3yn � x2
n ; ynþ1 ¼ xn . The safe set appears in

blue. The minimum control allowed so that it exits a safe set is u0 ¼ 0:18 for the given disturbance of n0 ¼ 0:3. This is equal to a ratio of q ¼ 0:6.
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iterations of W. Moreover, the safe sets are mapped in such a way that the images are surrounded by the safe set itself, as is
expected.

In the simulation that we have made with the Hénon map to obtain Fig. 5, we have used a value of n0 ¼ 0:3 for the
bounded disturbance. For this value, the minimum control bound (to two-digit precision) for which there is a safe set is
u0 ¼ 0:18. Of course, if for the same value of the disturbance the control allowed were higher, the safe set found would
be a little larger. The minimum safe ratio obtained for this particular case is q ¼ u0=n0 ¼ 0:6.

Duffing oscillator. Now we demonstrate the algorithm with the Duffing oscillator with this choice of parameters:
€xþ 0:15 _x� xþ x3 ¼ 0:245sinðtÞ: ð5Þ
With these parameters, a very interesting topological property appears here. This is the Wada property. Due to this property,
every point on the boundary of any basin is also on the boundary of the other two basins. [11]. This is what we see in the
Fig. 6. With this configuration, the Duffing oscillator has a region that shows a transient chaotic behavior in the square
½�2; 2� � ½�2; 2� due to the presence of a chaotic saddle. For this choice of parameters, the system possesses two period-1
orbits and one period-3 orbit. We can see this in the Fig. 7(a).

The idea of applying the partial control technique to the Duffing oscillator is slightly different than that of using it in the
Hénon system. The region Q in this case contains several attracting periodic orbits that will eventually attract almost every
trajectory. Our goal here is to have the trajectories partially controlled so that they stay away from the attracting fixed points
and the attracting periodic orbit of period 3. The unperturbed, uncontrolled behavior of the system exhibits transient chaotic
behavior. The orbits behave chaotically, but after some time, the orbits fall close enough to some of the stable periodic attrac-
tors, showing an intermittent behavior in the presence of the disturbances.

The upper bound of the disturbance that we consider in this system is n0 ¼ 0:08. The situation changes drastically if we
use the partial control technique. Then it is possible to maintain the chaotic behavior indefinitely, with a control smaller than
the disturbance, avoiding the intermittency. We have found that it is possible to achieve this with a ratio of control versus
noise of approximately 0.59. For u0 significantly smaller than 0.0475, there is no safe set.



Fig. 6. In this figure we show the complex structure of the phase space for the Duffing oscillator €xþ 0:15 _x� xþ x3 ¼ 0:245sinðtÞ. In this system are present
three different basins of attraction (magenta, blue and green) which have the Wada property. The invariant unstable manifold associated to the chaotic
saddle appears in yellow. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. (a) In this figure are represented the periodic attractors that has the Duffing oscillator €xþ 0:15 _x� xþ x3 ¼ 0:245sinðtÞ: two period-1 attractors and
one period-3 attractor. We also shown with circles of radius 0:2 the region of the phase space that we want to avoid whatever the disturbances. (b) We use a
grid of 6000� 6000 points in the square ½�2; 2� � ½�2; 2� as our initial set, but removing the zones that we want to avoid, that is the circles. Applying the
Sculpting Algorithm over several iterations we will obtain the desired safe set. We let n0 ¼ 0:08 be the maximum size of the vector perturbation.

Fig. 8. In this figure we can see the result of applying the Sculpting Algorithm to the Duffing oscillator €xþ 0:15 _x� xþ x3 ¼ 0:245sinðtÞ. The safe set appears
in blue. The minimum control allowed, so that it exits a safe set is u0 ¼ 0:0475, with a maximum disturbance of n0 ¼ 0:08. This is equal to a safe ratio
q � 0:59. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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To apply the partial control technique to the Duffing oscillator, we need to clarify which is the concept of escape in this
case. The region from which all the trajectories escape will be the square ½�2; 2� � ½�2; 2� minus certain holes around the
periodic attractors. We say there is an escape here if a given trajectory enters one of the circles or if it leaves the square. Then
we use a grid of 6000� 6000 points in the square ½�2; 2� � ½�2; 2� as our initial set as in Fig. 7(b), but removing the zones
that we want to avoid, that is the circles.

Finally, applying the Sculpting Algorithm to the set plotted in Fig. 7(b), we obtain the safe set of the Fig. 8 in 15 iterations
of W, where the safe set appears in blue.

5. Conclusions and discussion

We present a general algorithm for finding safe sets (whenever one exists) for any continuous bounded discrete-time
dynamical system, in order to apply the partial control technique. Such safe sets can be found for example inside those re-
gions from which trajectories escape after having some complicated dynamical behavior. We call it Sculpting Algorithm, as
an analogy to removing material while sculpting a statue. At this point, there is no general mathematical result that guar-
antees the existence of a safe set, given a dynamical system, aside from running the Sculpting Algorithm on an example.
Thus, our algorithm opens the door for a wider application of partial control to discrete-time dynamical systems.

Our numerical simulations suggest that the safe sets are close to the invariant stable manifold of the chaotic saddle, wher-
ever it is hyperbolic, that is, where the dynamics is more ‘‘similar’’ to that of a horseshoe map. We can guarantee that if a safe
set exists for a given situation, it can be found using our algorithm.
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