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This paper analyzes the effect of noise in type-II and type-III intermittency, with respective
local Poincaré maps of xnþ1 ¼ ð1þ eÞxn þ ð1� eÞx3

n and xnþ1 ¼ �ð1þ eÞxn � ax3
n (a > 0). We

develop a method to obtain the noisy reinjection probability density (NRPD), which basi-
cally consists in extending a recent procedure used to derive the noiseless reinjection prob-
ability density (RPD). Our approach also provides information to accurately describe the
noiseless system. We also derive the probability density of the laminar length. Our analyt-
ical results show a good agreement with numerical simulations. Finally, we have also found
that, for large values of the instability parameter e, the characteristic relations approach the
associated ones to the noiseless intermittency. However, for low values of the instability
parameter e, the characteristic relations reach a saturation level that depends on the NRPD.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

Intermittency is a particular route to deterministic chaos, where a transition between laminar and chaotic phases occurs.
Pomeau and Maneville introduced the concept of intermittency in connection with the Lorenz system in [1,2]. The intermit-
tency phenomenon appears in some physical systems as in the Lorenz system, periodically forced nonlinear oscillators,
Rayleigh–Bénard convection, DNLS equation and in turbulence processes in hydrodynamics, among many others. It is very
important to properly characterise the intermittency phenomenon, especially in those fields, whose exact governing equations
are partially unknown, as it happens in Economics and Medicine [3,4]. Pomeau classified the intermittency cases into three
types called I, II and III [5]. In all the cases, a fixed point of the system becomes unstable for positive values of a given parameter
e. The local Poincaré maps of type-II and type-III intermittencies are xnþ1 ¼ ð1þ eÞxn þ ð1� eÞx3

n and xnþ1 ¼ �ð1þ eÞxn � ax3
n

(e; a > 0) respectively. Another condition for a one-dimensional map FðxÞ to possess intermittency is to have a global reinjec-
tion mechanism mapped back into the system from the chaotic zone into the local laminar one.

This mechanism is properly described by the corresponding reinjection probability density (RPD), which is determined by
the chaotic dynamics of the system itself. Only in a few cases it is possible to get an analytical expression for the RPD, hence
different approximations have been used. The most common approximation has been to consider the RPD as a constant.
However, recently it has been introduced a more general RPD that includes the uniform reinjection as a particular case [6,7].

Since the noise is always present in nature, it is of a fundamental importance to know the effect of noise on the intermit-
tency phenomenon. There are many papers devoted to study such an effect, by means of the renormalisation group analysis
[8] or by using the Fokker–Plank equation [9–12]. Many researches devoted to the noise on the local Poincaré map have been
published so far, but in spite of the importance of the RPD, there is no study focused on the effect of noise on the RPD as far as
. All rights reserved.
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io).
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the authors know. It is clear that noise affects the whole region where the system dynamics takes place, hence it demands an
investigation of the effect of noise on the chaotic region and the changes that it produces on the RPD. In this paper, we report
on an analytical approach to the noise reinjection probability density (NRPD). To do this, we use a recently proposed meth-
odology to determine the RPD in maps having intermittency [6,7], to compute NRPD in terms of the RPD.

On the other hand, to study the local effect of the noise, it is usually assumed that the noise strength r is much smaller
than e, (r� e). This seems to be somewhat an artificial assumption since in real systems it is difficult or even impossible to
change the level of noise, that is, the value of r is fixed from outside the system, so that in the limit e! 0 the system will be
in a parameter region where the last assumption cannot be applied. In this work we consider a situation where this assump-
tion should not be necessary.

To apply our theory we use two models of one-dimensional maps, one for the type-II and another one for the type-III
intermittency [6,7,13]. For the type-II intermittency case, we introduce an additive external noise
Fig. 1.
trajecto
x0nþ1 ¼
FðxnÞ þ rnn xn 6 xr;

ðFðxnÞ � 1Þc þ rnn xn > xr ;

�
ð1Þ
where nn is a uniform distributed noise with hnm; nni ¼ dðm� nÞ and hnni ¼ 0, r is the noise strength and FðxÞ ¼
ð1þ eÞxn þ ð1� eÞx3

n, where xr is the root of the equation FðxrÞ ¼ 1 (see Fig. 1). Note that the function FðxÞ maps the interval
½0;1� onto itself, but due to the noise, the value of x0nþ1 may be mapped out of the unit interval. Hence, to keep x0nþ1 in the unit
interval we define the map as follows
xnþ1 ¼
jx0nþ1j x0nþ1 6 1;
jx0nþ1j � 2modðjx0nþ1j;1Þ x0nþ1 > 1:

�
ð2Þ
Note that xnþ1 ¼ x0nþ1 for x0nþ1 2 ½0;1�. The value x0nþ1 is reflected around x0 ¼ 0 coming back into the positive values for
x0nþ1 < 0. For x0nþ1 > 1, a similar effect around x0 ¼ 1 getting xnþ1 < 1 is produced.

In the noiseless case, r ¼ 0, the critical point x ¼ 0 is an unstable point for e > 0, then the iterated points xn of a starting
point close to the origin, increase in a process driven by parameter e. When xn becomes larger than xr , a chaotic burst occurs
that will be interrupted when xn is again mapped into the laminar region. For a point close to xr and lying on the curve cor-
responding to c ¼ 2, the reinjection mapping into the laminar region is illustrated in Fig. 1 by a dashed arrow between two
solid lines. This trajectory, due to the noise, may spread over a region indicated by the solid lines, whereas the dashed arrow
refers to the noiseless map.

Note that according to Eq. (1) the reinjection process is governed by a power law ð�Þc driven by the parameter c.
Concerning type-III intermittency, we use the map
xnþ1 ¼ �ð1þ eÞxn � ax3
n þ dx6

n sinðxnÞ þ rnn; ð3Þ
where �ð1þ eÞxn � ax3
n (a > 0) is the standard local map for type-III intermittency, whereas the term dx6

n sinðxnÞ (d > 0) pro-
vides the reinjection mechanism into the laminar region around the critical point x ¼ 0. This mechanism, different from the
power law used in the case for type-II intermittency, has been chosen to apply our method to different nonlinearities.

The RPD function, denoted here by /ðxÞ, determines the statistical behaviour of the intermittency phenomenon. However,
it is not a simple task to establish the RPD by using experimental or numerical information, hence in order to investigate the
RPD we extend in this work the proposed method in our previous papers [6,7]. In this approach we realised that the key point
to determine the RPD is to evaluate, instead of the RPD itself, the following function
Map of Eq. (1) with r ¼ 0 and e ¼ 10�3. We have used here three values of c as indicated. For c ¼ 2, the dashed arrow indicates the noiseless
ry going into the laminar region. For r – 0, that trajectory should be shifted to end inside the interval l0.
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MðxÞ ¼

R x

0
s/ðsÞdsR x

0
/ðsÞds

if
R x

0 /ðsÞds – 0;

MðxÞ ¼ 0 if
R x

0 /ðsÞds ¼ 0

8><
>: ð4Þ
defined over the interval [0,c], where the parameter c specifies the upper limit for the laminar region. As M(x) is defined by
means of integrals, it is easier to compute than /ðxÞ, and also the effects coming from the statistical fluctuations are reduced,
even for a relatively low number of data or a high noise level. Moreover, note that for a given value of x;MðxÞ is the average of
reinjection points in the interval ð0; xÞ, hence, even for a non very extensive data series obtained from N iterations of the map,
it is possible to obtain a good approximation for the function M(x). Firstly, we sort the reinjections points according to the
relation xj < xjþ1 and finally, a simple estimation of the function M(x) is obtained by means of
MðxlÞ �
Pl

j¼1xj

l
; ð5Þ
which has been used in this work to evaluate the function M(x) instead of using the definition Eq. (4).
To numerically evaluate the RPD and the NRPD, we make N ¼ 106 iterations of the map and select the reinjected points

back from the chaotic burst into the laminar region. The number of reinjected points depends on the map and the specific set
of parameter values chosen to make the iterations. The laminar region is divided into small intervals, ranging from 100 to
1000 looking for the best result, and finally we evaluate the average over the reinjection points in each interval. Note that
to apply the approximation Eq. (5), we need a value of N several times smaller than the value needed to compute the RPD or
NRPD. In all cases considered here, the value N ¼ 105 would be enough.

Now we briefly summarise the previous results [6,7] on noiseless intermittency useful to investigate the effect of noise on
the reinjection probability density. For a wide class of maps having type-II or type-III intermittency, the function M(x) can be
approximated by the linear function
MðxÞ ¼ mðx� xiÞ þ xi; ð6Þ
where the unstable fixed point xi, here takes the value xi ¼ 0. After using the definition, Eq. (4), we obtain the corresponding
reinjection probability density as
/ðxÞ ¼ bxa
; with a ¼ �1� 2m

1�m
; ð7Þ
where b is determined by the normalisation condition
Z c

0
bxadx ¼ 1: ð8Þ
Assuming a > �1, that is 0 < m < 1, this last integral converges, and consequently
b ¼ aþ 1
caþ1 ¼

m
1�m

c
m

1�m: ð9Þ
According to Eq. (7), and for the particular value m ¼ 1=2, we recover the most common approach /ðxÞ � const: considered
in the literature.

2. Effect of noise on the RPD

In previous papers we have used the function M(x) as a useful tool to study the RPD. In the noisy case, we also use this
function to investigate the new NRPD in systems with type II and type III intermittency. Now we describe the case of type II
intermittency.

In this case, we evaluate the function M(x) for the map Eqs. (1) and (2) in the noisy and noiseless cases, as shown in Fig. 2.
Note that the function M(x) looks like a smooth function even in the noisy case (r ¼ 0:03), due to the fact that the integrals in
the definition of M(x) filter the noise. Whereas in the noiseless case, the function M(x) can be approximated by a linear func-
tion [6], in the noisy case the function M(x) can be approximated by a piecewise linear function with different slopes, on each
side of x0 (see Fig. 2). The value x0 depends on the noise strength r. In the region x < x0 the slope of M(x) approaches 1/2, as
we expect for the uniform reinjection. Note however that in the noiseless case there is no uniform reinjection, but there is a
power law given by Eq. (7). On the side x0 < x, the slope of M(x) is different from the 1/2 taking a value close to the corre-
sponding noiseless value. Note that for c ¼ 0:65 (the case c ¼ 2 will be considered at the end of this section) in the noisy case
the slope is m � 0:61 which is very close to the noiseless case m � 0:60. Hence in that region the NRPD must be similar to the
RPD function. This means that, by the analysis of the noisy data, we can predict the RPD function for the noiseless case. To do
this, we proceed like in the noiseless case [6,7], but considering only the data on the right side of x0 in Fig. 2. That is, by least
mean square analysis we can calculate the slope m in Eq. (6), that determines the reinjection function given by Eq. (7). This is
shown in Fig. 3 for the same values of c than in Fig. 2. That is, in Fig. 3(a), we have c < 1 so that limx!0/ðxÞ ¼ 0 and in
Fig. 3(b), we have c > 1 so that limx!0/ðxÞ ¼ 1 [6]. The result displayed in this figure shows that, in both cases, from the
function M(x) evaluated in the noisy cases it is possible to approximate the RPD in the noiseless case.



Fig. 2. Numerical simulations of the function M(x) for the map Eqs. (1) and (2) computed using Eq. (5). The dashed line with slope 1/2 shows the uniform
reinjection case. The lines above the dashed one correspond to c ¼ 0:65 for two values of the noise strength as indicated. The same values of noise strength
is used for the two lines below the dashed one, that correspond to c ¼ 2. For all the cases e ¼ 0:001 is fixed and c ¼ 0:1. The solid lines show the
corresponding least mean square fit, very close to the numerical simulations.
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Fig. 3. RPD for the map Eqs. (1) and (2). Dots corresponds to numerical computation for r ¼ 0 whereas solid lines correspond to Eq. (7) using two values of
m obtained by fitting data with r ¼ 0 (dashed line) and r – 0 (solid line). The values of the parameter c are the same that in Fig. 2. (a) In this case c < 1. We
fix c ¼ 0:1; c ¼ 0:65; r ¼ 0:03 and e ¼ 0:001. (b) In this case c > 1. We fix c ¼ 0:1; c ¼ 2; r ¼ 0:01 and e ¼ 0:001.
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It is important to note that whereas the noise is applied to the whole map, the function M(x) evidences that, on the right
side of x0 of Fig. 2, the reinjection function is robust against the noise but on the left side of x0, the noise changes the RPD
approaching it to the uniform reinjection, at least locally around x ¼ 0.

We will find a similar scenario in type-III intermittency, but in that case, the value of x0 is bigger. We use the map Eq. (3)
to illustrate the noise effect in the type-III intermittency. As in the previous case, we start with a numerical evaluation of the
function M(x) by using the approximation given by Eq. (5). This is shown in Fig. 4 for two values of the noise strength r to-
gether with the noiseless case r ¼ 0. As in Fig. 2, for values close to the origin (on the left of the arrows), the function M(x)
approaches MðxÞ � 0:5x, but for points on the right hand side of the arrows we have MðxÞ � mx where the slope m is similar
as to in the noiseless map.

Note however, that here the transition from the 0.5 slope to a slope close to the noiseless case takes place for bigger values
of x0 than in the type-II case. That is, the effect of noise on the function M(x) is stronger than in the previous case.

As the three values of m estimated for data in Fig. 4 are similar, we can use each of them to describe the RPD of the noise-
less case. Hence, as in the type-II intermittency we can estimate the behaviour of the noiseless map from noisy data, as
shown in Fig. 5.

2.1. NRPD in type II intermittency

To get an analytical expression for the NRPD, denoted here by UðxÞ, we analyse the effect of noise on the reinjection tra-
jectories, as it is sketched in Fig. 1. In such a figure, a noiseless trajectory represented by a dashed line, is perturbed by noise.
As a consequence of this, the reinjection point must be ended inside of an interval represented in Fig. 1 by l0. That is, the
noiseless density /0ðxÞ should be transformed into a new density UðxÞ according to the convolution
UðxÞ ¼
Z

/0ðyÞGðx� y;rÞdy; ð10Þ
where Gðx;rÞ is the probability density of the noise term rnn in Eq. (1).
Whereas the function /0ðxÞ is in general unknown, we have information on UðxÞ by means of the function M(x) as was

explained above. Furthermore, taking into account the convolution properties, we expect UðxÞ � /0ðxÞ in the region where
the slope of /0ðxÞ is small. On the other hand, the slope of the noisy function M(x) approaches the corresponding slope
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without noise, determining the density /ðxÞ in the noiseless case. These facts suggest that /0ðxÞ � /ðxÞ, where /ðxÞ ¼ bjxja is
the RPD without noise, hence the parameters b and a can be taken as the same values that in the noiseless case. Observe that,
although the noise is applied to the complete map, the associated power law to the effect of the nonlinearity observed in the
noiseless map, appears to be robust against noise. To verify this hypothesis we introduce /0ðxÞ ¼ bjxja in Eq. (10). As noise
source we used a random variable n in the interval [�1,1], hence its probability density G in Eq. (10) is given by
Fig. 5.
Eq. (7)
e ¼ 10�
Gðx;rÞ ¼ Hðxþ rÞ �Hðx� rÞ
2r ; ð11Þ
where HðxÞ is the Heaviside step function. Finally, after integrating Eq. (10), we get the NRPD as
UðxÞ ¼ 1
c1þa

ðjxj þ rÞ1þa � Sgðjxj � rÞjjxj � rj1þa

2r
; ð12Þ
where we denote by SgðxÞ the sign function that extracts the sign from its argument. To compare Eq. (12) with the numerical
simulations, we use the values of a determined by the values of m obtained from Fig. 2. The results are plotted in Fig. 6 for
different values of r, showing a good agreement between the numerical simulations and the analytical predictions. To plot
the solid lines of Fig. 6 we can use either values of m obtained from noisy data of Fig. 2, or the corresponding value from the
noiseless data because both values are approximately equal. However, it is not the case when c ¼ 2 and r ¼ 0:03. Here the
noisy slope of M(x) is mn � 0:268, so the error relative to the noiseless value (0.30) is around 10%. This error makes a similar
deviation between Eq. (12) and numerical data as shown in Fig. 7 by a dashed line. Nevertheless, we can compare Eq. (12)
using a noiseless value of m with the numerical noisy data. This is shown in Fig. 7 by a solid line in good agreement with the
numerical simulations. This proves that the hypothesis /0ðxÞ ¼ bjxja works well even when the high level of noise makes it
significant differences between the slopes of M(x) with and without noise.

Moreover, even in this case it is possible to estimate the function M(x) for points x > xp far enough from the critical point
x ¼ 0, that is xp > x0 (see Fig. 2). To do this, we note that in the region x > xp the slope of /0ðxÞ is small, so according with Eq.
(10) we expect UðxÞ � /0ðxÞ, hence by using the definition of M(x), (Eq. (4)) we have
MnðxÞ � MðxÞ þ
R x

0 sðUðsÞ � /ðsÞÞdsR x
0 /ðsÞds

if x > xp; ð13Þ
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where MnðxÞ and M(x) are the noisy and noiseless functions respectively and we assume that the integral in the denominator
does not depend on noise. With the approximation given by Eq. (5), we get for xl > xp
MðxlÞ � MnðxlÞ �
C
l
�
Pl

j¼1xj

l
� C

l
: ð14Þ
As Mð0Þ ¼ 0 we can choose the value C to approximate Mð0Þ � 0. In our case, the value C ¼ 350 gives the line
MðxlÞ ¼ 0:0004þ 0:298xl, with a small independent term. As we expected, this line has a slope very close to the noiseless
case, m � 0:301. This means, that even in this case with a very high value of the noise strength, the density /ðxÞ ¼ bjxja

of the noiseless map is recovered.

2.2. NRPD in type III intermittency

The RPD, /ðxÞ, for type-III intermittency follows a power law depending on the neighbourhood of the maximum and min-
imum of the map Eq. (3) [7]. The noiseless trajectory of a point starting near the maximum of the map appears in Fig. 8 as a
dashed line. Because of the noise, this trajectory may spread over a region of some width, say l0. Note that l0 will be rescaled
by a suitable factor K increasing the length up to l1 ¼ Kl0 on the graph of the map. To get an analytical approximation for the
NRPD, UðxÞ, we consider the map Eq. (3) as a composition of the noiseless map
x0n ¼ �ð1þ eÞxn � ax3
n þ dx6

n sinðxnÞ ð15Þ
and the new map defined as
xnþ1 ¼ x0n þ rnn; ð16Þ
by just adding a noise to the variable. Now we focus on a point xn lying close to the maximum of the map Eq. (15). As in the
type-II intermittency, if q0ðxÞ is the invariant density in that region due to the map Eq. (15), the effect on this density of the
map Eq. (16) can be obtained according to the convolution
qðxÞ ¼
Z

q0ðsÞGðs� x;rÞds; ð17Þ



Fig. 8. Map of Eq. (3). Dashed line between the two solid lines indicate the effect of the map on a point near the maximum. These solid lines indicate the
effect of the noisy map on the same point, that will be mapped on the interval I on the graph of the map.
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where qðxÞ is the invariant density observed in the interval l0. Contrary to the type-II case, here points on l0 are not directly
mapped on the laminar region, so to get the NRPD we must propagate the density qðxÞ by the map Eq. (3). Then we propagate
qðxÞ by the map Eq. (15) to reach for points in the interval I
qIðxÞ ¼
dF�1ðxÞ

dx
qðF�1ðxÞÞ ð18Þ
and later, we must propagate the density qIðxÞ by the map Eq. (16) to obtain the NRPD
UðxÞ ¼
Z

qIðyÞGðy� x;rÞdy: ð19Þ
By using Eqs. (17) and (18), we get
UðxÞ ¼
ZZ

dF�1ðyÞ
dy

q0ðs0ÞGðs0 � F�1ðyÞ;rÞGðy� x;rÞdyds0 ð20Þ
and by rescaling the dummy variable s0 ¼ F�1ðsÞ we can rewrite the last equation in a better form to be compared with the
noiseless case as
UðxÞ ¼
ZZ

/ðsÞGFðs; yÞGðy� x;rÞdyds; ð21Þ
where we use the following definitions
/ðxÞ ¼ dF�1ðxÞ
dx

q0ðF�1ðxÞÞ ð22Þ
and
GFðs; yÞ ¼
dF�1ðyÞ

dy
GðF�1ðsÞ � F�1ðyÞ;rÞ: ð23Þ
Eq. (22) shows the effect of the noiseless map on the density q0. By using the aforementioned hypotheses for type-II inter-
mittency, we can approximate q0 by the same power law that in the noiseless map. Using the linear approximation
FðxÞ � Fðx�1Þ þ Kðx�1 � xÞ, where K ¼ dF=dx corresponds to the mean slope of the curve I, the density / in Eq. (22) can be
approximated by a similar power law than q0 [7], that is /ðxÞ � bjxja even in the noisy case. By considering the previous lin-
ear approximation we get for the function GFðs; yÞ
GFðs; yÞ � Gðs� y;KrÞ: ð24Þ
In our case K � 10, so that the density Gðy� x;rÞ in the integral (21) is very narrow as compared with the approximation for
GF given by Eq. (24), so that in the limit Gðy� x;rÞ � dðy� xÞ, we get for the NRPD
UðxÞ ¼
Z

/ðsÞGðs� x;KrÞds; ð25Þ
a expression similar to Eq. (10) obtained to describe the noise in the type-II intermittency. Hence we can proceed in the same
way that in the previous case,



(a) (b)

Fig. 9. NRPD for two values of the noise strength r of Eq. (3)as following: (a) r ¼ 0:02 and (b) r ¼ 0:03. Dots refer to numerical simulation whereas solid
lines are the plots of the analytical approximation to NRPD given by Eq. (26). Note that to illustrate the effect of the noise, the noiseless RPD it is also plotted.
As in Fig. 5, the parameters are: c ¼ 0:6; a ¼ 1:1; d ¼ 1:35 and e ¼ 10�4.

Fig. 10
c ¼ 0:6
c ¼ 0:6
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UðxÞ ¼ 1
c1þa

ðjxj þ KrÞ1þa � Sgðjxj � KrÞjjxj � Krj1þa

2Kr
: ð26Þ
Note that Eq. (26) is similar to Eq. (12) but here the factor K produces an amplification of the effect of the noise. This expres-
sion is plotted in Fig. 9 showing a good agreement with the numerical data.

3. Characteristic relations

A fundamental quantity related to the intermittency phenomenon is the probability density of the laminar length /lðlÞ,
where l indicates the number of iterations in the laminar region. Here, we can approximate the dynamics of the noiseless
maps Eqs. (1)–(3) by the differential equation [5]
djxj
dl
¼ ejxj þ ajxj3: ð27Þ
By solving the above equation we obtain
lðjxj; cÞ ¼
Z c

jxj

dz
ezþ az3 ¼

1
2e

2 ln
c
jxj

� �
� ln

eþ ac2

eþ ax2

� �� �
; ð28Þ
which is referred to a local behaviour of the map in the neighbourhood around of the unstable point. The probability of find-
ing a laminar phase of a given length lying between l and lþ dl is /lðlÞdl where the density /lðlÞ is given by
/lðlÞ ¼ f �UðXðl; cÞÞ dXðl; cÞ
dl

����
����; ð29Þ
where Xðl; cÞ is l�1ðx; cÞ with respect to its first argument
Xðl; cÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e
aþ e=c2ð Þe2el � a

r
: ð30Þ
Observe that, being aware of the symmetry of the type-III intermittency of Eq. (3), we have considered x > 0 and written
/ðjxjÞ ¼ f � /ðxÞ with f ¼ 2, whereas for the type-II we used f ¼ 1. Taking into account Eq. (27) and the above relations,
we finally have
(a) (b) (c)

. Function /lðlÞ (solid lines) according to Eq. (31) for maps Eqs. (1)–(3) together with the numerical values (dots). (a) Map of Eqs. (1) and (2) with
5; r ¼ 0:001 and e ¼ 0:001, (b) map Eqs. (1) and (2) with c ¼ 0:1; c ¼ 2; r ¼ 0:001 and e ¼ 0:001 and (c) map Eq. (3) with
; a ¼ 1:1; d ¼ 1:35; r ¼ 0:001 and e ¼ 0:001.



Fig. 11. Characteristic relations for the map Eq. (1) and (2) for c ¼ 0:1 and two values of c. Dots show numerical data and solid line represents the least
squares straight fitting data corresponding to r ¼ 0. For two values of c, the dashed lines join the noisy data (r ¼ 10�4) reaching the corresponding
saturation label for small values of e.

Fig. 12. Characteristic relations for the map Eq. (3). Dots show numerical data. Solid line represents the least squares straight fitting data corresponding to
r ¼ 0. Dashed lines join the noisy data for different values of r, reaching the corresponding saturation label for small values of e. The rest of parameters are
c ¼ 0:6; a ¼ 1:1 and d ¼ 1:35.
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/lðlÞ ¼ f �UðXðl; cÞÞ aXðl; cÞ3 þ eXðl; cÞ
h i

: ð31Þ
It is important to note that in this last equation, the function Xðl; cÞ describing the linear phase of the intermittency, was de-
rived without taking into account the effect of noise. This effect is only considered in Eq. (31) for the NRPD, UðXðl; cÞÞ. In spite
of that, the analytical description given by Eq. (31) approaches the numerical simulations very well as shown in Fig. 10 for
type-II and type-III intermittency.

In absence of noise, the maps of Eqs. (1)–(3) exhibits the RPD given by Eq. (7). Recently it has been shown that for this
RPD, the critical exponent b of the the characteristic relation �l / eb, where �l is the average laminar length. Its value is deter-
mined by the slope of the function M(x) as follows [6]
b ¼ aþ 2� p
p� 1

¼ 1þ pðm� 1Þ
ðp� 1Þð1�mÞ : ð32Þ
A log–log plot of the characteristic relation �l / eb is shown by the solid lines in Figs. 11 and 12 when r ¼ 0. Note that for
r – 0, this characteristic relation and the numerical simulations are close for e > r. On the contrary, for low values of e,
(e < r), the time escape from the laminar region due to the dynamics of the map, as is described by Eq. (28), is shorter than
the random escape. Hence, the escape speed is not practically influenced by a further decrease of e because it has a small
effect on the random escape. As a consequence, the average laminar length, �l, reaches a saturation value. Note that this sat-
uration value depends on the value of the noise strength r, that governs the random speed in the laminar region, but also it
depends on the NRPD that is generated during the chaotic phase and governs the starting point in the local map. This is clear
in Fig. 11, since the local map where the laminar phase takes place is the same for the two cases shown in the figure. The
value of noise strength r is also the same, and the only difference is the parameter c that determines the RPD in the noiseless
case. Hence, contrary to what has been suggested [9,10], the average laminar length depends on the reinjection probability
density.
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4. Conclusions

In this work we have extended to the noisy case some recent results proposed in [6,7]. Even though, there is certainly
many papers devoted to the analysis of the effect of noise on the laminar region, to our knowledge, the effect of noise on
the reinjection probability density (NRPD) has not been fully considered. In this work, we investigate this effect and we pro-
pose an analytical description of the noisy RPD (NRPD) valid for type-II and type-III intermittency.

To study the effect of noise we have used the methodology recently developed for the noiseless case [6,7]. That is, we start
making a numerical evaluation of the function M(x), that is easier to obtain than the reinjection probability density. From this
knowledge, we obtain the reinjection probability density corresponding to the noiseless map, that is generated around the
maximum and minimum of the map. We find that this mechanism is robust against noise, hence we can use the RPD to ob-
tain an analytical description of the NRPD in a good agreement with numerical simulations. It is also important to note that
from the RPD, obtained from noisy data, we have a complete description of the noiseless system.

Furthermore, we have found a good agreement between the analytical probability density of the laminar length and the
numerical simulations. We show that for large values of e compared to the noise strength, e > r, the characteristic relation
approaches the noiseless prediction [6,7], whereas for e < r the average laminar length reaches a constant value that
strongly depends on the NRPD and weakly on e.
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