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Safe sets are a basic ingredient in the strategy of partial control of chaotic systems. Recently we

have found an algorithm, the sculpting algorithm, which allows us to construct them, when they

exist. Here we define another type of set, an asymptotic safe set, to which trajectories are attracted

asymptotically when the partial control strategy is applied. We apply all these ideas to a specific

example of a Duffing oscillator showing the geometry of these sets in phase space. The software

for creating all the figures appearing in this paper is available as supplementary material. VC 2012
American Institute of Physics. [http://dx.doi.org/10.1063/1.4754874]

In our chaotic lives we usually do not try to specify our

plans in great detail, or if we do, we should be prepared to

make major modifications. Our plans for what we want to

achieve are accompanied with situations we must avoid.

Disturbances often disrupt our immediate plans, so we

adapt to new situations. We only have partial control over

our futures. Partial control aims at providing toy exam-

ples of chaotic situations where we try to avoid disasters,

constantly revising our trajectories. More mathemati-

cally, partial control of chaotic systems is a new kind of

control of chaotic dynamical systems in the presence of

disturbances. The goal of “partial control” is to avoid cer-

tain undesired behaviors without determining a specific

trajectory. The surprising advantage of this control tech-

nique is that it sometimes allows the avoidance of the

undesired behaviors even if the control applied is smaller

than the external disturbances of the dynamical system. A

key ingredient of this technique is what we call safe sets.

Recently we have found a general algorithm for finding

these sets in an arbitrary dynamical system, if they exist.

The appearance of these safe sets can be rather complex

although they do not appear to have fractal boundaries.

In order to understand better the dynamics on these sets,

we introduce in this paper a new concept, the asymptotic
safe set. Trajectories in the safe set tend asymptotically to

the asymptotic safe set. We present two algorithms for

finding such sets. We illustrate all these concepts for a

time-2p map of the Duffing oscillator.

I. INTRODUCTION

Transient chaos1,2 is a physical phenomenon which

occurs in systems where trajectories behave chaotically for a

finite amount of time in a compact (i.e., closed and bounded)

region Q, until they move toward a final state. We study

discrete-time dynamics where the final state is typically either

a periodic state or the divergence of the system towards 1.

The topological structure inside Q that causes this behavior is

a zero-measure set known as a chaotic saddle.2,3 This kind of

system is usually modeled by a continuous map f of phase

space to itself

qnþ1 ¼ f ðqnÞ; (1)

where qn is the state at time n and f the function that relates

them. This map can also be the stroboscopic map or the

Poincar�e return map of some continuous system. The dimen-

sion of the phase space is arbitrary, but realistically our tools

work quickly only in dimensions 1 and 2.

Manifestations of transient chaos are present in a wide

variety of systems, in many of which it may be necessary to

keep the orbits away from certain regions, that is, to keep tra-

jectories from leaving the compact region Q in which we

have transient chaotic behavior. Examples can be found in

Refs. 4–6. The problem gets even more complicated when

we consider the presence of disturbances in our systems and

feedback controls.

Admissible trajectories. Thus, if we add the disturban-

ces nn followed by a feedback control un, our model becomes

qnþ1 ¼ f ðqnÞ þ nn þ un for n ¼ 1; 2; 3;… (2)

We assume throughout this paper that

n0 > u0 > 0 jnnj � n0 junj � u0: (3)

We call such nn and un admissible. Furthermore we will

call a trajectory qn that satisfies Eq. (2) an admissible trajec-

tory when all nn and un are admissible. In this equation, we

assume that feedback control un is chosen with knowledge of

qn; nn and the function f. Notice un cannot in general cancel

out nn because the control bound is smaller than the disturb-

ance bound. In standard controlling-chaos situations, we

would have the reverse.

We can also think of Eq. (2) as a two-person game

where the first person chooses each nn (knowing qn and f )

with the goal of forcing the admissible trajectory to leave Q.

The second person chooses un with the goal of staying in Q.

For the second player, this is a game of survival7 for it is

impossible to win at any finite n.

Safe sets. Now suppose there is a set Q for which our

goal is to have the entire admissible trajectory qn remain in

Q (i.e., for all n � 1). We say a point q1 2 Q is safe if it has

the property that no matter how the admissible disturbances
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are chosen, and there exists an admissible feedback control

such that the entire (admissible) trajectory qn of Eq. (2)

remains in Q. Notice that q2 is also a safe point since it is

clear that a feedback control can be chosen so that it stays

in Q. Similarly all the points qn are safe (for n � 1). If a set

S � Q has the property that it is always possible to keep all

qn 2 S when q1 2 S, we say S is safe. Let S � Q be the set of

all safe points. Then S is an example of a safe set. It is the

largest safe set in Q. Notice that whether a trajectory or a set

is safe depends on the choice of n0 and u0 as well as Q.

Figure 1 shows a safe set along with a set which will be

introduced later called “asymptotic safe set.”

If we know a safe set S, then we can create a feedback

control with the following strategy; namely, given f ðqnÞ þ nn,

choose u ¼ un such that f ðqnÞ þ nn þ u 2 S. It follows that

for any q 2 S and any admissible n, there is an admissible u
such that

f ðqÞ þ nþ u 2 S: (4)

We will refer to any admissible trajectory that stays in a

safe set as a safe trajectory.

The following example is quite counterintuitive. Yet it

is also the simplest example of partial control, so it is impor-

tant to understand it.

An example of a safe set for the slope-three tent map.

Let f ðxÞ :¼ 3� 3jxj. The trajectory of almost every initial

condition diverges to �1 for the process xnþ1 ¼ f ðxnÞ. That

map f has an invariant Cantor set, namely, the middle-third

Cantor set on Q ¼ ½�3=2;þ3=2�. Let u0 ¼ 1 and n0 ¼ 2.

Since almost every trajectory leaves Q and diverges to �1,

it seems the control would be unable to keep the trajectory

bounded. None the less, there is a safe set S :¼ f�1;þ1g;
this is f�1ð0Þ, the set of points that map to the critical point

x ¼ 0. To see that this is safe, choose q 2 S and an admissi-

ble n. Then f(q) ¼ 0 so f ðqÞ þ n 2 ½�2; 2�. Each point of

that interval is within u0 ¼ 1 of S. Hence an admissible u can

be chosen so that f ðqÞ þ nþ u 2 S. Note that S is not in the

invariant Cantor set. When n ¼ 2 and u0 < 1, there is no

safe set.

Notice that which point of S the trajectory goes to is

determined by whether n is positive or negative. The control

does not determine the trajectory. That is why this is partial

control. In control theory, the control is used to implement a

trajectory that is specified in advance.

Another example is the same map but with u0 ¼ 1=3

and n0 ¼ 2=3; there is a safe set S :¼ 6161=3 which is

f�2ð0Þ. Then f ðSÞ ¼ f�1ð0Þ ¼ f61g.
All this is pointless if we cannot find S for cases more

complicated than the one above. However, we have recently

reported an algorithm8 for finding the largest safe set in Q.

This approach sometimes allows us to keep trajectories

inside a region Q even when the maximum amplitude of the

control u0 is smaller than the maximum amplitude n0 of the

disturbances, even when almost every trajectory of the deter-

ministic system (Eq. (1)) leaves Q. This is rather counterin-

tuitive. We call this situation partial control of chaos,9–11

and our method for finding the largest safe set in Q is what

we call a sculpting algorithm; see Ref. 11. We called it a

“sculpting” algorithm because we start with a larger set and

successive carve away and discard parts of the set, asymp-

totically approaching the safe set. In this paper we are report-

ing on the long-term behavior of safe trajectories, and it

turns out that to determine this asymptotic set, we use a dif-

ferent sculpting algorithm. To avoid complete confusion, we

present our original sculpting algorithm (for sculpting safe

sets), so we can compare it with the new sculpting algorithm

for “asymptotic” sets, which we introduce in the next sec-

tion. The codes to compute the safe sets and the asymptotic

safe sets are available (see Ref. 12).

Numerical calculations. All results reported in this

paper were made using a grid of 6000 by 6000 points in the

square shown in Fig. 1. The map f is approximated by a map

f � where for a grid point p, we define f �ðpÞ to be the nearest

grid point to f(p). If there is more than one closest grid point,

then the one with the smallest coordinates is picked. The

finer the grid, the more accurate the calculation, and obvi-

ously it takes longer time. We only report results that persist

without significant change when we significantly increase

the grid density.

We look for the minimum of the u0 for which there is a

safe set, which we denote as umin
0 . We are currently unable to

determine the uncertainty in the smallest umin
0 . There is of

course a huge change in the safe set as u0 is decreased past

umin
0 . When it is below umin

0 , no safe set exists. We do not

know what critical event in the dynamics occurs at umin
0 .

We observe the safe set suddenly disappearing as u0 is

decreased. See Figs. 2 and 3. In practice it is important to

FIG. 1. Duffing safe set and an asymptotic (safe) set. All the figures in this

paper are for where f is the time-2p map of the partially controlled Duffing

oscillator €x þ 015 _x � xþ x3 ¼ 0245 sinðtÞ and Q ¼ ½�2; 2� � ½�2; 2� minus

five disks of radius 0.2 that are centered at the five points of the three attrac-

tors (1 denotes a fixed point and 3 a period-3 point). Furthermore n0 ¼ 0:08

and u0 ¼ 0:0475, except when u0 takes multiple values. In each figure the

green disk in the lower left has radius n0, and the smaller yellow disk has ra-

dius u0, shown to illustrate the scale. We have used a 6000 by 6000 point

grid in the square shown. When all disturbances and control are 0, almost

every trajectory appears to asymptote to one of the attracting periodic orbits.

A sample admissible trajectory (that stays in the safe set) of 1000 iterates is

shown as black dots. The red set (on which the black dots lie) is an

“asymptotic safe set,” which is described later in the paper. It includes the

long-term parts of the trajectory.
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keep u0 > umin
0 to avoid this numerical discontinuity. Numer-

ical experiments to find umin
0 will result in slightly different

values, depending on the grid size used and on the details of

the implementation of the algorithm.

Duffing oscillator safe set. Throughout this paper we

investigate the Duffing equation

€x þ 0:15 _x � xþ x3 ¼ 0:245 sinðtÞ: (5)

Let q ¼ ðx; _xÞ and let f(q) be the time-2p map of the

Duffing oscillator. With these parameters, f has three attrac-

tors (two fixed points and one period 3 orbit). The approxi-

mate positions of the fixed points are (0.815, 0.242) and

(–0.933, 0.299), while the approximate positions of the period

3 are (�1.412, �0.137), (�0.354, �0.614), and (0.645,

�0.464).13 The parameters have been chosen so that their

basins have the Wada property; that is, every point on the

boundary of any of the three basins is also on the boundary of

the other two basins. With these parameters, the Duffing oscil-

lator has transient chaos due to a chaotic saddle on the bound-

ary of the basins.

When we apply the partial control technique to the

Duffing oscillator, our goal is to keep the trajectories away

from the attracting fixed points and the attracting periodic

orbit of period 3. The time-2p map of Eq. (5) exhibits tran-

sient chaotic behavior. The orbits behave chaotically, but

it appears that almost every orbit falls close enough to one

of the stable periodic attractors to be captured after some

time.

With n0 ¼ 0:08, we have found that there is a safe set as

long as u0 � 0:0472, that is, with a ratio of u0=n0 	 0:59.

When u0 ¼ 0:0471 there is no safe set.

II. ASYMPTOTIC SAFE SETS

Recall Q denotes the set that we want admissible trajec-

tories to stay in. Let S denote the largest safe set in Q. We

say a point p is a predecessor (or pre-image) of a point q
and q is a successor of p if there exist admissible n and u for

which

f ðpÞ þ nþ u ¼ q: (6)

We say q is a S-successor if it is a successor of a point

in S and it is in S. We say a non-empty set A � S is an as-

ymptotic set for Q if each p 2 A has a predecessor in A and

each of p’s S-successors is in A. Every safe trajectory that is

in A for some time n must stay in A thereafter.

The red set in Fig. 1 denotes an asymptotic safe set in S
that we generated using what we will later call a “growing”

algorithm. The particular sample admissible trajectory (black

dots) lies in A. No admissible trajectory that starts in an as-

ymptotic set A can leave it unless it also leaves S.

We now give a sculpting algorithm for obtaining

the largest asymptotic safe set S1 in S. Imagine all possible

admissible trajectories qn lying entirely in S; ðn > 0Þ. For

each n > 0, write Sn for the set of all possible values that qn

might have. Then S1 ¼ S and Snþ1 � Sn. Note that Snþ1 is

the set of S-successors of points in Sn. Write S1 ¼ \Sn.

Then S1 is asymptotic set and it is the largest in S. The

compact sets Sn converge to S1. Therefore, for any admissi-

ble trajectory in S, the distance of qn to S1 goes to 0 as

n!1. It would most likely eventually lie inside the as-

ymptotic set.

How do we compute the sets Sn? For a compact set

C � S, let

qSðCÞ :¼ fq that are S-successors of points in Cg (7)

Typically S will have some points that have no prede-

cessors in S. We now use qS to characterize the above

defined sets Sn. We have

S1 :¼ S; Snþ1 ¼ qSðSnÞ; S1 ¼ \nSn: (8)

Notice that since S is safe, each point has a successor in S,

so none of these sets is empty. Every Sn is safe. Since all Sn

are compact and the sequence is nested, the intersection S1 is

non empty. It follows that S1 ¼ qSðS1Þ. In fact any set A that

satisfies

A ¼ qSðAÞ (9)

is an asymptotic set since all successors of each point in A
are in A and each point in A has a predecessor in A. Further-

more each such set is safe, because each point p 2 A is also

in S, so every S-successor is in A.

For any admissible trajectory that lies entirely in S, it

follows that the distance distðqn; S1Þ ! 0, and we may find

qn 2 S1 for n sufficiently large. If qn 2 S1 for some n, it

must stay in S1 thereafter.

Procedure of Eq. (8) is a “sculpting algorithm” since we

start with a large set S and successively cut parts away from

S, each Sn smaller than Sn�1.

FIG. 2. Areas of sets depending on u0. See Fig. 1 for the map f and parame-

ters. Each curve represents the percentage of the area of the square ½�2; 2� �
½�2; 2� that it occupies. As u0 varies, the highest curve is for the largest safe

set S in Q. The lower two are for the asymptotic safe sets. Note that they are

equal except on a small part of the range. The curves seem to be discontinu-

ous at u0 ¼ umin
0 ; 0:0471 < umin

0 < 0:0472, below which no region is safe,

and it is impossible to partially control the system. At u0 ¼ 0:0472 the upper

curve is 35.6%, while the lower two curves are 4.1%. Recall that all calcu-

lated numbers will vary slightly with grid size and implementation of the

algorithms, but we expect the patterns to persist.
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III. IMPLEMENTING THE SAFE-SET-SCULPTING
ALGORITHM

For a set C, we define two set operations. First, for a

specified value u0 � 0, we define Cþ u0 ¼ “C fattened up

by u0” ¼ {q whose distance from C is � u0}, as shown in

Fig. 4(a). Likewise, for a value n0 � u0, we also define ðCþ
u0Þ � n0 ¼ “ðCþ u0Þ shrunken by n0” ¼ {q that are further

than n0 from the exterior of ðCþ u0Þ}, as in Fig. 4(b). We

write Cþ u0 � n0 for ðCþ u0Þ � n0 which in general is not

equal to Cþ ðu0 � n0Þ.

In the tent-map example, Sþ u0 ¼ ½�2;þ2�. Then Sþ u0

�n0 ¼ f0g. But Sþ ðu0 � n0Þ ¼ f61g � 1, which is the

empty set. Hence f ðSÞ ¼ f0g ¼ Sþ u0 � n0, so S is safe. It is

also an asymptotic set, since safe trajectories can take on both

values in S infinitely often.

Before describing an efficient algorithm for finding an

asymptotic safe set within a safe set, we remind the reader of

what we call the “safe-set sculpting algorithm” because of

their similarity and their differences. See Ref. 8 where it is

called the “sculpting algorithm.”

FIG. 3. The safe and asymptotic safe sets as u0 decreases. The safe set is the non white region, blue þ red þ green. This figure shows in red the asymptotic

growing safe set. The growing asymptotic set is sometimes smaller than the sculpting asymptotic set and sometimes equal. When they are not equal, the part of

the sculpting set that is not in the growing asymptotic set is shown in dark green. At u0 ¼ 0:0471 no asymptotic safe set exists.
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When we start sculpting a compact set C to find the

largest safe set in C, with specified values u0 for control and

n0 for disturbances, we consider that there will be good

points and bad points. We say that a point p in C is “bad”

(for C) if there exists an admissible n such that the distance

of f ðpÞ þ n from C is more than u0. Such a point cannot be

in a safe set in C. In that case f ðpÞ þ n has no admissible

control u for which f ðpÞ þ nþ u is in C. We call the rest

of the points in C “good” (for C). We define the safe-

set-sculpting operator

WðCÞ :¼ fgood points 2 Cg: (10)

It cuts away and discards the bad part of C. If C is

closed, so is WðCÞ. Points may be good for C but bad for

WðCÞ and so have to be discarded in this iterative process.

The sculpting algorithm says that given a compact set Q, we

can generate its largest safe set Q1 as follows:

Q1 :¼ Q; Qnþ1 :¼ WðQnÞ � Qn; Q1 :¼ \1n¼1Qn: (11)

For compact Q, all Qn and Q1 are compact. We leave

it to the reader to show that Q1 is a safe set, the largest

safe set in Q. Our first numerical implementation of this

procedure required days for simple computations. Our cur-

rent implementation is 30 000 times faster. We find the safe

set by applying our safe-set sculpting algorithm to Q (the

square minus the five balls in Fig. 1); we obtain the safe set

in 15 iterations of W for the specific choice of n0 and u0.

The process stops because we use a finite grid. A perfect

calculation would take an infinite number of iterates but

would converge to a set which looks very much like the dis-

played safe set.

Implementing the sculpting algorithm. An equivalent

formulation of W is

WðCÞ ¼ fp 2 C such that f ðpÞ 2 ðCþ u0 � n0Þg: (12)

Notice that this formulation does not require testing

each point with every admissible n, so it is much easier to

implement (when restricting calculations to a grid). The

safe-set sculpting algorithm applied to the time-2p map of

the Duffing oscillator is shown in Fig. 5, although only 12

iterations out of the 15 appear. As it was mentioned earlier,

there is a value of the control parameter umin
0 which corre-

sponds to the smallest u0 for which there is a safe set.

A. Sculpting the asymptotic safe set in a given safe
set

It is not immediately clear from the definition of qS how

Eq. (7) can be implemented, since it appears we must experi-

ment with all admissible n for each p in the set. Therefore

we give an equivalent formulation. For a compact set C � S
where S is safe, the set of successors is Cþ n0 þ u0. Hence

the set of successors of points in C that lie in S is

qSðCÞ ¼ ðf ðCÞ þ n0 þ u0Þ \ S:

Here it is clear how to (approximately) compute qSðCÞ
when calculations are restricted to a grid.

Computing an asymptotic set. By repeating the applica-

tion of Qnþ1 :¼ WðQnÞ (Eq. (11)), the algorithm “converges”

in a finite number of steps (since we use a grid) to the as-

ymptotic safe set. That is, we come to an n for which

Qn ¼ Qnþ1. This is what we have computed with the Duff-

ing oscillator. See Fig. 6 which shows the sculpting of the

asymptotic safe set. We start with the safe set S found (using

a grid) for the Duffing oscillator in Fig. 1. Then we sculpt

that safe set using Eq. (8) until reaching its asymptotic safe

set. We stop the algorithm at the step when no points are

removed.

Asymptotic safe sets seem less dependent on the exact

choice of Q as long as the set is in Q, although the asymp-

totic safe set could get bigger in some cases when Q is cho-

sen larger.

B. Growing an asymptotic set

An asymptotic set A for a safe set S has the property

qSðAÞ ¼ A:

Suppose p 2 S satisfies f(p) ¼ p. Write B1 :¼ fpg. Then

since p is a fixed point, B2 :¼ qSðB1Þ ¼ ðB1 þ u0 þ n0Þ \ S.

A key property here is that B1 � B2; later, we will weaken

even that property. The growing algorithm is as follows:

Assume B1 � B2; define Bnþ1 :¼ qSðBnÞ;
B1 :¼ closure of [n Bn:

(13)

Then B1 is asymptotic. The growing of an asymptotic

safe set is shown in Fig. 7. It is also a safe set since each of

FIG. 4. Expanding and shrinking opera-

tors on sets. (a) First we “fatten” C by a

distance u0 obtaining Cþ u0. (b) We

“shrink” Cþ u0 by n0 to obtain Cþ u0

� n0.
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its points has an S-successor because S is safe, but that point

must be in B1 since it is asymptotic. The same asymptotic

set is shown in red in Fig. 1.

Notice that we start with some closed set B1 that is a

subset of qSðB1Þ and a single-point set is quite acceptable.

Then Bn � Bnþ1. That is, the set Bn grows larger as n
increases. Notice also that since the sets Bn are growing in

size, the asymptotic set is the closure of their union.

Potentially there could be several asymptotic sets inside

one safe set.

FIG. 5. Safe set sculpting steps. This figure shows the sequence for creating the safe set shown in Fig. 1. At each step, part of Q is removed. The blue color rep-

resents the part of the set that remains and the magenta the part that is to be removed.
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In practice we also compute the asymptotic safe sets

using the growing algorithm on a grid. The set function qS

used to grow an asymptotic safe set is the same one used to

sculpt it. The only difference is the initial set taken. When

we sculpt an asymptotic set, we take the initial set to be the

entire safe set, while when we grow it we take the initial set

to be a small set in the safe set.

If B1 is not a subset of B2 but is a subset of Bk, then Bj �
Bjþk�1, so we can set Cn ¼ [j¼nþk

j¼n Bj. Then Cn � Cn þ 1 and

Cnþ1 ¼ qSðCnÞ. Then defining C1 to be the closure of the infi-

nite union [nCn is an invariant set. Notice that [nBn ¼ [nCn.

Growing a Duffing oscillator asymptotic safe set. Let

B1 be the small red ball that we see in Fig. 7. Then we

“grow” Bn as described above, intersecting with Fig. 7(4),

FIG. 6. A safe trajectory can be at time k, shown in panel k. This figure shows the sculpting sequence for creating the asymptotic safe set for the time-2p map

of the Duffing oscillator. The safe set is plotted in blue. We start with the whole safe set as initial set, shown in red in panel (1). Then, we start sculpting and

removing the parts of the safe set (panel 2; 
 
 
 ; 8) that are not part of the asymptotic safe set. As we iterate the sculpting algorithm, the red set shrinks, converg-

ing toward the sculpted asymptotic safe set (shown in panel (9)).
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we say the safe set S on each step. Comparing Fig. 7(1) with

Fig. 7(3), we see that B1 � B3 so C1 ¼ B1 [ B2 will grow

with Cn � Cnþ1 for all n > 0. We can see the final result in

Fig. 7(9). The condition “B1 � B3” will always occur if B1

consists of a single point and that point is a period-two point.

As we can see here, the asymptotic safe set found

with the growing procedure is not equal to the asymptotic

safe set found with the sculpting procedure, that is, the

red set in Fig. 6(9) is bigger (and contains) the red set in

Fig. 7(9).

FIG. 7. Growing an asymptotic safe set. This figure shows the sequence growing the asymptotic safe set for the time-2p map of the Duffing oscillator. The safe

set is plotted in blue and red. We start with the small red ball shown in panel (1), and we allow all the possible combinations of control and noise provided the

point lands in the safe set. As we iterate the growing algorithm the red set expands until finally it converges toward the smallest possible asymptotic safe set,

given by panel (9).
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IV. CONCLUSION

We hope that this work will launch efforts to under-

stand how it is possible to use small controls in chaotic (or

even stochastic) environments to defeat large occasional

disturbances.
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