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Abstract

Recently discrete dynamical systems, maps, have been also used as
valid phenomenological neuron models, and are able to furnish an ad-
vantageous alternative to continuous dynamical systems for the mod-
elling of the spiking behavior of single neurons and of neuronal net-
works as well. Periodic and chaotic spiking, phasic and tonic bursting,
subthreshold oscillations and many more specific features of the ac-
tivity of real neurons can be reproduced by maps with a minimum of
analytical complexity. As an external stimulation is applied to the neu-
ron, its response can be of two different natures: periodic or erratic.
We present a simple method of control that allows to choose one of the
possible responses when the perturbation is periodic. The phase dif-
ference between the periodical driving and the control plays a decisive
role.

©2012 L&H Scientific Publishing, LLC. All rights reserved.

1 Introduction

A lot of work has been done in the past few years on modelling neuronal dynamics using methods derived
from nonlinear dynamics. Most of the well-known models to describe neuronal dynamics are based on
ordinary differential equations [1].

However, there are also in the literature many other neuronal models which are described with the
help of discrete dynamical systems [2]. Computational, analytical and theoretical factors can indeed make
discretization advisable. Even though this can be done in different ways, discretization in time transforms
the ODEs into discrete dynamical systems, or maps. Discrete-time models have a long tradition in the
physics of complex systems [3], and in the field of artificial neural networks, but it is only recently that they
have begun to receive more attention as valid models of biological neurons. Among the different map-based
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neuron models, the chaotic Rulkov neuron model [2, 4] is a simple two-dimensional nonlinear map which
possesses many interesting features of the real biological neurons. Despite its mathematical simplicity,
many effects observed in neuronal cells are qualitatively contained in it. For a given parameter set, the
neuron is in a quiescent state when not subjected to an external perturbation. When an external forcing of
sufficient intensity is applied, the map can switch to an oscillatory regime and returns to its quiescent state
as soon as the perturbation recedes. The response of the system is different, depending on the values of
the parameters that appear in the model. The two typical oscillatory regimes that mimic neuronal behaviors
are tonic spiking, where a series of sustained pulses appears reminding the spike train of a neuron, and
autonomous bursting, where a brief train of short pulses alternates with a silent phase. In both regimes, we
can observe a chaotic behavior of the time series which is generated by the nonlinear function of the model.
The forcing can be a constant external input or a periodic stimulation such as a periodic neuronal input [15],
or even a combination of both. If we look closer at the response when the input is a periodic forcing, we
observe that the series of bursts (or spikes) can be either periodic or erratic. That is, we can say as a general
statement that the response over a long time interval is either periodic or chaotic.

It may be of interest to select the particular response when the system receives such an external sig-
nal, that is, there might be necessary to control its behavior [16]. Several techniques to control nonlinear
dynamical systems have been proposed, including both feedback [5] and nonfeedback methods [6]. Feed-
back methods, although more effective, require a fast and accurate response to work appropriately, while
nonfeedback methods only depend on an adequate choice of the parameters.

In our case, the system can be controlled if a second periodic forcing with the same frequency is added
up. In this scheme the control parameter is the phase difference between the main and the second periodic
forcing applied to the dynamical system. This phase difference is critical for the overall behavior. The
technique is named as the phase control [6, 11]. Such example of control has been applied successfully to
a wide range of different dynamical systems, such as nonlinear oscillators [7–9], aCO2 laser [10], or even
simple continuous neuron models [11].

In spite of its simplicity, the technique has been scarcely applied to discrete dynamical systems [17].
This is precisely what we do in this paper: to apply this technique to the chaotic Rulkov model. Since we
set the neuron in a particular regime, the application of the phase control technique can be useful to drive
the system into a different dynamical regime.

2 The Chaotic Rulkov Neuron Model

The Rulkov neuron model is a good alternative to the continuous time neuron models. It has a simple
and elegant formulation while keeping interesting dynamical regimes such as spiking and bursting [2, 4].
The discrete time dynamics simplifies the analysis and the simulations of the model since the numerical
integration is straightforward and very fast on modern computers. These features make this model an ideal
candidate for the numerical simulations when the physiological details are not crucial.

The Rulkov map is an abstract mathematical model, although it shares some specific features with others
neuron models closer to experimental observations. The two variables reflect the two important time scales
of a neuron model. The variablex represents the fast dynamics of the system that usually models the
membrane voltage of the neuron, whereasy is the slow variable and represents the variations of the ionic
recovery currents. Finally, the termIn embraces the sum of the external influences on the neuron.
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The two-dimensional map proposed by Rulkov [4] is:

xn+1 =
α

1+x2
n
+yn+ In, (1)

yn+1 = yn−η(xn−σ). (2)

These equations present a variety of behaviors depending on the control parametersα andσ . The two
typical regimes are the spiking regime: a series of sustained pulses appears reminding the spike train of a
neuron; and the bursting regime: a brief train of short pulses alternates with a silent phase. An interesting
point is the chaoticity of the orbit in both regimes, which is due in part to the shape of the nonlinear function
in the equation corresponding to the variablex. When the variablex is oscillating without bursts or spikes it
is said to be in a subthreshold regime. We describe shortly the role of each parameter of the model:

• The regime can be changed with the parameterα , which is critical for the type of dynamics of the neu-
ron. The bursting oscillations appear for a small range of parameters 4< α < 4.5 [4], above this value
chaotic spiking can occur. The bursting dynamics consists of an oscillation of the variablex between
a stable equilibrium state and a fast chaotic orbit. This dynamics appears frequently among neurons
and is well known for neuroscientists and modellers [12]. A representative orbit of the variablex of
the chaotic neuron model is shown in figure 1.

• The parameterη represents the time constant of the variabley, which evolves very slowly compared
to the variablex. It corresponds to the slow recovery variable that drives the system back to a stable
equilibrium point, while the fast variable oscillates. This parameter is usually kept very small in order
to obtain slow variations. We will useη = 10−4 throughout the paper.

• The parameterσ is a threshold value that is important for the variations of the variabley. While the
value ofx remains below (above) the value ofσ , the variabley increases (decreases) slowly. If we set
the value ofσ low enough, the system rests on a stable equilibrium point in absence of an external
current In. In this case however, if a short external perturbation is added to the signal, the neuron
displays a single burst or spike. The neuron is said to be in an excitable regime. It is a particularly
interesting regime since biological neurons are most of the time in an excitable state.

We have chosen here the parametersσ , η andα in order to obtain an excitable bursting regime.
The variableIn in the model represents the external influences as for examplea periodic forcingIn =

Bcos(2πωn). This is a simple way to model a periodic stimulus that drives the neuron. The response of
the system can be of a different nature depending on the frequency and amplitude of this forcing. We focus
here on the specific response of the model depending on these two parameters and the conditions that allows
controlling its behavior.

3 Bursting Regularization

While staying in the subthreshold regime, the Rulkov map is not showing any bursting activity. However if
a periodic current stimulates the neuron strongly enough, a train of bursts activity takes place. The behavior
of the map differs depending on the parameters of the stimulus, mainly its frequency and amplitude. In order
to quantify this response, we study the periodically forced Rulkov map:

xn+1 =
α

1+x2
n
+yn +Bcos(2πωn) (3)
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Fig. 1 Example of a typical chaotic bursting of the model described by equationsxn+1 = α/(1+x2
n)+yn+ In;

yn+1 = yn−η(xn−σ). In the main figure we observe the alternance between the quiet states and the fast chaotic
oscilations. In the inset, we show a detail of one of the bursts where the chaotic nature is clear.

yn+1 = yn−η(xn−σ). (4)

The periodic forcing consists of a sinusoidal wave of amplitudeB and angular frequencyω . As we have
seen in the previous section, the dynamics for a given set of parameters can correspond to a subthreshold
regime (also known as the silent regime), or the bursting regime. If the second case occurs, we observe two
different behaviors for the time occurrence between two bursts: periodic or erratic. In some situations, the
external input cannot be chosen or removed, and it therefore determines the behavior of the system. We will
show that this is not entirely true as we might select the regime by adding up another external signal.

Now, we focus our attention on the time elapsed between one burst and the following one with a measure
called inter burst interval (IBI). This is a similar technique as the one described by Sauer et al. [13] for
measuring the time intervals between spikes in a time series. The method employed to detect these time
intervals consists of tracking the period of the bursts:

• First, the time series is filtered with a low pass filter in order to remove or atenuate the fast variations
of the spiking activity.

• The obtained time series is then transformed into a square-waveform with a simple threshold.

• The times of the rising-edge front of the square-waveform are stored into a buffer. These are the time
occurrences of the bursts.

• With the previous time vector, we compute the time difference between occurrences. This is our IBI
time series.

The IBI time series is then processed with the numerical computation package “TISEAN” [14] in order
to estimate the maximal Lyapunov exponent of our simulations.

In order to specify the behavior of the system with a periodic forcing, we compute the exponent of the IBI
varying the frequency and the amplitude of the external forcing for the following parameters:σ = −1.65,
α = 4.15, η = 10−4. The results are shown in figure 2 for a span ofB and ω values. The regions with a
negative Lyapunov exponent, meaning a periodic or subthreshold behavior, are located for small amplitudes
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Fig. 2 The figure shows the maximal Lyapunov exponent of the IBI time series in function of the forcing frequency
ω and the forcing amplitudeB. We can see large regions of periodic or stable behavior (dark colors), and regions
with chaotic behaviors (light colors).The bottom figure corresponds to the region marked by a white rectangle inside
the upper figure.
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Fig. 3 (a) Time series of the bursting neurons while the parameters of the forcing are in a chaotic regime
(ω = 8 ·10−5 andB = 0.1). In (b) we show the corresponding IBI time series.

of the forcing term, belowB = 0.02, and for small frequencies, below 2·10−5. The light color areas mean
that the intervals between bursts are irregular or chaotic.

If we look closer at the bursts train, for example with the forcing parametersω = 8·10−5 andB = 0.1,
the bursts occurrences seem irregular as shown in figure 3 (a). The corresponding IBI time series is shown
in figure 3 (b). The Lyapunov exponent of this time series is positive, thus it confirms the intuition about
the irregularity of the time series. Such aperiodic behavior appears to be very common when the system
receives a periodic forcing as shown in figure 2. However, we will show that it is possible to return to a
periodic bursting regime by simply applying the phase control technique to our periodically forced map.
For this purpose, we introduce a small perturbation with the same frequency into the system in an additive
way:

In = Bcos(2πωn)+Bkcos(2πΩn+ φ). (5)

We choose equal frequenciesω = Ω in a first attempt to apply the technique. We consider that the amplitude

Unp
roo

f



74 J. Used, A. Wagemakers and M.A.F. Sanjuán / Discontinuity, Nonlinearity and Complexity 1(1) 2012 69–78

0 0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1

φ/2π

k
 

 

0

0.05

0.1

0.15

0.2

0.25

0.3

Fig. 4 Phase control of the system while it presents chaotic behavior. The phase and the amplitude of the control are
varied in order to obtain a periodic behavior depicted by the dark blue regions. The color scale is proportional to the
maximal Lyapunov exponent of the IBI time series. We have chosenω = 2.7 ·10−5 andB = 0.09.

of this second perturbation isBk, with k ∈ [0,1] so that it becomes a fraction ofB. We do it so, since we
are mainly interested in using a control of smaller amplitude that the original forcing. The phaseφ can be
varied over[0,2π]; however there is a symmetry with respect toπ that allows us to save computation time
by observing only the interval[0,π] .

When the phase control is applied to the system, the behavior can change dramatically. In figure 4, the
phase and the amplitude of the control affects the system in such a way that for some choices of the phase
differenceφ and amplitudek the system is driven back to a periodic regime, which corresponds to dark
colors in the figure 4. It is worth noticing that for values ofk > 0.5, we can always control our system by
choosing an adequate phase difference. The mechanism by which the phase control works on the system
can be understood with a simple analysis. The forcing terms of the system can be split in order to make
appear a cosine and a sine contribution. Assuming equal frequencies for both forcings we obtain:

f (n) = Bcos(2πωn)+Bkcos(2πωn+ φ)
= B(cos(2πωn)(1+kcosφ)−ksinφ sin(2πωn)).

(6)

The first term, which depends on cos(2πωn), dominates for small values ofφ , meaning that the second
oscillating term in sin(2πωn) is negligible. If we assume that the forcing term is roughly:

f (n) ≃ B(1+kcosφ)cos(2πωn), (7)

then the effect of the second periodic forcing is mainly to shift the system into a regime where the forcing
is of a different amplitude. If this effect is strong enough, then the control drives the system into a periodic
regime again.

Until now, we have applied the control varying the phase and the amplitudes of both forcings. However,
we can also change the frequencyΩ of the second periodic forcing, by choosing for example multiples of
ω . In figure 5 we show the result of applying the phase control to the system with the same parameter
set when the frequency of the second forcing is twice the frequency of the initial forcing (Ω = 2ω). The
phase difference between the two signals is varied this time over[0,2π] since the symmetry is broken due
to the different frequencies of both signals. It can be appreciated how the system is also controlled with the
new frequency for a wide range of values of the amplitude and the phase. We consider here a new periodic
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Fig. 5 Phase control of the system with a frequencyΩ = 2ω . The system appears to have periodic bursting when the
second periodic forcing is applied. For example, with a second forcing withk = 0.7, the system exhibits maximal
Lyapunov exponents lower or equal than 0 for an appropriate choice of the phaseφ . The choice of parameters for this
simulation isω = 2.7 ·10−5 andB = 0.09.

forcing with k = 0.7, ω = 2.7 ·10−5 andB = 0.09. The computation of the maximal Lyapunov exponents
associated to the periodically forced map for different values ofk andφ is shown in figure 5. As in previous
figures, we can observe that there exists pairs of(k,φ) values for which the control can be achieved, that is,
we can find orbits with negative Lyapunov exponents.

4 One Dimensional Model

A major simplification for the Rulkov model consists of using only one of the two equations for the dynam-
ics. As we set the slow variable on the edge of the saddle-node bifurcation, the fast variable behaves as a
chaotic excitable neuron. A simplified model is then

xn+1 =
α

1+x2
n
+ γ + Iex. (8)

The parameterγ has to be chosen carefuly in order to get an excitable regime for this model. Keepingγ ≤

-2.76 is a necessary condition forα = 4.15, since forγ > −2.76 autonomous oscillations can appear due to
birth of stable chaotic orbits in the system [18]. In the excitable regime, when an external continuous current
Iex is applied to the map, chaotic oscillations appear as a consequence of the saddle-node bifurcation. The
dynamics of the map reminds the spiking activity of a neuron as shown in figure 6.

If the external current is a periodic forcing in the formIex = Bcos(2πωn), we obtain also chaotic and
periodic behaviors depending on the frequency and amplitude of the forcing. In order to quantify this effect,
we compute the maximal Lyapunov exponent of thex time series for a span of forcing frequenciesω and
amplitudesB in figure 7. Dark colors mean a periodic or stable behavior, while light colors mean a chaotic
oscillating activity.

We aim now at controlling this chaotic spiking behavior in order to get periodic oscillations when the
system is forced externally. The control is introduced as an additive forcing with a frequencyΩ, a phaseφ
and amplitudekB

xn+1 =
α

1+x2
n
+ γ +Bcos(2πωn)+kBcos(2πΩn+ φ). (9)
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Fig. 6 Dynamics of the one dimensional Rulkov map with parametersα = 4.15,γ = −2.85,Iex = 0.3. The orbit is
chaotic and is similar to the chaotic dynamics of the two dimensional Rulkov model in the bursting regime.

Fig. 7 The figure shows the maximal Lyapunov exponent associated to the mapxn+1 = α/(1+x2
n)+ γ + Iex in terms

of the amplitudeB and the frequencyω when only a single external forcing is acting on the system. The black
regions represent the periodic regime of the dynamical system. This system can be controlled even with very small
amplitudes of the control signal.
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Fig. 8 In figure (c) Maximal Lyapunov exponent of the time series associated to the mapxn+1 = α/(1+x2
n)+ γ +Iex

once the phase control is applied, in terms of parametersk andφ . The dark regions mean a controlled behavior of the
system, either periodic or subthreshold. In (a) we show an example of a time series fork = 0.58 andφ/2π = 0.6 that
is clearly periodic. In the figure (b) we have a time series of the same system for parameter valuesk = 0.55 and
φ/2π = 0.6, where the orbit is now chaotic.

The parameterk of the amplitude is also kept between[0,1] in an attempt to keep the control very small
and we consider the frequencyΩ to be equal to the frequencyω of the first forcing. For a given forcing,
for exampleB = 0.35 andω = 0.08, we apply the control for different values ofk and φ . The results
appear in figure 8 (c) where we show the maximal Lyapunov exponent in function ofk andφ . The phase
control technique works well also for this system driving it back to a periodic regime for a large set of
(k,φ) parameters. The map can be controlled given a driving signal only a fraction smaller than the original
forcing, that is, with a forcing of amplitudekB= 0.1 we can already control the system. In the figure 8 (a)
and (b) we plot the time series of the variablex for two very close parameter setsk andφ : k = 0.58 and
φ/2π = 0.6 in Fig (a) andk = 0.55 andφ/2π = 0.6 in figure (b). The two time series are however very
different in comparison, since the first one is periodic and the second one is chaotic. Such a result shows
that the phase control method can drive efficiently the system, thus we can choose the dynamical regime of
the system by adjusting only two parameters.

5 Conclusions

In this work we have applied the phase control technique to a simple nonlinear map that mimics the behavior
of a biological neuron. The interest of this technique lies in its simplicity, where a control can be easily added
to the fast variable. In our model, the time interval between bursting activity can be chaotic depending on
the frequency and amplitude of the external forcing. As the control is switched on, the intervals between
bursts become periodic. This is what we called bursting regularization.

Finally, we demonstrate with an even simpler system, a one-dimensional map, that the phase control can
be succesfully applied in order to achieve the regularization of the orbits. If the time series of this map is
chaotic for a certain amount of forcing, the phase control can once again drive the system into a periodic
regime and vice versa.

What we have shown by applying the phase control technique to this map-based neuron model, can
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be applied to a wide range of discrete dynamical systems. Since the Rulkov map can be understood as a
discrete-time paradigm for the study of the dynamics of neurons, the same ideas can be also applied to other
similar nonlinear maps modelling biological phenomena.
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