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We report our investigation on the effect of multiple time-delay on vibrational resonance in a

single Duffing oscillator and in a system of n Duffing oscillators coupled unidirectionally and

driven by both a low- and a high-frequency periodic force. For the single oscillator, we obtain

analytical expressions for the response amplitude Q and the amplitude g of the high-frequency

force at which resonance occurs. The regions in parameter space of enhanced Q at resonance, as

compared to the case in absence of time-delay, show a bands-like structure. For the two-coupled

oscillators, we explain all the features of variation of Q with the control parameter g. For the

system of n-coupled oscillators with a single time-delay coupling, the response amplitudes of the

oscillators are shown to be independent of the time-delay. In the case of a multi time-delayed

coupling, undamped signal propagation takes place for coupling strength (d) above a certain

critical value (denoted as du). Moreover, the response amplitude approaches a limiting value QL

with the oscillator number i. We obtain analytical expressions for both du and QL. VC 2013
American Institute of Physics. [http://dx.doi.org/10.1063/1.4793542]

Time-delay is ubiquitous in many dynamical systems and

the investigation of various nonlinear phenomena in

time-delay systems has received a great deal of interest in

recent years. In certain systems, time-delay is found to

induce various phenomena which do not occur in its

absence. The presence of a single time-delay is shown to

alter the stability of an equilibrium point, gives birth to a

limit cycle, leads to bifurcation, chaos and different types

of synchronization.1–3 More than one time-delay is

applied in certain practical systems. For example, in a

laser system multi time-delays arise when it is subjected

to more than one optical reflection. Therefore, it is im-

portant to analyse the effect of multi time-delay on vari-

ous nonlinear phenomena. In the present work, we

explore the influence of multi time-delay on vibrational

resonance in the single Duffing oscillator and signal

transduction in a system of n-coupled Duffing oscillators.

I. INTRODUCTION

In many dynamical systems, the existence of a time-delay

constitutes an important fundamental feature. The time-delay

often occurs because of a finite propagation time of transport

of information and energy, finite reaction times, finite switch-

ing speed of amplifiers, memory effects, etc.1–3 Most of the

works on delayed differential systems have been focused on

the analysis of a single time-delay feedback. Here, we consider

of interest to analyse the effect of multiple time-delay as a gen-

eralization of a single time-delay. Furthermore, higher com-

plexity of dynamics can be realizable in multi time-delayed

systems compared to single time-delayed systems. There are

some notable reports on certain systems with two or three

time-delayed feedback or coupling terms.4–11

In recent years, much interest has been focused on the

investigation of vibrational resonance with a time-delayed

feedback. In a nonlinear system driven by a biharmonic force

with two widely separated frequencies, the response amplitude

at the low-frequency displays one or more resonance peaks

when the amplitude or frequency of the high-frequency force

is varied. This phenomenon is termed as vibrational reso-
nance12 and it can occur in monostable,13 multistable,14 and

excitable15 systems. The features of vibrational resonance in

the presence of a single time-delayed feedback have been ana-

lysed in the Langevin equation,16 two-coupled overdamped

anharmonic oscillators,17 underdamped and overdamped

Duffing oscillators,18 FitzHugh–Nagumo neuronal model,19 a

genetic toggle-switch,20 and a system of n-coupled bistable

oscillators.21

Consider the multi time-delayed feedback (MTDF) of

the form ðc=LÞ
PL

l¼1 xðt� slÞ. The feedback is c times the av-

erage value of a finite number of delay terms. sl can be

equally spaced or position dependent or time-dependent

(modulated) or randomly/uniformly distributed over an inter-

val. Among these, the choice of equally spaced delays is the

simplest one. In this case, the feedback takes the form of

ðc=LÞ
PL

l¼1 xðt� laÞ, where a is the lowest delay. The effect

of this feedback term on stochastic resonance in a typical

Langevin equation has been studied by Li and Zeng.22 The

bit error rate used to quantify the output of the system is

found to decrease with the increase in the value of L.

Moreover, the noise intensity at which resonance occurs is

found to increase with L. MTDF has also been considered in

controlling of dynamics4 and in a photonic neuromorphic

processor.11 However, vibrational resonance with MTDF has
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not yet been studied. Consequently, the main objective of

our present paper is to investigate how multiple delays influ-

ence the vibrational resonance in a single Duffing oscillator

and weak signal transduction in a unidirectionally coupled

system of n Duffing oscillators. Our main goal is to explore

the enhancement of the response amplitude by the MTDF.

The Duffing oscillator is widely used as a model for

many mechanical systems, optoelectronic devices, and other

physical systems. Moreover, an analog simulation can be

easily performed. Simple mechanical models with two stable

and one unstable equilibrium states are described in Refs. 23

and 24. In these models, a steel beam is clamped to a rigid

framework. If the framework is not sufficiently rigid, then it

will be distorted by the oscillation of the beam. The influence

of this distortion on the motion of the steel beam can be

treated as a time-delayed feedback. This time-delayed feed-

back can be converted into a MTDF by means of an appro-

priate feedback device. This type of delayed feedback can be

implemented in optoelectronic equipments by a field pro-

grammable gate array11 and in electronic circuits using num-

ber of delay circuits proposed in Refs. 25–27. One can also

treat the MTDF as an external force.

The organization of the paper is as follows. In Sec. II,

we consider the single Duffing oscillator with a MTDF and

driven by the biharmonic force given by

€x þ d _x þ x2
0xþ bx3 þ c

L

XL

l¼1

xðt� laÞ ¼ f cos xtþ g cos Xt;

(1)

where X� x. Assuming xðtÞ ¼ XðtÞ þ wðt; s ¼ XtÞ, we

find an equation of motion for the slow variable X(t). From

the solution of its linear version, we obtain an analytical

expression for the response amplitude Q and using it, we

analyse the effect of MTDF on vibrational resonance. We

denote Qmax as the maximum value of Q at resonance when

the control parameter g is varied. In (c� a) parameter space,

we identify the regions for which QmaxðcÞ > Qmaxðc ¼ 0Þ for

a few fixed values of L. It has a band-like structure and the

number of bands is L. We obtain the condition on c for single

and double resonance and the analytical expression for g at

which resonance occurs. We analyse the effect of L on

resonance.

In Sec. III, first for the n-coupled Duffing oscillators

whose equations read

€x1 þ d _x1 þ x2
0x1 þ bx3

1 ¼ f cos xtþ g cos Xt; (2a)

€xi þ d _xi þ x2
0xi þ bx3

i ¼
d
L

XL

l¼1

xi�1ðt� laÞ; (2b)

where i ¼ 2; 3; � � � ; n we express Qi in terms of Qi�1 except

for the first oscillator. Then, we focus our analysis on the

influence of multi time-delayed coupling (MTDC) on vibra-

tional resonance in two-coupled oscillators. When L¼ 1, the

analytical expression of Q2 (as well as Qi, i > 1 for

n-coupled oscillators) is independent of the time-delay a
implying that the response amplitude does not change with

the time-delay. For all values of L > 1, Q2 is always less

than Q1 for g < gc1, where gc1 is the value of g at which the

effective potential of X of the first oscillator undergoes a

transition from bistability to monostability. For g > gc1,

Q2 > Q1 for certain ranges of values of a. We account these

results and explain the mechanism of resonance in the first

and second oscillators. We identify the regions in ðg� aÞ pa-

rameter space where Q2 > Q1, for a few fixed values of d
and L. Section IV is devoted to the analysis of signal propa-

gation in the system of n-coupled oscillators with n¼ 200.

The difference between the theoretical Qi and the numeri-

cally computed Qi is very large for i� 1. This is due to the

neglect of nonlinear terms in the equation of motion of the

slow variable. Inclusion of nonlinear terms leads to a set of

coupled polynomial equations for Qi. The Qis obtained by

solving this set of equations are in very good agreement with

the numerically calculated Qi. The coupled system exhibits

undamped signal propagation (that is, Q200 > Q1) for certain

range of values of a and d. In the undamped signal propaga-

tion, Qi increases with i and then attains a saturation, that is,

Qi ! QL for sufficiently large i. We obtain an analytical

expression for the limiting value of Q, QL, and the critical

value of d, du, above which undamped signal propagation

takes place. Interestingly, both QL and du are found to be in-

dependent of the parameter g. Finally, Sec. V contains

conclusions.

II. SINGLE DUFFING OSCILLATOR

The main objective of this section is to obtain an expres-

sion for the response amplitude Q for the single Duffing os-

cillator system (1).

A. Theoretical expression for the response amplitude Q

For X� x, let us seek the long time solution of Eq. (1)

as xðtÞ ¼ XðtÞ þ wðt; s ¼ XtÞ, where X and w are the slow

motion with period 2p=x and the fast motion with period

2p=X, respectively, and the mean value of w is

hwi ¼ ð1=2pÞ
Ð 2p

0
w ds ¼ 0. Substitution of x ¼ X þ w in Eq.

(1) gives the following equations for X and w:

€Xþd _Xþ x2
0þ3bhw2i

� �
Xþb X3þhw3i

� �
þ3bX2hwi

þ c
L

XL

l¼1

Xðt� laÞ ¼ f cosxt; (3a)

€w þ d _w þ x2
0wþ 3bX2 w� hwið Þ þ 3bX w2 � hw2i

� �
þ b w3 � hw3i
� �

þ c
L

XL

l¼1

wðXt� laXÞ ¼ g cos Xt: (3b)

Because w is a fast variable, one can neglect the nonlinear

terms in Eq. (3b). The resulting equation for w is a damped

and periodically driven linear equation with a linear multiple

time-delayed feedback term. Its solution in the limit of t!
1 is given by

w ¼ l cosðXtþ /Þ; (4a)
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where l ¼ g=k;

k¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2�x2

0�
c
L

XL

l¼1

cos laX

 !2

þ dX� c
L

XL

l¼1

sin laX

 !2
vuut

(4b)

and

/ ¼ tan�1

dX� c
L

XL

l¼1

sin laX

X2 � x2
0 �

c
L

XL

l¼1

cos laX

0
BBBB@

1
CCCCA: (4c)

The above solution gives hwi ¼ 0; hw2i ¼ l2=2 and

hw3i ¼ 0. Then, the equation for the slow variable X, Eq.

(3a), takes the form

€X þ d _X þ C1X þ bX3 þ c
L

XL

l¼1

Xðt� laÞ ¼ f cos xt; (5)

where C1 ¼ x2
0 þ 3

2
bl2. Slow oscillations occur around the

equilibrium points X�0 ¼ 0;X�6 ¼ 6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðC1 þ cÞ=b

p
.

We introduce for convenience the change of variable

Y ¼ X � X� and obtain

€Y þ d _Y þx2
r Y þ 3bX�Y2 þ bY3 þ c

L

XL

l¼1

Yðt� laÞ ¼ f cos xt;

(6)

where x2
r ¼ C1 þ 3bX�2, which is the resonant frequency of

the low-frequency oscillation in the presence of f cos xt. For

jf j � 1 and in the limit t!1, assume that jYj � 1 and

neglect the nonlinear terms in Eq. (6). Then in the limit

t!1, the solution of Eq. (6) is Y ¼ Qf cosðxtþ hÞ, where

the response amplitude Q and the phase h are given by

Q ¼ 1ffiffiffi
S
p ; S ¼ x2

r � x2 þ c
L

XL

l¼1

cos lax

 !2

þ dx� c
L

XL

l¼1

sin lax

 !2

(7)

and h ¼ /ðX ¼ x;x2
0 ¼ x2

r Þ.

B. Resonance analysis

To verify the theoretical treatment, we numerically inte-

grate Eq. (1) using the Euler method and compute the sine

and cosine components Qs and Qc from the equations

Qs ¼
2

nT

ðnT

0

xðtÞsin xt dt; (8a)

Qc ¼
2

nT

ðnT

0

xðtÞcos xt dt; (8b)

where T ¼ 2p=x and n is say, 500. Then, Q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2

s þ Q2
c

p
=f .

We fix the values of the parameters as d¼ 0.5,

x2
0 ¼ �1; b ¼ 0:1, f¼ 0.1, x ¼ 1, and X ¼ 10. Figure 1

shows both theoretically and numerically computed response

amplitude Q versus the control parameter g for L¼ 1, 2, 3,

and 5 for c ¼ 0:3 and for two values of a. The result for c ¼ 0

is also shown in this figure in order to illustrate the influence

of the MTDF. Vibrational resonance is observed for all the

values of L chosen in our study. The theoretical Q value is in

good agreement with the numerical Q value. In Fig. 1, for

each value of L two values of a are chosen in such a way that

for one value QmaxðcÞ > Qmaxðc ¼ 0Þ (the value of Q at reso-

nance) while for the other value QmaxðcÞ < Qmaxðc ¼ 0Þ ¼ 2.

For c ¼ 0:3 and a ¼ 2:6;Qmax is >2 for odd values of L,

while it is <2 for even values of L and the opposite result

occurs for a ¼ 3:4 (not shown in Fig. 1). In view of this,

using the theoretical expression of Q, we calculate the gain

factor G ¼ QmaxðcÞ=Qmaxðc ¼ 0Þ and plot Gð> 1Þ as a func-

tion of c and a for a few fixed values of L. We choose c 2
½�0:4; 0:4� and a 2 ½0; 2p=x� with x ¼ 1. The result is pre-

sented in Fig. 2. In this figure, G > 1 and G < 1 in the

shaded and unshaded regions, respectively, on the ðc� aÞ
plane.

For both c < 0 and c > 0, Fig. 2 contains L bands

(shaded regions) where G > 1. The width of these bands is

unequal. The shaded bands of c < 0 become the unshaded

bands of c > 0. From the theoretical expression of Q, the

condition for the enhanced response at resonance due to the

MTDF term is c
PL

l¼1 sin lax > 0. This condition is realized

in the shaded regions in Fig. 2. Figure 3 shows the intervals

of a where QmaxðcÞ > Qmaxðc ¼ 0Þ versus L for c > 0. The

intervals are independent of c. For each value of L, the total

length of a intervals in Fig. 3 is �p.

For wide ranges of a and c, the gain factor is >2, that is,

the delay is able to increase the value of Q at resonance more

FIG. 1. Variation of the response amplitude Q with the parameter g for a

few fixed number of time-delayed feedback terms. The values of the param-

eters are d¼ 0.5, x2
0 ¼ �1; b ¼ 0:1, f¼ 0.1, x ¼ 1, and X ¼ 10. The contin-

uous and dashed lines are the theoretically and numerically calculated

values of Q, respectively. In all the subplots, the curve 1 corresponds to

c ¼ 0. For the curves 2 and 3, the value of c is 0.3. The values of a for the

curves 2 and 3 are 0.5 and 5.5, respectively.
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than twice the value of Q in its absence. The addition of more

and more delay terms decreases the maximum value of G.

Moreover, it produces new regions with G > 1 in the (c� a)

parameter space and decreases the value of G to less than 1 in

certain regions where G > 1 earlier. Also, we identify the

regions in (g� a) parameter space where QðcÞ > Qðc ¼ 0Þ.
Here, again we notice that the number of isolated regions

where an enhanced response is realized due to the time-delay

increases when the number of time-delayed feedback terms

increases.

In the single oscillator, an amplification of a low-

frequency signal can be achieved for a range of amplitude

and frequency of the high-frequency force in the absence of

time-delayed feedback. In this case, the maximum value of

Q is 1=ðdxÞ. When the MTDF is introduced, we find

Qmax ¼ 1=jdx� ðc=LÞ
PL

l¼1 sin laxj. That is, Qmax can be

further increased or decreased by appropriate choices of c, a,

and L. Thus, the MTDF can be used to control the value of

Qmax.

C. Determination of the value of g at which resonance
occurs

The number of resonances in the system (1) is not

always 2. In the absence of MTDF term, either one reso-

nance or two resonances can be realized depending upon the

values of the parameters x2
0 and b. From the theoretical

expression of Q, we analyse the effect of time-delay on the

values of g, denoted as g
VR

, at which resonance occurs and

the number of resonances.

In the presence of a feedback term and a biharmonic

force, slow oscillations take place around the equilibrium

points X�6 or X�0. For g < gc where

gc ¼
2k2

3b
jx2

0j � c
� �� �1=2

; jx2
0j � c > 0 (9)

there are three equilibrium points. X�0 ¼ 0 is the only equilib-

rium point for g > gc. At g ¼ gc, the effective potential of X
undergoes a transition from a double-well to a single-well.

Equation (7) implies that Q becomes maximum when the

quantity S becomes minimum. Therefore, when g is a control

parameter, the value of g at which a resonance occurs corre-

sponds to dS=dg ¼ 0 or to a local minimization of x2
r . The

choice dS=dg ¼ 0 requires

x2
r ¼ x2 � c

L

XL

l¼1

cos lax: (10)

From this resonance condition, one can obtain an analytical

expression for gVR.

Case 1: c < 0

When

c < 0; jcj < jcc<j ¼
x2

1� 1

L

XL

l¼1
cos lax

; (11)

a resonance occurs at two values of g given by

gð1Þ
VR
¼ k2

3b
2jx2

0j � x2 � 3cþ c
L

XL

l¼1

cos lax

 !" #1=2

< gc;

(12a)

gð2Þ
VR
¼ 2k2

3b
jx2

0j þ x2 � c
L

XL

l¼1

cos lax

 !" #1=2

> gc: (12b)

If c < 0 and jcj > jcc<j, then only one resonance is possible

and the corresponding gð1Þ
VR

is gc, which is the bifurcation

point. The two resonances for jcj < jcc<j are due to the

matching of x2
r with x2 � c

L

PL
l¼1

cos lax (refer to Eq. (10)),

while the resonance at g ¼ gc for jcj > jcc<j is due to the

local minimization of x2
r .

Case 2: c > 0

For c > 0, one resonance always takes place at g ¼ gð2Þ
VR

given by Eq. (12b) if jx2
0j > c. Another resonance occurs at

g ¼ gð1Þ
VR

given by Eq. (12a) if

FIG. 3. Plot of intervals of a for which Qmaxðc > 0; aÞ > Qmaxðc ¼ 0Þ as a

function of L with x ¼ 1. In the remaining intervals of a, we realize

Qmaxðc < 0; aÞ > Qmaxðc ¼ 0Þ.

FIG. 2. Plot of G ¼ QmaxðcÞ=Qmaxðc ¼ 0Þ > 1 versus c and a for various

values of L. On the ðc� aÞ plane, G > 1 in the shaded portions while G < 1

in the unshaded portions. The curves in the shaded regions show the varia-

tion of G with a for a few fixed values of c.
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��x2
0

�� > c; c < cc> ¼
2jx2

0j � x2

3� 1

L

XL

l¼1
cos lax

: (13)

Both resonances are due to the resonance condition (10). For

c < cc>, there are two resonances, while for c > cc> there

exists only one resonance (at gð2Þ
VR

and not at gc as in the case

for c < 0 and jcj > jcc<j). We note that in the case of the sys-

tem (1), in the absence from a time-delayed feedback term,

there are two resonances for 2jx2
0j > x2, while one for

2jx2
0j < x2. In the system (1), the number of resonances for

c < 0 depends on the parameters x, L, and a and is inde-

pendent of x2
0, b, f, and X. For c > 0, the number of resonan-

ces depends also on the parameter x2
0. Thus, by suitably

choosing the values of c, a, and L, the system can be set to

display either two resonances or one resonance by varying

the control parameter g. That is, the number of resonances

can also be varied by means of a MTDF.

III. RESONANCE IN TWO-COUPLED DUFFING
OSCILLATORS WITH MULTIPLE TIME-DELAYED
COUPLING

In this section, we consider the effect of a time-delayed

linear one-way coupling in two-coupled Duffing oscillators

given by Eq. (2) with n¼ 2. In the system (2), the bihar-

monic periodic force is applied to the first oscillator alone.

The coupling term is linear and has multiple time-delayed

terms. The evolution of x1 is independent of xi, i > 1, while

those of xi, i > 1 depends on xi�1.

A. Theoretical approach

Writing xi ¼ Xi þ wi, where Xi’s and wi’s are slow vari-

ables and fast variables, respectively, and applying the theo-

retical treatment used in the previous section, we obtain the

following results:

YiðtÞ ¼ Qi f cosðxtþ /iÞ; (14)

where

Q1 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx2
r1 � x2Þ2 þ d2x2

q ; Qi ¼ PiQi�1; (15a)

Pi ¼
d rxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx2
ri � x2Þ2 þ d2x2

q ; i ¼ 2; 3; � � � ; n (15b)

x2
ri ¼ Ci þ 3bX�2i ; Ci ¼ x2

0 þ
3

2
bl2

i ; i ¼ 1; 2; � � � ; n

(15c)

X�1 X�21 þ
C1

b

� 	
¼ 0; (15d)

X�3i þ
Ci

b
X�i �

d
b

X�i�1 ¼ 0; i ¼ 2; 3; � � � ; n (15e)

l1 ¼ g=k; li ¼
d rX

k
li�1; i ¼ 2; 3; � � � ; n (15f)

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX2 � x2

0Þ
2 þ d2X2

q
; (15g)

rx ¼
1

L

XL

l¼1

sin lax

 !2

þ
XL

l¼1

cos lax

 !2
2
4

3
5

1=2

(15h)

and rX is similar to rx with x replaced by X in Eq. (15h).

We obtain an important result from the above theoretical

treatment. When L¼ 1, that is, the number of time-delayed

terms in the coupling is only one, then Qi and li given by

Eqs. (15a) and (15f), respectively, reduce to

Qi ¼
dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx2
ri � x2Þ2 þ d2x2

q Qi�1; li ¼
d
k
li�1; (16)

where i ¼ 2; 3; � � � ; n. The response amplitudes Qi’s, i > 2

are independent of the time-delay parameter a. This is

because when L¼ 1 the coupling term dxi�1ðt� aÞ becomes

dX�i�1 þ dQi�1f cos ðxt� xaþ /i�1Þ in which �xaþ /i�1

is an unimportant phase factor as far as the amplitudes of

oscillation of xi’s are concerned. The above theoretical pre-

diction is confirmed through numerical simulation.

Therefore, in the rest of our analysis, we consider L > 1. In

the following, we study the two-coupled oscillators and con-

sider the system of n-coupled oscillators in Sec. IV.

B. Resonance analysis

We fix the values of the parameters as x2
0 ¼ �1,

d¼ 0.5, b ¼ 0:1, f¼ 0.1, x ¼ 1, and X ¼ 10. Two slow

oscillations of X1 with the same amplitude take place around

the equilibrium points X�16 ¼ 6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�C1=b

p
for g < gc1

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k2jx2

0j=ð3bÞ
p

, while for g > gc1 only one slow motion

exists and is around X�10 ¼ 0. The equilibrium points around

which slow oscillations of the second oscillator occur are the

roots of the Eq. (15e) with i¼ 2 and is a cubic equation.

Analytical expression for the roots of the cubic equation of

the form (15e) is given in Ref. 28. When there are three real

roots of Eq. (15e), we designate them as X�2L;X
�
2M, and X�2U

with X�2L < X�2M < X�2U. In this case, the effective potential

of X2 is of a double-well form. X�2L and X�2U are the local

minima of left- and right-wells, respectively, around which

slow motion takes place. X�2M is the local maximum of the

effective potential of X2. When there exists only one real

root, then the effective potential becomes a single-well and a

slow oscillation will occur around this equilibrium state.

Figure 4 shows the regions in (g� a) parameter space

where Q2 > Q1 for three fixed values of the coupling

FIG. 4. Plot indicating the regions (below the lower curve and above the

upper curve for each fixed values of L) in (g� a) parameters space where

Q2 > Q1 for three fixed values of L and d. The values of the other parame-

ters are d¼ 0.5, x2
0 ¼ �1; b ¼ 0:1, f¼ 0.1, x ¼ 1, and X ¼ 10.
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strength d and L. Q2 is found to be greater than Q1 for

g > gc1 ¼ 261:1 for the values of a below the lower curve

and above the upper curve in Fig. 4. The intervals of a for

which Q2 > Q1 increase for increasing values of d. For fur-

ther understanding of the effect of time-delay a, in Fig. 5, we

plot the variation of both the theoretical Q2 and the numeri-

cally calculated Q2 with g for L¼ 2, 3, and 6, d ¼ 1:9 and

for two values of a.

Q1 is also shown to compare the effect of L and a on the

response amplitude Q2. The theoretical Q2 is in very good

agreement with the numerically computed Q2. In Fig. 5,

whenever X1 and X2 have more than one equilibrium point,

we used X�1U, X�2U for the calculation of Q1 and Q2. The

response amplitude Q1 of the system driven by the bihar-

monic force has two resonance peaks. Q2 also displays two

resonance peaks. In Figs. 4(c) and 5, we notice that Q2 < Q1

for g < gc1 ¼ 261:1, for all values of a and L. For certain

values of a (lying below the lower curve and above the upper

curve in Fig. 4(c)), Q2 > Q1 for g > gc1.

Now, we explain the mechanism of the resonance and

the above result for L¼ 2. As g increases from 0, we note

that X�1;X
�
2;x

2
r1;x

2
r2, and P2 given by Eq. (15) vary and hence

Q1 and Q2 also vary. The features of Q1 and Q2 can be

accounted from the study of the dependence of the above

five quantities. Figure 6 illustrates the variation of X�1 and X�2
with g for a ¼ 0:1 and d ¼ 1:9. In Fig. 7, we plot x2

r1;x
2
r2,

P2 and also Q1 and Q2 as a function of g. At g¼ 0,

x2
r1 ¼ 2jx2

0j. In Fig. 7(a), as g increases from 0, x2
r1

decreases from 2jx2
0j, becomes zero at gc1 (where a bifurca-

tion from bistability to monostability occurs as shown in

Fig. 7(a)), and then increases with further increase in g. x2
r1

matches with x2 at two values of g and at these values Q1

becomes maximum with the value 1=ðdxÞ. Thus, there are

two resonances of Q1 with the same value.

Next, we analyse the variation of Q2 using its theoretical

expression. First, we consider the case of g < gc1 ¼ 261:1.

The variation of Q2 with g depends on the variation of both

Q1 and P2 (because x2
r2 in P2 changes with g). When

g < gc2 ¼ 255:7, then for both X�1þ and X�1� (shown in Fig.

6(a)) the cubic Eq. (15e) has only one real root. In Fig. 6(b),

the solid circle and the solid triangle represent X�2 for the

choices X�1þ and X�1�, respectively. These two branches of X�2
are stable while the middle branch marked by the open circle

corresponding to X�10 ¼ 0 is unstable. The value Q2 is the

same for both X�2þ and X�2� because jX�2�j ¼ X�2þ and X�2
occurs as X�22 in the expression for x2

r2. For gc2 < g < gc1,

there are three equilibrium points of X2 for both X�1þ and

X�1�. They are shown in Fig. 7(c). In this figure, the solid

circles (solid triangles) and the open circles (open triangles)

are the stable and unstable states, respectively, of X�2 corre-

sponding to X�1þ(X�1�). In Figs. 7(a) and 7(b) for the calcula-

tion of x2
r2 and Q2, respectively, we used the top most

branch of X�2. When g increases from 0 as shown in Fig. 7(a),

x2
r2 decreases from a value >x2

r1 up to g ¼ gc1. For g < gc1;

x2
r2 is >x2 and there is no matching of x2

r2 with x2. There is

no possibility of resonance in Q2 by tuning xr2. In Fig. 7(c),

we plot the amplification factor P2 of Q2 (refer Eq. (15b)).

P2 (corresponding to a ¼ 0:1) increases from a small value,

FIG. 5. Q2 (curves 2 and 3) versus g for L¼ 2, 3, and 6 and for two fixed

values of a. The value of d is 1.9. In all the subplots, Q1 (curve 1) is also

shown to demonstrate the effect of the MTDC on Q2. The values of a used

are: subplot (a): curve 2 (3) �a ¼ 0:1 ð3:5Þ, subplot (b): curve 2 (3)

�a ¼ 0:75 ð1:4Þ, subplot (c): curve 2 (3) �a ¼ 0:45 ð0:9Þ. The continuous

and dashed curves are theoretically and numerically computed values of Qs,

respectively.

FIG. 6. (a) X�1 versus g and (b)–(c) X�2 versus g of the two-coupled Duffing

oscillators system for L¼ 2, a ¼ 0:1, and d ¼ 1:9. For details, see the text.

FIG. 7. (a) x2
r1 and x2

r2, (b) Q1 and Q2, and (c) P2 versus the control parame-

ter g for L¼ 2, a ¼ 0:1, and d ¼ 1:9. In the subplot (c), P2 versus g is shown

for a ¼ 3:5 also. The two solid circles on the g-axis mark the values of g at

which resonance occurs.
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however, for g < gc1 it is <1 and is almost constant except

near gc1. Therefore, according to Eq. (15a) Q2 < Q1 and the

variation of Q2 is similar to Q1. As a result, Q2 exhibits a res-

onance at the value of g at which Q1 also shows a resonance.

Now, we look at the case of g > gc1. X1 has only one

equilibrium state (X�10 ¼ 0). From Eq. (15e), we obtain

X�2 ¼ 0; 6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�C2=b

p
. There are three equilibrium states of X2

for the parametric values used in our study. X�2 ¼ 0 is unsta-

ble while the other two are stable. Because X2 � jx2
0j, for

g > gc1 with X�1 ¼ 0;X�2 ¼ 6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�C2=b

p
we can approximate

x2
r2 as

x2
r2 � 2jx2

0j � Oðg2=X8Þ; g > gc1: (17)

Neglecting the last term in Eq. (17), as it is very small, we

get x2
r2 � 2jx2

0j ¼ 2 and is evident in Fig. 7(a). Because x2
r2

is almost a constant, P2 given by Eq. (15b) is also a constant.

For a ¼ 0:1 and d ¼ 1:9, the quantity P2 is >1.

Consequently, Q2 ¼ P2 Q1 > Q1. Further, the variation of

Q2 is again similar to Q1 and both Q1 and Q2 exhibit a sec-

ond resonance at a value of g > gc1. For a ¼ 3:5, in Fig. 7(c)

P2 < 1 for the entire range of g considered and hence in

Fig. 5(a) Q2 (curve 3) is always <Q1.

We note that the slow variable X1 has bistability for

g < gc1 ¼ 261:1 and monostability for g > gc1. For g < gc1,

there are two co-existing orbits, one around X�1þ and another

one around X�1�. As g increases from a small value, the cen-

ter of these orbits X�1þ and X�1� moves towards the origin.

For g > gc1;X
�
1 ¼ 0 is the only equilibrium point and there

exists only one slow motion and it occurs around X�1 ¼ 0.

What happens for the second oscillator? When g < gc2

¼ 255:7, X2 has only one equilibrium state for each X�i and

hence the effective potential of the slow variable X2 is mono-

stable. Figures 8(a) and 8(b) show the numerically computed

periodic orbits of the second oscillator for g¼ 210. Q2 of the

two orbits in Figs. 8(a) and 8(b) are the same. In the interval

gc2 < g < gc1 for both X�1þ and X�1�, there are three equilib-

rium states of X2 with two being stable and one becomes

unstable as shown in Fig. 6(c). In the numerical simulation,

we can observe four co-existing orbits depending upon the

initial conditions. These co-existing orbits are displayed in

Figs. 8(c)–8(f) for g¼ 258. The response amplitudes of the

orbits in Figs. 8(c) and 8(d) are the same (Q2 ¼ 1:10572).

The amplitudes of the orbits in Figs. 8(e) and 8(f) are also

the same (Q2 ¼ 2:72064) but different from those shown in

Figs. 8(c) and 8(d). For g > gc1, X1 has only one equilibrium

state X�10 ¼ 0, while X2 has three states, two of them stable.

The two co-existing orbits of the second oscillator are shown

in Figs. 8(g) and 8(h) for g¼ 270. Their amplitudes are the

same. The point is that for g < gc2, X2 has a monostable state

and for g > gc2 it has bistable states.

IV. SIGNAL PROPAGATION IN A SYSTEM
OF N-COUPLED OSCILLATORS

In this subsection, we investigate the signal propagation

in a system of n-coupled Duffing oscillators, Eq. (2), with

n¼ 200. We use Q200 > Q1 as the criterion for undamped

and enhanced signal propagation in the coupled oscillators

system.

For the single and two-coupled Duffing oscillators, a

theoretically calculated Q is shown to be in good agreement

with the numerically computed Q. Note that in obtaining the

theoretically calculated Q, we have neglected the nonlinear

terms in the equations of motion of the fast variable w and

the slow variable Yð¼ X � X�Þ. In the systems of n-coupled

oscillators, the error in the theoretical Q due to the

above approximation grows with the oscillator number

i when Qi > 1 for i� 1. We define

DQi ¼ Qi;T � Qi;N; (18)

where Qi;T and Qi;N represent Qi values determined theoreti-

cally and numerically. Figure 9 shows the variation of DQi

with i for d¼ 0.5, x2
0 ¼ 1; b ¼ 1, f¼ 0.1, x ¼ 1:5;X ¼ 15,

L¼ 2, d ¼ 2:5; a ¼ 1 and for three values of g.

In obtaining li given by Eq. (15f), we have assumed

that €wi � w2
i and w3

i . This can be valid in the case of i¼ 1,

where the first oscillator is driven by the high-frequency

force g cos Xt. Because the other oscillators are not

driven explicitly by the high-frequency force, the assumption
€wi � w2

i and w3
i is not valid. Moreover, in the analytical cal-

culation of Qi also the nonlinear terms in the equations of Yi

are neglected. There are errors due to the neglect of

FIG. 8. Phase portraits of co-existing orbits of the second oscillator of the

two-coupled Duffing oscillators for a few values of g with L¼ 2, a ¼ 0:1,

and d ¼ 1:9.
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nonlinear terms in the equations of wi and Yi and further the

errors in wi and Yi propagate to the ðiþ 1Þth oscillator

through the coupling term. As a result, DQi is negligible for

the first few oscillators and becomes large for i� 1.

In order to minimize the error in the theoretical Qi and

also to minimize the propagation of this error through the

consecutive oscillators, we include nonlinear terms in the

calculation of the amplitudes of oscillation of the fast and

slow variables.29 We assume

wi ¼ li cosðXtþ /iÞ; Xi ¼ Ai cosðxtþ hiÞ: (19)

Substitution of the above solutions in the equations

€w1 þ d _w1 þ x2
0w1 þ bw3

1 ¼ g cos Xt; (20a)

€wi þ d _wi þ x2
0wi þ bw3

i ¼
d
L

XL

l¼1

wi�1ðt� laÞ; (20b)

€X1 þ d _X1 þ x2
01X1 þ bX3

1 ¼ f cos xt; (20c)

€Xi þ d _Xi þ x2
0iXi þ bX3

i ¼
d
L

XL

l¼1

Xi�1ðt� laÞ; (20d)

where i ¼ 2; 3; � � � ; n and x2
0j ¼ x2

0 þ 3
2
bl2

j , j ¼ 1; 2; � � � ; n
gives

l6
i þ all

4
i þ bll

2
i � Ril ¼ 0; (21)

A6
i þ aiAA4

i þ biAA2
i � RiA ¼ 0; i ¼ 1; 2; � � � ; n (22)

where

al ¼
8

3b
x2

0 � X2
� �

; bl ¼
16

9b2
x2

0 � X2
� �2 þ d2X2
h i

;

(23a)

R1l ¼
16g2

9b2
; R1A ¼

16f 2

9b2
; (23b)

aiA ¼
8

3b
x2

0i � x2
� �

;

biA ¼
16

9b2
x2

0i � x2
� �2 þ d2x2
h i

; i ¼ 1; 2; � � � ; n (23c)

Ril ¼
16d2r2

Xl2
i�1

9b2
; RiA ¼

16d2r2
xA2

i�1

9b2
: i ¼ 2; 3; � � � ; n:

(23d)

rx is given by Eq. (15h) and rX is obtained from rx by replac-

ing x by X. Equations (21) and (22) can be viewed as cubic

equations for the variables l2
i and A2

i , respectively. We deter-

mine li, Ai and then Qi ¼ Ai=f by solving Eqs. (21) and (22).

First, we check the validity of the theoretical approach.

In Fig. 10(a), we plot both the theoretically calculated Qi and

the numerically computed Qi as a function of i for three val-

ues of g with L¼ 2, a ¼ 1, and d ¼ 2:5. We notice a very

good agreement of the theoretical Qi with the numerical Qi.

For each fixed value of g as i increases, Qi increases slowly

then increases sharply to a higher value and finally it attains

a saturation value. The plot of Qi versus i displays a kink-

like dependence. This implies that there are a critical number

of oscillators for obtaining the maximum response and these

numbers depend on the control parameters. An interesting

result in Fig. 10(a) is that Qi > Q1 for i > 1, even in the ab-

sence of a high-frequency force. That is, a coupling alone is

able to give rise to an enhanced undamped signal propaga-

tion in the coupled oscillators. Figure 10(b) shows the influ-

ence of the number of time-delay terms in the coupling on Qi

where g¼ 175, a ¼ 1, and d ¼ 5. For L¼ 2 and 3, an

undamped signal propagation occurs while for L¼ 4 a

damped signal propagation takes place.

In Fig. 10, for sufficiently large values of i, the response

amplitude Qi becomes a constant. We call this limiting or sat-

uration value of Qi as QL. Interestingly, we can determine

lL;AL and hence QL ¼ AL=f from Eqs. (21) and (22), respec-

tively. Substituting li ¼ li�1 ¼ lL and Ai ¼ Ai�1 ¼ AL for

sufficiently large i in Eqs. (21) and (22), we obtain

lL ¼ 0;
4

3b
X2 � x2

06

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2r2

X � d2X2

q� �
 �1=2

(24)

and

AL ¼ 0;
4

3b
x2 � x2

0L6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2r2

x � d2x2

q� �
 �1=2

; (25)

where x2
0L ¼ x2

0 þ 3
2
bl2

L. AL ¼ 0 and 6¼ 0 correspond to a

damped and an undamped signal propagation, respectively.

We can also find out the condition on the parameter d for

undamped signal propagation. In Fig. 10, in all the examples

FIG. 10. Variation of Qi with i for (a) three values of g with L¼ 2, a ¼ 1,

and d ¼ 2:5 and (b) three values of L with g¼ 175, d ¼ 5, and a ¼ 1. The

continuous lines and the symbols represent the theoretically and numerically

computed values of Qi, respectively.

FIG. 9. DQi, difference between the theoretically calculated Qi and the

numerically computed Qi, versus i for d¼ 0.5, x2
0 ¼ 1; b ¼ 1, f¼ 0.1,

x ¼ 1:5;X ¼ 15, L¼ 2, d ¼ 2:5; a ¼ 1 and for three values of g.

013136-8 Jeevarathinam, Rajasekar, and Sanju�an Chaos 23, 013136 (2013)

 This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

193.147.63.222 On: Thu, 07 Nov 2013 20:24:24



of undamped signal propagation Q2 > Q1. This is further

confirmed for a large set of parametric values. Therefore, we

assume that if Q2 > Q1 then

Qi 	 Qi�1 	 � � � > Q3 > Q2 > Q1: (26)

For Q1 and Q2, very much satisfactory analytical expressions

are given by Eq. (15a) with i¼ 2. The condition for Q2 > Q1

is P2 > 1, where

P2 ¼
d rxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx2
r2 � x2Þ2 þ d2x2

q (27a)

and

x2
r2 ¼ x2

0 þ
3bg2d2r2

X

2X8
: (27b)

Because of the term X8, the second term in x2
r2 can be

neglected. Then, P2 > 1 becomes

d > du ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2

0 � x2Þ2 þ d2x2

q
rx

: (28)

We can realize undamped signal propagation for d > du.

One important result from Eqs. (25) and (28) is that both AL

(that is, QL) and du are independent of the amplitude g of the

high-frequency periodic force. Figure 10(a) confirms this. In

this figure, all the numerically computed Qi for different val-

ues of g approach the same limiting value. Figure 11 shows

the variation of du with the number of time-delayed terms L
and the time-delay a. In this figure, for clarity, only the val-

ues du < 10 are shown. When du > 10 is also considered,

then the du curve has L peaks for a given value of L. For d
values above the threshold curve, an undamped signal propa-

gation occurs. For L¼ 2 and a ¼ 1; 1:5, and 3, the theoretical

and the numerically computed values of du are (1.99, 1.96),

(3.38, 3.31), and (2.32, 2.30), respectively. In Fig. 12, we

plot QL versus d and a for four fixed values of L. The effect

of the number of time-delayed terms L and the time-delay a
on QL can be clearly seen in this figure. The dependence of

QL on a is nonmonotonic. Even for large values of d, there

are intervals of a in which QL ¼ 0 (damped signal

propagation).

In the vibrational resonance setup, with single time-

delayed coupling the dynamics of the coupled oscillators is

independent of the delay parameter a. On the other hand, as

seen in Fig. 12, the area of the regions in ða� dÞ parameters

space where enhanced signal propagation takes place

decreases with increase in the number of coupling terms. For

practical applications of signal detection and amplification,

two time-delayed unidirectional coupling is a better choice

than single and higher number of delayed couplings.

In the n-coupled systems (2), QL and du are independent

of the control parameter g. That is, signal transduction at the

low-frequency of the input signal is induced in the coupled

oscillators by the coupling term and not by the high-

frequency force applied to the first oscillator. However, Qi

depends on g for values of i not very large. To illustrate this

in Fig. 13, we show Qi versus i and g for L¼ 2, d ¼ 2:5 and

three values of a. For a ¼ 1 and 3, du ¼ 1:99 and 2.32,

respectively, and hence for each fixed value of g the response

amplitude Qi > Q1 for i > 1. For the first few number of

oscillators, the response amplitude profile clearly shows the

occurrence of a resonance at a value of g. For each fixed

value of g, Qi increases and attains the limiting value QL.

FIG. 13. Qi versus i and g for three values of a with L¼ 2 and d ¼ 2:5. The

thick line represents Q1.

FIG. 11. Dependence of du on the time-delay a and the number of time-

delayed terms L. du < 10 are alone shown in this plot.

FIG. 12. Three-dimensional plot of QL versus d and a for four fixed values

of the number of time-delayed coupling terms. QL is independent of the

parameter g.
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We notice that QL 6¼ 0 for g¼ 0. Signal transduction takes

place even in the absence of a high-frequency force. The sig-

nificance of this result is that weak signal detection and

amplification can be achieved either by driving a single non-

linear system by a high-frequency periodic signal or by

means of sufficient number of one-way coupled oscillators

without driving the oscillators by a high-frequency signal.

The theoretical treatment used in the present study clearly

brings out the role of the high-frequency periodic force and

the MTDC on the response amplitude and signal transduc-

tion in the coupled oscillators.

In order to know whether the enhanced response of the

ith oscillator at the low-frequency x is due to the presence of

the low-frequency signal in the first oscillator or the low-

frequency component is induced by the time-delayed cou-

pling, we numerically calculated QiðxÞ for f¼ 0. We found

QiðxÞ ¼ 0. That is, the system responds to the low-

frequency signal only when it is present in the first oscillator.

In this section, so far we have considered the system of

n-coupled Duffing oscillators with MTDC. We have investi-

gated the response of the system with integrative time-

delayed coupling (ITDC) of the form ðd=aÞ
Ð t

t�a xi�1ðsÞds.

The feedback is not only time-delayed but also cumulative

over a certain time interval a. This kind of time-delay was

earlier introduced in the “integrate-and-fire” models30 and

self-organized critically31 and its effect has been analysed in

a neuronal model32 and in a two-coupled Landau–Stuart

oscillators.33

The theoretical treatment employed for the coupled

oscillators with MTDC can be used to analyse the influence

of ITDC. However, here we present very briefly our numeri-

cal simulation. In the case of ITDC, QL is also found to be

independent of the parameter g. Figure 14(a) shows the vari-

ation of QL with the parameters d and a. QL > 0 for a range

of values of a and d. The difference between the effects of

ITDC and MTDC can be clearly seen by comparing Figs.

14(a) and 12. Figure 14(b) depicts the dependence of Qi on g
for d ¼ 2:5 and a ¼ 1 for which an undamped signal trans-

duction takes place. In the case of ITDC also resonance

occurs only for first few oscillators. Figure 14(c) shows an

example of decay of Qi with i where d ¼ 2:5 and a ¼ 3.

V. CONCLUSIONS

We have presented the analysis of high-frequency peri-

odic force induced vibrational resonance in a single Duffing

oscillator with MTDF and signal propagation in a system of

n-coupled Duffing oscillators with multi-time delayed unidir-

ectional coupling. Various nontrivial results are obtained

through a theoretical treatment. In the single oscillator, when

the amplitude g of the high-frequency periodic force is var-

ied, a single or a double resonance occurs depending upon

the values of the parameters x2
0, x, a, L, and c and is inde-

pendent of the parameters d, f, b, and X. In the c (the strength

of feedback term)–a (time-delay) parameter space, the

regions with QmaxðcÞ > Qmaxðc ¼ 0Þ have L bands, where L
is the number of time-delayed feedback terms. The maxi-

mum value of response amplitude is found to decrease when

the number of feedback terms increases. The response ampli-

tude Q depends on all the parameters except f (the analysis

performed in the present work is valid only for jf j � 1)

while its value at resonance depends on the parameters d, x,

c, a, and L.

The theoretical treatment allows us to determine (i) the

mechanism of resonance, (ii) the number of resonances, (iii)

analytical expression for control parameters at which reso-

nance occurs, (iv) the maximum value of response ampli-

tude, and (v) the regions in the parameters space where an

enhanced response occurs due to MTDF.

More importantly, the theoretical approach is able to

determine and explain the various features of signal propaga-

tion in coupled oscillators. One interesting prediction is that

in coupled oscillators the response amplitude as well as the

dynamics is independent of the time-delay parameter a when

the number of coupling terms is only one. The system exhib-

its undamped signal propagation for appropriate choices of

the parameters and these choices of parameters can be deter-

mined from the theoretical approach. We wish to stress that

in the coupled oscillators system (2), even though only the

first oscillator is driven by the high-frequency periodic force,

fascinating results on signal propagation are obtained by the

action of the unidirectional coupling with multiple time-

delayed terms.
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