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Abstract

Numerical integration is the most common and straightforward approach in computational

neuroscience for the study of biological neuron models based on ordinary differential equations. For

some purposes, numerical simulations are not enough due to the multiple bottlenecks in computer

architectures. However, when electronic circuits are used to simulate in real time large arrays of

coupled neurons, the simulations are much faster than the computer simulations. We present here an

electronic implementation of a map-based neuron model, a chaotic Rulkov neuron model, that can

be easily transferred on a large scale integration circuit and thus provide a framework for the

simulation of large networks of neurons. The Rulkov model is a map-based neuron model that has a

surprising abundance of features, such as periodic and chaotic spiking and bursting. The discrete

time dynamics allows to tune the time scale of the circuit to the needs of the specific application. Since

the circuit described here only uses 18 MOS transistors, it offers new perspectives for building large

networks of neurons in a single device. This is very relevant for the analysis of large networks of

coupled neurons in order to investigate its dynamics over the network and its synchronization

properties.

& 2013 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
1. Introduction

Many interesting properties arise when we consider interconnected dynamical systems.
An important issue in this context is the way the dynamical systems are coupled. Different
topologies of interconnectivity might be considered, giving rise to different dynamical
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global properties. The relevance of all these concepts appears when studying the
phenomenon of synchronization. In particular when we consider networks of inter-
connected neurons, the analysis of the synchronization has received much attention in the
past few years. An interesting review on the impact of Nonlinear Science in Biology
appears in [1].
Synchronization of neuronal activity has been intensively studied as a collective

behavior with possible relations with information transmission and processing in
biological neurons. In these studies, ordinary differential equation (ODE) of neuron
models with fast–slow dynamics is most commonly used. Nevertheless, map-based neuron
models [2,3,6,8] have recently received much attention as reasonable units for simulating
collective behaviors in large-scale neural networks. The reason is that map-based models
have been found to be comparable to ODE models in reproducing characteristic behaviors
of biological neurons [4,5,7].
A major challenge for engineers and scientists is to produce efficient tools to address the

growing needs in computational power for the simulation of networks of coupled neurons.
Devices that compute large networks in real time would be an asset for the field of
computational neuroscience. For example, the study of the synchronization of arrays of
neurons would be quickened a great deal when simulated with electronic circuits, allowing
more time to analyze and produce data.
An artificial electronic neuron reproduces the observed behaviors of the real neurons by

an emulation of the dynamics with the use of electronic circuits [9–11]. The mathematical
models that have been built from neurophysiological data obtained in experiments are
implemented in an electronic circuit simulating and reproducing its behavior. There exist a
large number of models with higher or lower degrees of approximations to the observed
neuronal dynamics. Given a particular problem, the choice of the model must be
motivated by the relevant aspects of the dynamics, but also by the computational trade-
offs. For example, a large number of continuous neuron models, benefit the accuracy of
the model at the cost of its computational efficiency. This implies that a balance between
these two design constraints must be taken into account at the time of the choice of the
model equations.
We focus here on a class of models that combine two key elements for the study of large

group of neurons: a simple modelling and a discrete time dynamics. The chaotic Rulkov
map-based neuron model [3] is a good candidate to simulate large arrays of coupled
neurons, since its dynamical properties are sound and its implementation in an electronic
circuit is efficient.
There have been several efforts recently to implement versatile mathematical neuron

models in silicon [12–14] that can exhibit a variety of behaviors by tuning the parameters.
These implementations can be opposed to a precise reproduction of a physiological model
[15] which relies on experimental observations of neurons. Most of the implementations of
silicon neurons are built based on continuous time models [2,12] or on simpler discrete time
models [13]. The discrete time dynamics has a series of interesting features when compared
to continuous dynamical systems. First, the discrete process of iteration is a very well
defined and simple mechanism using sample and hold blocks. Another interesting point is
that the time scale of the simulation can be adapted in real time. The simulation rate can be
chosen by changing the clock speed of the system and consequently the speed of the
iteration process is regulated. This is of the most importance when we are interested in a
very fast simulation.
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On the other hand, the chaotic Rulkov model displays several neuron-like behaviors
depending on the model parameters. Prior studies [2–4,7] have also shown that this model
is a good alternative for the modeling of coupled neuron networks.

A VLSI (very-large-scale integration) architecture allows a parallel implementation and
computation of the networks of neurons. The Complementary Metal Oxyde Semicon-
ductor (CMOS) devices are a paradigmatic choice for this kind of applications for its
affordable price and scalability. Although most of the CMOS designs nowadays are
oriented to digital applications, they can be used as well for analog and mixed-signal
circuits.

The main interest of implementing an electronic circuit of a map-based neuron that we
describe in this paper aims at offering the key ingredient to build a large interconnected
network which will be useful to analyze practical aspects in computational neuroscience
like synchronization and interconnectivity.

2. Description of the electronic circuit

The chaotic Rulkov neuron model is an alternative to continuous time neuron models
for the study of large interconnected networks. It has a simple and elegant formulation
while keeping interesting dynamical regimes such as spiking and bursting [2,3]. The discrete
time dynamics permits easy theoretical analysis with the profusion of tools available in
nonlinear dynamics. The simulation of the model is also straightforward and very fast on
modern computers since it involves only iterative loops. These features make this model an
ideal candidate for simulations when the physiological details are not critical.

Even though the Rulkov map is an abstract mathematical model, it shares some specific
features with other neuron models which are closer to experimental observations. The
original chaotic Rulkov model as proposed in [3] can be expressed as a two dimensional
discrete time model

xnþ1 ¼
a

1þ x2
n

þ yn þ In, ð1Þ

ynþ1 ¼ yn�sxn�b: ð2Þ

The two variables of the model represent the two important time-scales of a neuron model:
the fast dynamics of the system that holds for the membrane voltage of the neuron, and the
slow variations of the ionic recovery currents. The variable x represents the fast dynamics
whereas y is the slow dynamics. The variable In gathers the sum of the external influences
on the neuron. Nonetheless, for convenience and without lack of generality, we will
consider it to be always zero here.

These equations present a diversity of behaviors depending on the control parameters a
and s. The two typical regimes are the spiking regime: a series of short sustained pulses
reminding the spike train of a neuron; and the bursting regime: a brief train of pulses
alternating with a quiet state. An interesting point here is that chaotic trajectories exist in
both regimes, which is due in part to the shape of the nonlinear function in Eq. (1).

This discrete map equation can be implemented in a circuit using two sample and hold
(S/H) circuits for the iteration process of each variable as described in Ref. [16] for a one
dimensional discrete time chaos generator. The simplified block diagram of the circuit can
be seen in Fig. 1.



Fig. 1. Schematic electronic implementation of the Rulkov map neuron. The sample and hold blocks are

controlled by the external clocks F1 and F2. The nonlinear function f takes the value xnþ1 as input and after its

processing, the output value f ðxnþ1Þ is obtained.
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The two S/H circuits need clocks with the same frequency but with different phases.
When a brief positive pulse is applied on F1, the input value of the block is transferred to
the output and is stored into the capacitor C1 as long as both switches are open. The
impedance of the switches is considered infinite. Given a delayed pulse on F2 on the gate of
the second S/H circuit, the electric charge stored in C1 is transferred and stored into the
capacitor C2. The analog voltage held in this capacitor is the value of the iterate xnþ1 (or
ynþ1) that will be used to compute the next iteration. The delay between the two pulses is
essential to perform the successive iterations of the map for each variable. The iteration is
possible if only one of the switches is closed at once in order to keep the voltages of C1 and
C2 independent. Additional buffers must be introduced in order to avoid charge injection
and charge sharing between the S/H circuits that can affect the precision of the whole
circuit. This charge injection is a major concern when dealing with S/H blocks as they
reduce the voltage accuracy and consequently introduce errors in the sampling process.
The buffers introduced in the design have the double objective to balance this effect and to
sum up a voltage for the information processing. The sizes of the n-channel MOS (NMOS)
transistors used for the switches are ðW=L¼ 0:4 mm=0:4 mmÞ and all the capacitor values
are C¼1 pF.
Despite the simplicity of the model in Eqs. (1) and (2), a series of approximations and

adaptations are needed for its implementation into a CMOS circuit. One of the most
delicate points is the design of the nonlinear function

f ðxnÞ ¼
a

1þ x2
n

: ð3Þ

We propose an implementation of this function using the bump–antibump circuit [17]. It
consists in a small circuit that takes advantage of the properties of the subthreshold region
of the MOS transistors.
The DC transfer function of the circuit shown in Fig. 2(a) and (b) is a Gaussian shaped

curve when a voltage input Vin is fed. The shape of the curve is similar enough to the
nonlinear function in Eq. (3) for our purpose, which is mainly to obtain the same
bifurcations in the phase plane. Two external bias voltages Va, Vb allow to modify the
shape and the properties of the function that have dramatic effects on the dynamics as
we will show in detail in Section 3. The voltage Va affects the horizontal position of the
transfer function on the horizontal axis in Fig. 2(a) while Vb is related to the width of the



Fig. 3. Complete circuit of our approximated Rulkov model. The nonlinear function f is depicted in Fig. 2(b).

Fig. 2. This figure shows important characteristics of the electronic design of the function f ðxnÞ ¼ a=ð1þ x2
nÞ

of the model. (a) DC characteristics of the approximated function f for different values of the static gain S.

(b) Schematics of the adapted bump circuit that implements the function f.
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curve. The static gain S of the function can be tuned with the size factor (W/L) of the
transistors.

With the following size (W/L) of transistors M2¼M5¼ ðS mm=1 mmÞ and
M1¼M3¼ ð6 mm=S mmÞ, the static gain of the transfer function increases with the
parameter S as shown Fig. 2(a). The rest of the transistors have been sized as follows:
M4¼M6¼ ð15 mm=1 mmÞ, M7¼ ð3 mm=1 mmÞ, M8¼ ð1 mm=2 mmÞ. The circuit used in our
design for the function f is shown in Fig. 2(b).

The block circuit representation of the circuit of the approximated Rulkov model can be
seen in Fig. 3. Voltage followers are introduced between the S/H circuits in order to



A. Wagemakers, M.A.F. Sanju �an / Journal of the Franklin Institute 350 (2013) 2901–29102906
prevent charge injection. Moreover, the transistor for bias adjustment of these followers
can be used as a voltage adder when employed in the adequate linear region. These buffers
are easily characterized by their DC transfer function which is a good approximation for
the time discrete regime. The sub-circuit for the second variable y in the lower part of
Fig. 3 consists also in two voltage followers with bias adjustment that implement the two
necessary additions in Eq. (2). The first buffer, composed of the two NMOS transistors
M14 and M15, performs the addition of sxn and yn, while the second buffer with the p-
channel MOS (PMOS) transistors M17 and M18 adjust the constant b of Eq. (2) with the
voltage Vc. The sizes of the transistors for the buffers are shown in Fig. 3. Another
important adaptation is the scaling of the variables to get the dynamics of the circuit into
an suitable regime. The dynamical range of the variables has been reduced and adapted to
a single positive supply voltage of 5 V. The discrete equations of the system with these
transformations can be approximated by

xnþ1 ¼ f ðxnÞ � 0:8þ yn þ 0:2, ð4Þ

ynþ1 ¼ 1:1yn�0:25xn þ 0:62Vc: ð5Þ
Fig. 4. This figure shows the time series of variables x and y of the circuit for some typical behavior of neuronal

dynamics. (a) Typical chaotic burst behavior for S¼5 and Vb¼0.3 V. (b) Relaxation oscillations for S¼2 and

Vb¼0.3 V. The amplitude of the oscillations is large in this case. (c) Chaotic spiking for S¼15 and Vb¼0.35 V. (d)

Another chaotic bursting behavior for S¼3, Va¼0.28 V and Vb¼0.075 V. Notice that the time scale is different in

this last case.
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This is only an orientative approximation since the transistors will introduce additional
nonlinearities in these equations.
3. Analysis and discussion of the results

We present the results of a Pspice simulation with a level 2 MOSFET transistor model.
The time series of Fig. 4 have been simulated with a digital clock of frequency 1 MHz for
the iteration process, producing a date rate of 1 MSps. The trajectory of the variable x in
Fig. 4(a) shows the typical chaotic burst of the Rulkov model while the slow variable y

switches the state of the variable x from chaotic oscillations to rest. Fig. 4(b) represents
relaxation oscillations similar to the FitzHugh–Nagumo model as the system switches
alternatively between two stable states. Fig. 4(c) depicts a case of chaotic spiking. Notice
the fast dynamics of the variable y and the large amplitude which are a consequence of the
large static gain S¼15 of the function f. The bias voltages are Va¼0.1 V and Vc¼4.8 V for
these three examples. The last example in Fig. 4(d) shows a different case of chaotic
bursting with a smaller amplitude but also with a faster time scale than the example of
Fig. 4(a). The parameter Va has been altered to Va¼0.28 V in this last example, showing its
importance for the dynamical regime.

As mentioned earlier, the shape of the function f is essential to the dynamics of the
model and can be tuned with three parameters: S, Va and Vb. The parameter S depends on
the size of the transistors and is therefore constant for a given circuit. The bias voltages Va

and Vb are the two accessible control parameters for the dynamical regime. They can be
Fig. 5. Behavior of the circuit in function of the bias parameters Va and Vb when S¼3. Three different behaviors

are accessible with a single parameter change. The time series in the insets are examples of chaotic and periodic

bursting as well as autonomous oscillations that can be interpreted as periodic spiking.



Fig. 6. Bifurcation diagram of the variable x in function of the parameter Va for Vb¼0.25 V and S¼3. As Va

increases, the variable x exhibits first a silent behavior, and then periodic spiking finally chaotic bursting for

Va40:27 V. Notice the chaotic oscillations window around Va¼0.23 V.
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adjusted at the time of the operation of the circuit but they may also evolve dynamically.
The behavior of the model can be chosen from the diagram of Fig. 5, where the four most
common types of oscillations are plotted in function of the parameters Va and Vb. As these
parameters change, so does the bifurcation structure of the artificial neuron in the phase
plane x�y leading to the different types of oscillation. Nevertheless, the bias voltage Va

alone can also be used as a single control parameter to tune the dynamical regime as shown
in the bifurcation diagram of Fig. 6 for Vb¼0.25 V. This diagram shows that chaotic as
well as periodic oscillations are possible simply by varying the parameter Va. The variable
x exhibits first a silent behavior for values below Va¼0.15 V, then periodic spiking (period
2 and 3 windows) and finally chaotic bursting around Vb¼0.27 V.
The simulations are reliable up to 1 MSps by changing the main clock frequency. The

average power consumption of the circuit oscillates between 1 and 2 mW depending on the
dynamical regime. This consumption can be however drastically reduced by introducing
additional transistors that switch off the buffers when they are not in use. It is especially
relevant at low frequencies when the circuit spends most of the time idle.

4. Conclusions

Current research projects aiming to study neuronal [18] dynamics are having increasing
needs in computing power. The simulation of interconnected arrays of neurons is a
demanding task for computers in terms of memory use and processing speed. As an
alternative to the conventional computer architecture, we propose to perform these
simulations with electronic circuits. As discussed in this paper, the chaotic Rulkov neuron
model is an ideal candidate for an electronic circuit implementation. The main benefits of
the electronic circuit implementation of the Rulkov neuron model can be summarized as
follows. A wide range of possible dynamics can be chosen from the bifurcation diagrams of
the electronic circuit depending of the needs of the application. With only one parameter
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the dynamics can be changed from regular spiking to chaotic bursting. The speed of the
simulations can be increased up to 1 million iterations per second by only changing the rate
of an external clock. A major interest of these electronic circuits is their ability to work in
parallel in a similar way to a living nervous system. The activity of a whole network can be
monitored and observed in real time with a single device, whereas in classical computer
architectures the simulation needs to finish before any possible analysis.

The approximated chaotic Rulkov neuron described in this paper offers the way to build
a large interconnected networks composed of these units with the aim of analyzing
practical aspects in computational neuroscience like modeling of cognitive processes,
learning and behavior, synchronization, as well as applications to robotics or other
technologies.
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