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Abstract

We investigate the vibrational resonance in the Duffing system
with different kinds of delayed feedback. Our approach is to
consider the delayed feedback as a generalized delayed feedback
in a fractional-order differential version. For three special cases,
the generalized delayed feedback corresponds to displacement de-
layed feedback, velocity delayed feedback, and acceleration de-
layed feedback respectively. At first, based on the vibrational
mechanism, the approximate solution of the system is obtained.
Then, we give conditions for all resonance patterns. The the-
oretical predictions are verified by numerical simulations. Fur-
thermore, the theoretical results are in good agreement with the
numerical simulations. Since the delayed feedback is in a gen-
eralized form, our results can be regarded as universal for the
vibrational resonance in nonlinear systems with different kinds
of delayed feedback.

©2013 L&H Scientific Publishing, LLC. All rights reserved.

1 Introduction

In the last decades, vibrational resonance (VR) has attracted more and more attention. VR was
introduced by Landa and McClintock [1]. It is similar to the well-known stochastic resonance
phenomenon and focuses on improving the response of a nonlinear system to a weak low-frequency
signal by adjusting the other high-frequency signal. Due to the wide applications of biharmonical
signals in a variety of disciplines, VR has been thoroughly investigated in a noisy oscillator [2–4],
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neuronal networks [5–7], coupled systems [8–11], delayed systems [12–18], ferroelectric liquid crystal
[19], optical lattice [20], ecosystem [21], etc. Recently, VR in fractional system was reported by
Yang and Zhu [22], and they found that the fractional-order damping induces new VR patterns.
The fractional-order calculus theory is a very useful tool in many scientific and engineering fields
[23–28]. Hence, it is important to investigate the dynamical properties of the fractional-order
systems further.

Because the time delay feedback and the fractional scheme are both important control strategies,
Yang and Zhu [29] investigated VR in the fractional Duffing system with a displacement delayed
feedback. However, as far as we know, the delayed feedback has been always considered in previous
works on VR as a displacement delayed feedback. The effects of the velocity delayed feedback and
the acceleration delayed feedback on VR have never been studied until now. So that, this is the main
motivation of this paper. In order to obtain a universal solution, we adopt the concept of generalized
fractional-order differential delayed feedback which was proposed by Wang and Zheng [30]. This
kind of delayed feedback generalizes the displacement delayed feedback, velocity delayed feedback
and acceleration delayed feedback. At first, we introduce the definition of the fractional derivative.
There are several definitions for the fractional derivative, but the most popular definitions are the
Riemann-Liouville (RL) definition, the Caputo definition, and the Grünwald-Letnikov definition
(GL) [31]. For most cases, these three definitions are equivalent. In the following analysis, we use
the GL definition for its simplicity in the numerical calculations. The Grünwald-Letnikov definition
is given by

Dα f (t)|t=kh = lim
h→0

1
hα

k

∑
j=0

(−1) j
(

α
j

)
f (kh− jh), (1)

where the binominal coefficients are(
α
0

)
= 1,

(
α
j

)
=

α(α −1) · · · (α − j+1)
j!

for j ≥ 1, (2)

Here, we study the following Duffing system whose equation is given by

ẍ(t)+ δ ẋ+ ω0x+ βx3 + γDαx(t − τ) = f cos(ωt)+F cos(Ωt), (3)

where δ , ω0 and β are the system coefficients, δ > 0, β > 0. The excitations satisfy f � 1 and
ω � Ω. Dαx(t − τ) is the generalized fractional-order differential delayed feedback with fractional-
order α ∈ [0,2], and γ and τ respectively denote the delayed strength and the delay parameter. Here,
we assume γ > 0. For the case α=0, Dαx(t−τ) reduces to the displacement delayed feedback x(t−τ),
and VR in Eq. (3) with this kind of feedback was studied by Jeevarathinam et al. [15]. While for the
case α = 1 and α = 2, it turns to the velocity delayed feedback ẋ(t−τ) and the acceleration delayed
feedback ẍ(t − τ) respectively. We will analyze the VR in Eq. (3) with these two kinds of delayed
feedback. Except the above special cases, when α ∈ (0,1)∪ (1,2), it is a generalized differential
delayed feedback and usually realized by a circuit in the control loops. In the linear vibration
system, the generalized differential delayed feedback can improve the stability of the system [30].
In absence of the external signals, the damping term, and the delayed feedback, the potential
function of the Duffing system is V (x) = 1

2(ω0 + γ)x2 + 1
4βx4 for α = 0 and V (x) = 1

2ω0x2 + 1
4βx4

for 0 < α ≤ 2. If α = 0, V (x) has a double-well for the case ω0 + γ < 0 and a single-well for the
case ω0 + γ > 0. If 0 < α ≤ 2, V (x) has a double-well for the case ω0 < 0 and a single-well for the
case ω0 > 0. Hence, the shape of the potential function depends on the fractional-order α . The
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structure of the paper is organized as follows. At first, a theoretical analysis is carried out to obtain
an approximate solution. Then, based on the analytical results, the conditions corresponding to
different resonance patterns will be presented. Several examples for the system with different kinds
of delayed feedback are investigated by a theoretical analysis and by numerical simulations. Finally,
we provide the conclusions.

2 Theoretical formulation

In this section, we give the conditions corresponding to different resonance patterns according to
the approximation of the system.

2.1 Approximate solution

In the vibrational mechanism, due to ω � Ω, the method of separation of slow and fast motions
can be used to obtain the approximation of the system in Eq. (3) [32]. By this method, we get
an approximate but not an accurate solution of the system. Due to its simplicity, this method
has been successfully used in systems excited by both low-frequency and high-frequency signals
[9, 15,16,22,29,32–38]. Letting x = X + Ψ, where X is the slow motion with period 2π

/
ω and Ψ is

the fast motion with period 2π
/

Ω , and then substituting it into Eq. (3), one has

Ẍ + Ψ̈+ δ Ẋ + δΨ̇+ ω0X + ω0Ψ+ βX3 +3βX2Ψ+3βXΨ2 + βΨ3 + γDαX(t− τ)+ γDαΨ(t− τ)
= f cos(ωt)+F cos(Ωt). (4)

Seeking the approximate solution of Ψ in the linear equation

Ψ̈+ δΨ̇+ ω0Ψ+ γDαΨ(t− τ) = F cos(Ωt) (5)

and assuming

Ψ =
F
μ

Ωα cos(Ωt + φ), (6)

one easily has

μ2 = [ω0 −Ω2 + γΩα cos(
απ
2

−Ωτ)]2 +[δΩ+ γΩα sin(
απ
2

−Ωτ)]2, (7)

and

φ = −tan−1
δΩ+ γΩα sin(

απ
2

−Ωτ)

ω0 −Ω2 + γΩα cos(
απ
2

−Ωτ)
. (8)

Substituting the solution of Ψ into Eq. (4) and averaging all terms over the interval [0,2π/Ω], one
gets the equation for the slow motion

Ẍ + δ Ẋ +C1X + βX3 + γDαX(t− τ) = f cos(ωt), (9)

where C1 = ω0 + 3βF2

2μ2 .
(i) The double-well potential case.
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When f = 0, there is a critical point Fc which transforms Eq. (9) from bistable to monostable.

For the case α = 0, the critical point is Fc =
√

− 2μ2(ω0+γ)
3β . When F < Fc, the stable equilibrium

points of Eq. (9) are X∗± =±
√

−C1+γ
β . When F ≥ Fc, the stable equilibrium point of Eq. (9) is X∗

0 = 0.

While for the case 0 < α ≤ 2, the critical point is Fc =
√

− 2μ2ω0
3β and the stable equilibrium points

are X∗± = ±
√
−C1

β for F < Fc and X∗
0 = 0 for F ≥ Fc.

(ii) The single-well potential case.
Since C1 > 0, β > 0 and γ > 0, there is only one equilibrium point X∗

0 = 0.
The slow oscillation occurs around the stable equilibrium point. Considering the deviation Y of

X from X∗, i.e., Y = X −X∗, one gets

Ÿ + δẎ + ω2
r Y +3βX∗Y 2 + βY 3 + γDαY (t− τ) = f cos(ωt), (10)

where ω2
r = C1 +3βX∗2. For a weak signal, f � 1, one ignores all nonlinear terms in Eq. (10) and

obtains the linear equation

Ÿ + δẎ + ω2
r Y +3βX∗Y 2 + βY 3 + γDαY (t− τ) = f cos(ωt). (11)

Solving Eq. (11), one obtains the solution of X in the limit t → ∞ as Y = ALcos(ωt + θ), where

AL =
f√
S
,

S = [ω2
r −ω2 + γωα cos(

απ
2

−ωτ)]2 +[δω + γωα sin(
απ
2

−ωτ)]2,

θ = −tan−1
δω + γωα sin(

απ
2

−ωτ)

ω2
r −ω2 + γωα cos(

απ
2

−ωτ)
.

(12)

To quantify the VR effect, the response amplitude Q is often considered as a measurement,
which is defined by Q = AL/ f . According to Eq. (12), the response amplitude Q for the system with
generalized fractional-order differential delayed feedback is given by

Q =
1√

[ω2
r −ω2 + γωα cos(

απ
2

−ωτ)]
2
+[δω + γωα sin(

απ
2

−ωτ)]
2
. (13)

We obtain the response amplitude Q of the system with the displacement delayed feedback, velocity
delayed feedback and acceleration delayed feedback respectively, by substituting α = 0,1 and 2 into
Eq. (13).

2.2 Resonance analysis

From the definition of Q, we know that the resonance occurs when the denominator in Eq. (13)
achieves a minimal value. In the following analysis, we use F as a control parameter. In Eq. (13),
F is only included in the term ω2

r . Letting S1 =
[
ω2

r −ω2 + γωα cos
(απ

2 −ωτ
)]2, Q has a maximal

value when S1 has a minimal value and as a result the resonance occurs. According to Eq. (13), we
obtain the following results:
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(i) The double-well potential case.
Since the stable equilibrium point X∗, which depends on α , is included in ω2

r in Eq. (13), and we
have the two following cases.
(a) The case α = 0.
When

0 < ω2 < γ cosωτ −3γ −2ω0, (14)

the resonance occurs at the F(1)
VR and F(2)

VR which are two real roots of S1 = 0, i.e.,

F(1)
VR =

√
μ2(γ cosωτ −ω2−3γ −2ω0)

3β
< Fc, (15)

and

F(2)
VR =

√
2μ2(ω2 − γ cosωτ −ω0)

3β
> Fc. (16)

The peak values of Q at these two points are identical, i.e.,

Q(1)
max = Q(2)

max =
1

|γ sin(ωτ)+ δω| . (17)

When
ω2 ≥ γ cosωτ −3γ −2ω0 (18)

the resonance occurs only at F (2)
VR . The peak value of Q is also expressed in Eq. (17). Here, the

results correspond to the resonance pattern in the system with displacement delayed feedback.

(b) The case 0 < α ≤ 2.

When
0 < ω2 ≤ γωα cos(

απ
2

−ωτ), (19)

S1 = 0 has no real roots, and the resonance occurs at FVR = Fc =
√

− 2μ2ω0
3β . The peak value of Q is

Qmax =
1√[

γωα cos
(απ

2 −ωτ
)−ω2

]2 +
[
γωα sin

(απ
2 −ωτ

)
+ δω

]2
. (20)

When
γωα cos(

απ
2

−ωτ) < ω2 < γωα cos(
απ
2

−ωτ)−2ω0, (21)

the resonance occurs at F(1)
VR and F(2)

VR which are two real roots of S1 = 0, i.e.,

F(1)
VR =

√
μ2

[
γωα cos

(απ
2 −ωτ

)−2ω0 −ω2
]

3β
< Fc, (22)

and

F(2)
VR =

√
2μ2

[
ω2 −ω0 − γωα cos

(απ
2 −ωτ

)]
3β

> Fc. (23)
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The peak values of Q at these two points are identical, i.e.,

Q(1)
max = Q(2)

max =
1∣∣∣δω + γωα sin(

απ
2

−ωτ)
∣∣∣ . (24)

When
ω2 ≥ γωα cos(

απ
2

−ωτ)−2ω0, (25)

The resonance occurs at F(2)
VR . The peak value of Q is also expressed in Eq. (24). For the special

case α = 1 and α = 2, the results in this subsection correspond to the resonance pattern in the
system with velocity and acceleration delayed feedback respectively.
(ii) The single-well potential case.
For this case, the slow motion occurs around the stable equilibrium point X∗ = 0. When

ω2 > ω0 − γωα cos(
απ
2

−ωτ), (26)

the resonance occurs at

FVR =

√√√√2μ2[ω2 −ω0 − γωα cos(
απ
2

−ωτ)]

3β
. (27)

The peak value of the response amplitude Q is also expressed by Eq. (24). Elsewhere, there is
no resonance, and the response amplitude decreases with the value of F. At F = 0, the response
amplitude Q achieves the maximal value

Qmax =
1√

[ω0 −ω2 + γωα cos(
απ
2

−ωτ)]
2
+[δω + γωα sin(

απ
2

−ωτ)]
2
. (28)

The results in Eqs. (26)–(28) holds true for all values of α ∈ [0,2]. In other words, for the single-well
potential case, the results are suitable for the system with displacement delayed feedback, velocity
delayed feedback, acceleration delayed feedback and generalized fractional-order differential delayed
feedback.

3 Numerical simulations

In this section, we give some numerical examples to verify the theoretical predictions shown in Sec.
2. For the numerical simulations, the response amplitude Q is computed by using the formula

Q =
√

Q2
sin +Q2

cos/f , (29)

where Qsin = 2
rT

´ rT
0 x(t)sin(ωt)dt and Qcos = 2

rT

´ rT
0 x(t)cos(ωt)dt. The period T = 2π/ω and r

is a positive integer which should be chosen big enough. To obtain the time series x(t), we use the
GL definition to discretize Eq. (3).
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Fig. 1 The double-resonance occurs at F(1)
VR and F (2)

VR for δ = 0.5, ω0 = −1, β = 1, γ = 0.1, τ = 1.6, f = 0.1,
ω = 1 and Ω = 10. The lines are the analytical results while the markers are the numerical results.

3.1 The double-well potential case

In Fig. 1, the parameters satisfy the condition shown in Eq. (14) for α = 0 and in Eq. (21) for
0 < α ≤ 2. It leads to a double-resonance at F(1)

VR and F (2)
VR . The peak values of Q are given in

Eq. (17) and Eq. (24) respectively for α = 0 and 0 < α ≤ 2. The variation of the fractional-order
α , i.e., the kind of the delayed feedback, cannot induce changes in the resonance pattern. The
value of the fractional-order α mainly influences the position of FVR and the value of Qmax. In this
figure, the analytical results are in good agreement with the numerically calculated ones, especially
when α > 0. The errors between the two kinds of results induced by the fractional-order α will be
explained later.

In Fig. 2, a single-resonance pattern is clearly shown. In this figure, a single-resonance occurs
at F(2)

VR and the response amplitude arrives at a minimal at Fc. Compared with the simulation
parameters in Fig. 1, we only change the parameter ω0 from −1 to −0.2. Hence, the linear stiffness
ω0 has an important effect on the resonance pattern. The change of ω0 can make the resonance
pattern to transform from a double-resonance to a single-resonance pattern. This is due to the
fact that the conditions in Eq. (18) and Eq. (25) are respectively satisfied for α = 0 and 0 < α ≤ 1
when ω0 =−0.2. The response amplitude Q reaches the minimal value at the critical point Fc. The
resonance pattern is also independent of the fractional-order α for chosen parameters in Fig. 2.
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Fig. 2 The single-resonance occurs at F (2)
VR for δ = 0.5, ω0 = −0.2, β = 1, γ = 0.1, τ = 1.6, f = 0.1, ω = 1

and Ω = 10. The lines are the analytical results while the markers are the numerical results.

3.2 The single-well potential case

In Fig. 3, a single-resonance pattern in the system with a single-well potential is shown. The
parameters in this figure satisfy the condition shown in Eq. (26). It results that a single-resonance
occurs at FVR which is given in Eq. (27). The fractional-order α mainly affects the peak value of Q in
this figure. The peak value Qmax decreases with the increase of α . In other words, the displacement
delayed feedback can improve the weak low-frequency signal better than the acceleration delayed
feedback.

In Fig. 4, a no-resonance pattern is shown. The parameters chosen in this figure do not satisfy
the condition shown in Eq. (26). It results that the response amplitude Q decreases with the increase
of the value of F. There is no resonance no matter we choose the displacement delayed feedback,
the velocity delayed feedback, the acceleration delayed feedback or the generalized fractional-order
differential delayed feedback. With the increase of F , the response amplitude Q decreases to a small
value.

The results in this section show that the theoretical predictions are in good agreement with the
numerical simulations, and the error between the two results are very small, proving the correctness
of our analysis. The small error is induced by several factors. The first factor is the vibrational
mechanism used in this paper. The method of separation of slow and fast motions is an approximate
approach. In order to obtain the solution in a simple way, the slow motion is considered as a constant
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Fig. 3 The single-resonance occurs at FVR for δ = 0.5, ω0 = 0.2, β = 1, γ = 0.1, τ = 1.6, f = 0.1, ω = 1 and
Ω = 10. The lines are the analytical results while the markers are the numerical results.

in the period of the fast motion and some nonlinear terms are ignored in the solving procedure.
Moreover, the system is sensitive to the external perturbations for the parametric values near
the transition from bistability to monostability. The error brought by these approximations has
been discussed in the previous references [15, 32, 38]. The second factor able to induce errors is
the potential function of the system. For the theoretical analysis, the potential of the system is
V (x) = 1

2(ω0 + γ)x2 + 1
4βx4 when α = 0 and V (x) = 1

2ω0x2 + 1
4βx4 when 0 < α ≤ 2, since we consider

the fractional-order derivative as a damping term when 0 < α < 2 while a state variable term when
α = 0. In fact, the fractional-order derivative is a term that behaves as both a damping and a
state variable when 0 < α < 1. Hence, the potential function should contain the fractional-order α
when 0 < α < 1. The potential function varies gradually with the fractional-order in the interval
α ∈ (0,1). The term α disappears in the potential function for α = 0 and 1 ≤ α ≤ 2. Hence, the
potential function considered as V (x) = 1

2ω0x2 + 1
4βx4 is inaccurate for α ∈ (0,1). The third factor

inducing errors comes from the numerically computed process. Different algorithms, computation
times, time steps, etc, can also bring errors. Even though many factors might contribute to errors,
ignoring them is not a problem. Our verification between the theoretical and numerical results
have shown it.
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Fig. 4 There is no resonance for δ = 0.5, ω0 = 1, β = 1, γ = 0.1, τ = 1.6, f = 0.1, ω = 1 and Ω = 10. The
lines are the analytical results while the markers are the numerical results.

4 Conclusions

In this paper, the vibrational resonance is investigated in a Duffing system with different kinds of
delayed feedback. In order to obtain a general solution, we considered the delayed feedback as a
generalized differential delayed feedback. The displacement delayed feedback, the velocity delayed
feedback and the acceleration delayed feedback are special cases of our generalized differential
delayed feedback. Moreover, except these special cases, the generalized differential delayed feedback
is also a control strategy in the field of engineering. At first, based on the vibrational mechanism,
we obtain the approximate general solution of the system for different cases of the fractional-
order by the method of separation of slow and fast motions. Then, the conditions for different
resonance patterns are given. For the double-well potential case, the resonance patterns contain
a double-resonance and two different kinds of single-resonance. For the single-well potential case,
the resonance patterns contain a single-resonance and a no-resonance pattern. The value of the
fractional-order mainly influences the location and the magnitude of the resonance peak. Finally,
our theoretical predictions have been verified by the numerical simulations. The results obtained
by the two methods are in good agreement, what proves the correctness of our analysis. Since the
systems with displacement delayed feedback, velocity delayed feedback and acceleration delayed
feedback are widely used in many fields, we believe that our results are of a general nature for



J.H. Yang et al. / Journal of Applied Nonlinear Dynamics 2(4)(2013) 397–408 407

vibrational resonance in delayed systems.
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