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We consider a nonlinear system perturbed by two harmonic forcings of different frequencies. The
slow forcing drives the system into an oscillatory regime while the fast perturbation enhances
the effect of the slow periodic drive. The vibrational resonance occurs when this enhancement
is optimal, usually when the fast perturbation has an amplitude much higher than the slow
periodic forcing. We show that this resonance can also happen when the amplitude of the fast
perturbation is far below the amplitude of the slow periodic forcing due to a peculiar condition
of the phase space. Moreover, this resonance presents an extreme sensitivity to small variations
of the fast perturbation. We explore here this phenomenon that we call ultrasensitive vibrational
resonance.
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1. Introduction

Vibrational resonance (VR) occurs when the
response of a nonlinear system with a low frequency
oscillatory signal is optimized by means of a
high frequency perturbation [Landa & McClintock,
2000]. The VR has been thoroughly studied ana-
lytically, numerically and experimentally in a vari-
ety of nonlinear systems [Chizhevsky et al., 2003;
Ullner et al., 2003; Deng et al., 2010; Shi et al.,
2010; Rajasekar et al., 2012]. Among these studies,
the analysis of the effect of delay on the VR has
been receiving increasing attention [Yang & Liu,
2010a, 2010b, 2010c, 2011; Jeevarathinam et al.,
2011; Daza et al., 2013].

In this context, we have explored the VR in the
vicinity of a Hopf bifurcation induced by a delay

feedback. Delay differential equations, though very
complicated from an analytical point of view, are
very easily simulated numerically and display a vari-
ety of outstanding phenomena. It is well known that
among other interesting effects on the VR, time lags
can induce multiresonance responses [Yang & Liu,
2010b; Jeevarathinam et al., 2011]. However, we did
not expect to find infinite resonances displaying a
fractal pattern, as it has happened. Moreover, this
resonance takes place for values of the amplitude of
the high frequency perturbation smaller than the
amplitude of the low frequency signal. This is a
unique feature that previous studies on VR have
been missing out.

According to this unusual pattern of the reso-
nance curve, we call the phenomenon ultrasensitive
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vibrational resonance (UVR). This resonance is
extremely sensitive to slight variations of the ampli-
tude of the high frequency perturbation. Actually,
the resonance curves present very sharp and narrow
peaks arranged in a fractal pattern in such a way
that it might be possible to find two peaks of res-
onance arbitrarily close. This is far different from
the usual continuous bell shaped curve observed
in the vibrational resonance where the amplitude
of the second forcing spans a large interval of values.

Investigating the origin of this extreme sensi-
tivity, we found that the key underlying property
which gives rise to the UVR is the appearance of
fractal structures in the phase space. We believe
that this kind of structures and the presence of
attractors of different amplitude are the basic ingre-
dients of the UVR. Small perturbations in a fractal
phase space can lead the system from a small attrac-
tor to an attractor of large amplitude, therefore the
resonance is induced. To check this hypothesis we
analyze a nonlinear system without delay but with
a highly fractalized phase space, and we show that
this system is also able to display the phenomenon
of UVR.

2. Vibrational Resonance

As a starting point, we reproduce the results of
[Jeevarathinam et al., 2011], where VR in a Duffing
oscillator with a linear delayed feedback has been
studied. The Duffing oscillator is a paradigmatic
model to search for VR as it was the model chosen in
the original article of Landa and McClintock [2000].
Thus, the model for our study can be formulated as
follows

ẍ + γẋ + αx + βx3 + cx(t − τ)

= A cos ωt + B cos Ωt, (1)

where all the coefficients γ > 0, α < 0, β > 0, c < 0,
τ > 0, A > 0, B > 0,Ω > 0, ω > 0, and Ω � ω are
real constants.

This model is the usual Duffing oscillator, with
two periodic forcings of different frequencies Ω � ω
and a time-delayed feedback cx(t − τ).

The aim of the VR is to optimize the response
of the system to the frequency ω when the high-
frequency perturbation is applied. To quantify this
response we need to compute the sine and cosine
components of the output signal,

Cs =
2

nT

∫ nT

0
x(t) sin ωt dt (2)

Cc =
2

nT

∫ nT

0
x(t) cos ωt dt. (3)

Here n is the number of complete oscillations of the
low frequency signal and T = 2π/ω is its period.
The numerical values of Cs and Cc are related to
the Fourier spectrum of the time series of the vari-
able x computed at the frequency ω. Then, the
relation between the output and the forcing signals
provides an idea of how the low frequency signal is
being amplified by the high frequency perturbation.
This is commonly defined by means of the response
amplitude Q:

Q =

√
C2

s + C2
c

A
. (4)

The standard procedure to search for the VR
consists of computing Q for different amplitudes
B of the high frequency perturbation [Landa &
McClintock, 2000]. If there is a value of B that
maximizes Q, then the VR occurs. This means that
there is a particular value of the high frequency peri-
odic perturbation that optimizes the response of the
system to the weak low frequency periodic signal. In
case of multiresonance the system presents several
maxima.

So the search of the VR requires different steps
of computation:

• First, we solve the delay differential Eq. (1) using
a (5, 6) pair of Runge–Kutta formulas [Thomp-
son & Shampine, 2006]. Delay differential equa-
tions require an infinite set of initial conditions
called history, which describes the state of the
system in a time interval equal to the delay. Here,
we choose constant histories set onto a point of
equilibrium. This means that for every t ∈ [−τ, 0],
where τ is the delay, we have

ẋ = 0, (5)

x = ±
√

α − γ

c
. (6)

This is completely equivalent to solve the delay
differential equations in the absence of external
signals with any initial histories, and then apply
the two periodic signals after the transient has
vanished. Intuitively, a system which remains at
equilibrium in time has a clear physical meaning,
while other histories are more difficult to inter-
pret. According to this, setting the history at one
of the equilibrium points seems the most reason-
able choice.

1350129-2



July 30, 2013 14:14 WSPC/S0218-1274 1350129

Strong Sensitivity of the Vibrational Resonance Induced by Fractal Structures

• Once we have the solution of the delay differ-
ential equation, we make the Fourier Transform
of the time series and calculate the amplitude
response Q. The whole process is repeated for
a range of different values of the high frequency
perturbation intensity B.

• Finally we plot Q versus B. The maxima of this
curve, if any, correspond to the VR, that is an
optimal match between the low frequency and
high frequency signals.

The Duffing oscillator with time-delayed feed-
back, Eq. (1), can present two resonances corre-
sponding to the two maxima of the Q versus B
curve [Fig. 1(a)], for certain parameters [Jeevarathi-
nam et al., 2011]. It is remarkable that in this case,
the range of values of the amplitude of the high fre-
quency perturbation B is several orders of magni-
tude larger than the amplitude of the low frequency
signal A. Indeed, the analysis of the theoretical
approach of Q includes the assumption A � 1,
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Fig. 1. (a) Usual VR curve in a time-delayed system, as it appears in [Jeevarathinam et al., 2011]. The amplitude response
of the system Q varies smoothly when the amplitude of the high frequency perturbation B is varied and the two maxima
correspond to the vibrational resonance. Equation (1) has been solved with the following parameters ẍ + 0.5ẋ − x + 0.1x3 −
0.3x(t− 1) = 0.1 cos t + B cos 10t and histories x = ẋ = 0 for t ∈ [−τ, 0]. Notice the wide range of values of the high frequency
amplitude B compared to the value of the low frequency amplitude. (b) The time series in red corresponds to B = 0 and the
time series in blue corresponds to the first maximum of panel (a) marked with a dashed line, which is the usual vibrational
resonance. (c) We can see the same time series represented in phase space (x, ẋ). The apparent thickness of the trajectory is
a consequence of the high period regime (actually several lines may appear when we zoom in). The trajectory for the case
B = 0 is plotted in the inset because it is very small compared to the resonant trajectory. This does not mean that the system
presents a great resonance, in the sense of great amplification with a small external action, but this is a consequence of such
a large difference between the amplitudes of both periodic signals.
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while the value of B that produces the resonance
is proportional to Ω, i.e. B � A.

In these conditions, it is still fair to talk about
resonance since the high frequency perturbation
enhances the response amplitude Q, but proba-
bly one would not expect the cause of the res-
onance to be much larger than the signal itself.
Furthermore, the time series at the resonance
resembles the high frequency perturbation acting
as an enhancer, and the low frequency signal is
completely eclipsed [Figs. 1(b) and 1(c)]. There-
fore, it seems desirable to amplify the low frequency
signal by means of smaller amplitudes of the sec-
ondary high frequency perturbation. As we found
out, this is in fact happening for Eq. (1) when the
system is on the edge of stability giving rise to
the UVR.

3. Ultrasensitive Vibrational
Resonance

The UVR consists of a series of sharp and narrow
peaks of resonance that appear for very small values
of the amplitude of high frequency signal, as shown
in Fig. 2(a). Moreover, and unlike the common VR
presented in the previous section, the UVR occurs

for values of high frequency amplitude B which are
smaller than the low frequency amplitude A. Fur-
thermore, the final time series are not completely
disturbed by the high frequency perturbation as in
the VR. However, in the UVR, the resonant time
series resemble the low frequency signal but with
a much larger amplitude as can be observed in
Figs. 2(b) and 2(c). According to this, the UVR
fits better the idea of resonance as a big oscilla-
tion amplitude driven by a sufficiently small exter-
nal action.

Another specific feature of this phenomenon is
the fractal pattern displayed by the peaks of reso-
nance. This means that when the resolution in B is
increased, the amplitude response Q presents more
and more maxima. Every peak is actually composed
of many peaks and valleys that form a fractal curve,
making the resonance extremely sensitive to small
changes in the parameters. The height of the peaks
of Q is almost constant as it is intimately related
to the size of the attractors, which do not vary
for such small perturbations. A computation of the
box-counting dimension is carried out in order to
quantify the fractalization of the resonance curve,
leading to a noninteger dimension of d = 0.94 [see
Fig. 2(d)].

(a) (b)

Fig. 2. (a) Ultrasensitive vibrational resonance curve for equation ẍ + 0.1ẋ − 0.5x + 0.5x3 − 0.08x(t− 6.3) = 0.174 cos 0.7t +
B cos 3t. The amplitude response of system Q varies in a sharp manner when the amplitude of the high frequency perturbation
B is slightly modified. The inset is a zoom of the first apparent peak, revealing that it is composed of more peaks in a fractal-
like structure. The height of Q remains almost constant, as it is very closely related to the amplitude of the attractor, which
does not vary appreciably for this short range of B. (b) Time series for B = 0.0012, marked with a star in panel (a). Here the
resonant series resembles the nonresonant series, but with a larger amplitude. (c) We can see the same time series represented
in phase space (x, ẋ). Notice that we get a strong amplification of the signal, i.e. a high resonance for a very small amplitude
of the high frequency perturbation. (d) Computation of the box-counting dimension for the curve of resonance shown in panel
(a). The slope of the log–log plot indicates a noninteger box-counting dimension of d = 0.93965±0.00016, which confirms that
the curve is fractal.
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(c) (d)

Fig. 2. (Continued)

The Duffing oscillator with time-delayed feed-
back of Eq. (1) is able to present the usual VR
as shown earlier, but can also display the UVR if
the appropriate parameters are chosen. Research
in other models of similar characteristics show
that when the delay takes values just before the
Hopf bifurcation, very small periodic perturba-
tions induce the UVR. Moreover, this phenomenon
occurs when the low frequency signal has a fre-
quency similar to the natural oscillations of the
system, as it happens in the resonance of linear
systems. Delving deeper into the causes, we found
that the key element for the appearance of UVR
is the fractalization of the phase space that occurs
for this set of parameters.

The phenomenon of UVR is better understood
by examining the phase space. One procedure to
examine the phase space in a delayed system con-
sists in choosing the history as a function with
two parameters, and then compute the 2D basin
of attraction varying these parameters. Among all
the possible functions that can play the role of his-
tory for the Duffing oscillator with delay, here we
choose the histories as constants values of x and ẋ
for t ∈ [−τ, 0]. For every pair of constant histories
(x, ẋ) we integrate the system and plot the basin of
attraction, as shown in Fig. 3. This subspace of the
infinite phase space of the delayed system, is suffi-
cient to show that fractal structures appear for this
particular choice of parameters. Fractal structures
associated to transient chaos are an outstanding fea-
ture very common in time delay systems [Aguirre-
gabiria & Etxebarria, 1987; Losson et al., 1993; Yin
et al., 1995; Taylor & Campbell, 2007]. In this case,

we can see in Fig. 3 that the equilibrium point cho-
sen as constant history lies very close to the frac-
tal boundary where three different basins coexist.
Although the equilibrium is still stable for these
parameters, very small amplitudes of the high fre-
quency perturbation can lead the system to a differ-
ent basin. In particular, the system can be driven to
an attractor of large amplitude oscillations, that is
the ultimate cause of the ultrasensitive vibrational
resonance.

Fig. 3. Basin of attraction for the Duffing oscillator
with time-delayed feedback ẍ + 0.1ẋ − 0.5x + 0.5x3 −
0.08x(t − 6.3) = 0.174 cos 0.7t, which corresponds to Eq. (1)
with B = 0, that is, before the high frequency perturbation is
introduced. Histories have been chosen as constants. We can
see a fractalization of the projection of the phase space (the
actual phase space is infinite-dimensional due to the delay).
Perturbations of small amplitude, such as those produced by
the high frequency forcing, may drive the system to different
attractors.
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To prove the validity of this interpretation, i.e.
actually the effect of the high frequency perturba-
tion is to drive the trajectory to a larger amplitude
attractor, we chose another set of parameters for
the same model without delay, so we can extend the
results to other kind of systems. Here we consider
the Duffing oscillator with the following parameters:

ẍ + 0.15ẋ − x + x3 = 0.245 cos t. (7)

In this system there is no delay at all, but the phase
space is highly fractalized [Aguirre & Sanjuán,

2002], as shown in the basin of attraction of
Fig. 4(a). In this case the system presents three peri-
odic attractors, two of them of period 1 with small
amplitudes and one of period 3 of larger amplitude.
Now we introduce the second harmonic perturba-
tion and we have the equation

ẍ + 0.15ẋ − x + x3 = 0.245 cos t + B cos 10t. (8)

If we choose the initial conditions to be in a frac-
tal boundary and then compute the response ampli-
tude Q [see Fig. 4(b)], the UVR takes place with the
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Fig. 4. The Duffing oscillator without delay is able to show UVR for this particular choice of parameters: ẍ+0.15ẋ−x+x3 =
0.245 cos t. (a) This figure shows the basin of attraction where we can observe that the phase space is highly fractalized (actually
Wada basins [Aguirre & Sanjuán, 2002]). (b) Plot of the ultrasensitive vibrational resonance when we introduce the second
harmonic perturbation and then the equation becomes ẍ + 0.15ẋ − x + x3 = 0.245 cos t + B cos 10t. The peaks of resonance
follow a fractal-like structure due to the fractalization of the phase space. As in the case with delay of Fig. 2, the height of
Q remains almost constant. This is related with the amplitude of the largest attractor of the system. (c) Computation of
the box-counting dimension of the curve Q shown in panel (b). The slope of the log–log plot is 0.93737 ± 0.00024, thus the
resonance curve has a noninteger dimension.
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same characteristics described before. Once again,
the high frequency perturbation is able to drive the
system to an attractor of large amplitude produc-
ing the resonance. This confirms our conviction that
the appearance of fractal structures in phase space
is the ultimate cause of the UVR. Furthermore, it
explains why in both cases, with and without delay,
the amplitude response Q takes almost constant val-
ues, since the attractor remains unchanged for these
small perturbations.

4. Concluding Remarks

A new phenomenon that we call ultrasensitive
vibrational resonance is presented in this paper.
UVR is a particular case of vibrational resonance
with some specific characteristics that make it spe-
cially interesting.

In its origin, vibrational resonance was consid-
ered as a phenomenon similar to stochastic reso-
nance [Gammaitoni et al., 1998] but with a high
frequency perturbation used to amplify the low fre-
quency signal instead of the noise. Probably one
would not expect the noise to be larger than the
signal, and the same reasoning would be applicable
to high frequency perturbation in VR. However, in
the previous literature [Yang & Liu, 2010a, 2010b,
2010c, 2011; Jeevarathinam et al., 2011; Daza et al.,
2013] the high frequency perturbation typically has
a larger amplitude than the low frequency signal.
This is not the case in the ultrasensitive vibrational
resonance, which can be achieved with very small
amplitudes of the high frequency perturbation, even
smaller than the amplitude of the low frequency
signal.

Besides the small amplitude of the high fre-
quency needed to achieve the resonance, another
striking feature of this phenomenon is the fractal
pattern of sharp and narrow peaks of resonance. As
we zoom on the response amplitude Q, more and
more peaks are found as in a fractal curve. We also
have computed the box-counting dimension show-
ing that it is not an integer, which confirms its frac-
tal nature.

As an attempt to understand the origin of this
high sensitivity of the resonance, we have studied
the phase space of the system. We have observed
that the Duffing oscillator with a time-delayed feed-
back presents a phase space with fractal structures
that give rise to the phenomenon of UVR. When
the initial condition lies on a fractal boundary or
very close to it, the high frequency perturbation can

drive the trajectory to different attractors. If one of
these attractors is of similar frequency to the low
frequency signal but with a larger amplitude, then
the UVR is possible. This explains the high sensi-
tivity to small variations and also the fractal pat-
tern of the peaks of resonance, which is due to the
fractal nature of the phase space. Furthermore, to
check this hypothesis, we have studied the same sys-
tem without delay for a choice of parameters where
the basin of attraction is highly fractalized. We have
reproduced the same results for the response ampli-
tude Q, proving that the fractal nature of the phase
space is at the heart of this phenomenon. This opens
the range of systems susceptible to presenting this
behavior.
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