
PHYSICAL REVIEW E 87, 052903 (2013)

Bursting frequency versus phase synchronization in time-delayed neuron networks
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We investigate the dependence of the average bursting frequency on time delay for neuron networks with
randomly distributed time-delayed chemical synapses. The result is compared with the corresponding curve for
the phase synchronization and it turns out that, in some intervals, these have a very similar shape and appear
as almost mirror images of each other. We have analyzed both the map-based chaotic Rulkov model and the
continuous Hindmarsh-Rose model, yielding the same conclusions. In order to gain further insight, we also
analyzed time-delayed Kuramoto models displaying an overall behavior similar to that observed on the neuron
network models. For the Kuramoto models, we were able to derive analytical formulas providing an implicit
functional relationship between the mean frequency and the phase synchronization. These formulas suggest a
strong dependence between those two measures, which could explain the similarities in shape between the curves.
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I. INTRODUCTION

Time-delayed interactions have been a useful tool for
describing various phenomena in numerous and diverse fields,
such as physics, economics, biology, and sociology. Unlike
deterministic systems, where the system’s future and history
can be traced solely by the knowledge of the present state, in
time-delayed systems the future is also affected by the state of
the system some time interval before. This time interval, here
denoted by τ , could be the same for all interactions but could
also vary depending on, for example, the physical distance
between the interacting entities. To date, a considerable
amount of research has addressed the question of how time
delay affects the dynamics of neuron networks [1–8]. Network
models aimed to mimic real biological neuron networks,
such as the brain, usually contain a combination of electrical
and chemical synapses. Time delay has been introduced and
analyzed separately in both of these interactions, and an
ubiquitous observation is that the network synchronization
varies periodically with the time delay [2–4,7]. The answer to
whether it enhances or suppresses synchronization depends,
however, on other parameters. Synchronization may be an
important key for understanding certain brain diseases [9] and
there has been a lot of work done on various synchronization
phenomena in neuron networks also with no time delay
involved. For a review on this topic see Ref. [10].

There are several different regimes of neuron activity known
by neuroscientists and modelers. The one that we will be
interested in here is the so-called bursting regime, which is
characterized by a brief train of short pulses alternating with a
silent phase. These pulse trains are usually called bursts. To our
knowledge, the mean bursting frequency, which is simply the
total number of bursts per unit time in a given time interval,
has not been analyzed to a large extent within the context
of time-delayed neuron networks. Analyzing the variability
in bursting frequency might be of high significance for our
understanding of real biological neuron networks, since it is
suspected that much of the information processed in the brain
is encoded in the frequency [11].

Since Hodgkin and Huxley presented the neuron model
bearing their names in 1952, there have appeared numerous
other simpler models. The primary aim of these simpler models

is to make the calculation less expensive computationally while
at the same time retaining most of the characteristic regimes of
neuron behavior. The importance of simplified neuron models
should not be underestimated, since even with the computers
of today, the costs for simulating large neuron networks can
be staggering. Today the chaotic Rulkov model, which is a
discrete map-based neuron model, could be considered as the
computationally most expedient. Both continuous and discrete
models of neuronal dynamics have been thoroughly reviewed
in Refs. [12,13].

In this paper, the dependence of the bursting frequency on
time delay will be given a thorough treatment in conjunction
with a corresponding analysis of the phase synchronization.
This combined investigation was inspired by the fact that
during the course of the investigation, for certain classes of
networks we found a striking similarity in shape between
those two curves. As we will discuss further in Sec. IV,
the relationship between those curves could be given a more
rigorous analytical underpinning through the observation of
similar behavior in time-delayed Kuramoto models. Initially,
our work was focused on the chaotic Rulkov model. In order
to strengthen our main conclusions, subsequently we also
investigated the continuous Hindmarsh-Rose model. The latter
not only served the purpose of generalizing the results but also
to somewhat justify our definition of burst of a Rulkov neuron,
which will be presented later.

The organization of the paper is as follows. The bulk of the
material is contained in Sec. II, where we present the network
configuration and the definitions of the measures together with
an investigation of the chaotic Rulkov model. In Sec. III, the
same analysis is performed on the Hindmarsh-Rose model.
Finally, in Secs. IV and V, we discuss and summarize the
results.

II. THE CHAOTIC RULKOV MODEL

The Rulkov map is a simple and elegant model capable
of reproducing most of the interesting dynamical regimes of
experimentally observed neuron behavior, such as spiking and
bursting [13,14]. The discrete time dynamics speeds up the
numerical integration enormously, thus making the Rulkov
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FIG. 1. (Color online) Typical chaotic bursting regime of the
Rulkov model described by Eqs. (1). In the main figure we see
how the x variable alternates between a quiet state and fast chaotic
oscillations. In the inset, there is a zoom in on one of the bursts
revealing the chaotic nature of the fast dynamics. Parameter values
are α = 4.15, μ = 1 × 10−4, x0 = −1.65, and I (n) = 0.

model an ideal candidate for computer simulations when the
physiological details are assumed not to be crucial for the end
result. The two-dimensional map proposed by Rulkov [14]
reads:

x(n + 1) = α

1 + x2(n)
+ y(n) + I (n)

(1)
y(n + 1) = y(n) − μ[x(n) − x0].

The variable x exhibits the fast dynamics of the system and
represents usually the membrane voltage of the neuron. The
variable y, on the other hand, operates on a slower time scale
and represents the variations of the ionic recovery currents. The
sum of the external influences on the neuron are contained in
the term I . Depending on the control parameters α and μ, these
equations may exhibit a variety of behaviors. The bursting
regime occurs only in the parameter range 4 < α < 4.5 [14],
whereas for α > 4.5 chaotic spiking occurs. The bursting
regime consists of an oscillation in the x variable between
a stable equilibrium and a fast chaotic orbit. A typical orbit
of the variable x in the bursting regime for a noninteracting
neuron is shown in Fig. 1.

The neuron map just introduced provides a set of equations
that describe the dynamics of a single neuron subject to
some external current. In order to build a network, we
must also prescribe some kind of interactions between the
neurons. In real biological neuron networks, these interactions
are carried out by synapses, which are usually categorized
into two classes: electrical and chemical. Here we consider
an interaction model where the coupling through electrical
synapses is instantaneous but where the chemical coupling
comes with a time delay τ , which is the same for all neurons.
Let xi(t) denote the time-dependent voltage of the ith neuron.
The net current flowing to the ith neuron through electrical
synapses is given by:

he
i (t) =

N∑

j=1

γ e
ij [xj (t) − xi(t)], (2)

FIG. 2. Sketch of the neuron network, which in our simulations
consist of a total of 50 neurons. Solid arrows mark the bidirectional
electrical couplings, which are configured according to the Watts-
Strogatz algorithm. The dashed arrows mark the unidirectional
chemical couplings, which are distributed randomly.

where the coefficients γ e
nm take the value 1 or 0, depending on

whether there is a coupling or not. We require that the electrical
coupling is bidirectional, that is γ e

nm = γ e
mn. For the chemical

interaction we adopt the following formula [6,7,15,16]:

hc
i (t) =

N∑

j=1

γ c
ij [ν − xi(t)]

1

1 + exp{−k[xj (t − τ ) − θ ]} , (3)

where ν represents the constant synaptic reversal potential. If
ν > xi , we have what is called an excitatory coupling, and
if ν < xi , it is inhibitory. This in an example of a so-called
fast threshold modulation model, in which it is assumed that
the synaptic dynamics works on a time scale much faster than
the neuron interactions. Unlike the electrical synapses, the
chemical synapses are allowed to be unidirectional. The results
presented in this paper are taken from simulations performed
on networks consisting of 50 neurons, where a total of 100
electrical couplings are configured according to the Watts-
Strogatz algorithm and where a total of 100 chemical couplings
are chosen randomly over the set of ordered pairs (i,j ), as
shown in Fig. 2.

This is referred to here as the random net. We have
also considered other more regular configurations, where
the opposite extreme consisted of a ring of neurons with
bidirectional electrical and chemical synapses between each
pair of neighbors. In the latter case, the outcome was different.
Based on the simulations, it appears as if the topology of the
network determines the outcome mainly through the mean
shortest path of the coupling graph composed of the union of
the edge matrices γ e

nm and γ c
nm. This usually decreases with

an increasing degree of randomness. Intermediate cases were
also studied where the regular ring was taken as the starting
point and subsequently a certain percentage of the couplings
were rewired randomly. Through this procedure, one could see
a gradual shift toward the results obtained for the random net.
The iteration equations for the chaotic Rulkov model including
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FIG. 3. (Color online) Typical behavior of a Rulkov neuron
interacting in a time-delayed network given by Eqs. (4). Parameter
values are α = 4.15, μ = 0.003, x0 = −1.5, gc = 0.1, and ge = 0.1.

the interaction terms are thus given by

xi(n + 1) = α

1 + x2
i (n)

+ yi(n) + geh
e
i + gch

c
i

(4)
yi(n + 1) = yi(n) − μ[xi(n) − x0].

In our simulations, we fixed the parameter values to α = 4.15,
μ = 0.003, x0 = −1.5, gc = 0.1, and ge = 0.1. In the sigmoid
function for the delayed chemical coupling, we put k = 25
and θ = −1.4. The typical behavior of a single Rulkov neuron
interacting in a network given by Eqs. (4) is shown in Fig. 3.
The two measures discussed in this paper, the mean bursting
frequency and the phase synchronization, both depend on the
notion of burst. Assuming that the bursts are well defined, the
bursting frequency of each individual neuron is defined as

ωj = Bj/T , (5)

where Bj is the number of bursts of the j th neuron in the given
time interval T . Thus, the mean bursting frequency � for the
entire network is given by

� = 1

N

∑

j

ωj . (6)

In order to define the phase synchronization, we begin by
introducing the phase for each neuron:

ϕj (t) = 2πk + 2π
t − t

j

k

t
j

k+1 − t
j

k

. (7)

Here, t
j

k denotes the time of the beginning of the kth burst for
the neuron with index j . The order parameter of the total phase
synchronization is given by

r = 1

NT

T∑

t=0

∣∣∣∣∣∣

N∑

j=1

eiϕj (t)

∣∣∣∣∣∣
. (8)

As can be seen from Fig. 3, for certain intervals there might
be an ambiguity whether it should be considered as a single
burst or composed of two or more bursts. We have resolved
this by simply defining a burst as an interval of pulses that
follows immediately after an interval, longer than or equal to a
certain fixed length Tb, during which the neuron voltage stayed
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FIG. 4. (Color online) Illustration of the definition of burst of a
Rulkov neuron through the characteristic interval Tb. If Tb < T2, the
interval in the figure counts as four bursts; if T2 < Tb < T1, it counts
as three bursts; and if T1 < Tb < T3, it counts as two bursts.

below 0. For an illustration of this definition see Fig. 4. The
length of this interval must be tuned for each set of parameters
for it to produce the smoothest curves. In our simulations, we
have taken Tb = 60. With this definition, the measures � and
r are uniquely defined for the Rulkov model. An alternative
way to define the bursts could be instead to identify the local
maxima of the slow variable y, which is done, for example,
in Refs. [17,18]. This, however, only shifts the problem of
definition, since there are local maxima of y that do not
correspond to clear pulses in the fast variable or appear to be
intermediate between two “major” maxima. Our conclusion is
that the definition based on the fast variable x, as described
previously, is both sound and very easy to implement in a
computer algorithm. The results of the simulations performed
on a random net of 50 Rulkov neurons with inhibitory
(ν = −2.5) and excitatory (ν = 1.5) chemical couplings are
shown in Fig. 5. As can be seen, it looks as if the curves
for � and r are almost mirror images of each other after the
adjustment for a certain phase shift.

III. INVESTIGATION ON A CONTINUOUS SYSTEM:
THE HINDMARSH-ROSE MODEL

We will now demonstrate qualitatively similar results on a
continuous neuron model, namely the Hindmarsh-Rose model.
As mentioned in the introduction, the reason for doing this is
to verify that the general behavior observed in Sec. II is not
specific to the Rulkov model but holds more generally. The
computations on the Hindmarsh-Rose model are much more
expensive than on the Rulkov model, but one of the advantages
with the former is that there is no problem identifying the
beginning of each burst. The governing differential equations
for the Hindmarsh-Rose model, including the same interaction
terms and network configuration as before, are given by

ẋi = yi + ax2
i − x3

i − zi + I + geh
e
i + gch

c
i

ẏi = 1 − dx2
i − yi (9)

żi = μ[b(xi − x0) − zi].

The Hindmarsh-Rose model is, just like the Rulkov model,
capable of reproducing most of the interesting regimes of the
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(a)Simulation on a random net of Rulkov neurons with inhibitory
(ν = −2.5) chemical synapses

(b)Simulation on a random net of Rulkov neurons with excitatory
(ν = 1.5) chemical synapses

FIG. 5. (Color online) (a) Simulation on a random net of Rulkov
neurons with inhibitory (ν = −2.5) chemical synapses. (b) Simula-
tion on a random net of Rulkov neurons with excitatory (ν = 1.5)
chemical synapses. Average bursting frequency � (normalized to the
zero time delay frequency) and phase synchronization r as a function
of time delay obtained from computer simulations on a random net
of 50 Rulkov neurons given by Eqs. (4). The parameter values were
α = 4.15, μ = 0.003, x0 = −1.5, gc = 0.1, and ge = 0.1. The data
presented is an average taken over 10 series of simulations with
randomly chosen initial conditions.

observed neuron activity. Here we have three variables where
x, as usual, represents the neuron voltage. The variable y

is sometimes called the spiking variable and z the bursting
variable. The latter two are also referred to as “gating”
variables, since in the biological interpretation they govern the
activation or inactivation of currents. Here it is z that operates
on a slow time scale, whereas the pair (x,y) is viewed as the fast
subsystem. Following Ref. [7], we have chosen as parameter
values μ = 0.03, b = 4, d = 5, x0 = −1.6, a = 2.6, I = 4,
gc = 0.1, and ge = 0.1. In the sigmoid function for the delayed
chemical coupling, we put k = 100 and θ = −0.25. The
typical behavior of a single Hindmarsh-Rose neuron is shown
in Fig. 6. Obviously, in this case there is no problem identifying
the beginning of each single burst, hence, the measures �

and r are well defined and need no further clarification. The
simulation results on a random net with inhibitory (ν = −1.5)
and excitatory (ν = 1.5) chemical coupling, respectively, are

FIG. 6. (Color online) Typical behavior of the fast variable of a
Hindmarsh-Rose neuron in a time-delayed network given by Eqs. (9).
As can be seen, the beginning of each burst is very easy to identify.
Parameter values are μ = 0.03, b = 4, d = 5, x0 = −1.6, a = 2.6,
I = 4, gc = 0.1, ge = 0.1, k = 100, and θ = −0.25.

shown in Fig. 7. As can be seen, a similar pattern as was
previously observed emerges. Although the shape of the curves
are slightly different, the trends and relative position of the
maxima and minima of � and r , respectively, are precisely the
same as in the Rulkov model.

IV. ANALYSIS USING THE KURAMOTO MODEL

There are not many useful analytical tools for analyzing
time-delayed dynamical systems. In order to gain further
understanding, however, we will investigate two reduced
models that could be viewed as variants of the well-known
Kuramoto model. As will be seen, the curves for the average
frequency and phase synchronization for these Kuramoto
models resemble those obtained in previous sections on neuron
networks with excitatory and inhibitory chemical synapses,
respectively. A rigorous analysis connecting the Kuramoto
models with the neuron networks is not in our possession
and lies outside the scope of this paper. Nevertheless, the
advantage with the time-delayed Kuramoto model is that, given
some assumptions, an implicit functional relationship between
the average frequency and the phase synchronization can be
derived. The extent to which the insights gained from these
formulas extrapolate to the time-delayed neuron networks is
a matter of conjecture. Let each neuron be represented by a
phase variable φi , which interacts with the other according to
the following formula

φ̇i(t) = ω + ε

N

N∑

j=1

sin[φj (t − τ ) − φi(t)]. (10)

Here, ω is the natural frequency of the oscillators, ε is the
coupling strength between the oscillators, τ is the time delay,
and N is the number of oscillators. An analysis of this system
was carried out in Ref. [22]. The average frequency is defined
as

�(t) ≡ 〈φ̇(t)〉 ≡ 1

N

N∑

i=1

φ̇i(t). (11)
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(a)Simulation on a random net of Hindmarsh-Rose neurons with
inhibitory (ν = −1.5) chemical synapses

(b)Simulation on a random net of Hindmarsh-Rose neurons with
excitatory (ν = 1.5) chemical synapses

FIG. 7. (Color online) (a) Simulation on a random net of
Hindmarsh-Rose neurons with inhibitory (ν = −1.5) chemical
synapses. (b) Simulation on a random net of Hindmarsh-Rose neurons
with excitatory (ν = 1.5) chemical synapses. Average bursting
frequency � (normalized to the zero time delay frequency) and
phase synchronization r as a function of time delay obtained from
computer simulations on a random net of 50 Hindmarsh-Rose neurons
given by Eqs. (9). The parameter values were μ = 0.03, b = 4,
d = 5, x0 = −1.6, a = 2.6, I = 4, gc = 0.1, and ge = 0.1. The data
presented is an average taken over 10 series of simulations with
randomly chosen initial conditions.

An analysis of the average oscillation frequency in similar
systems was carried out by Zanette and Ko et al. [19–21]. By
assuming that the phase variables reach a uniform synchro-
nization frequency � and making the Ansatz

φi(t) = �t + ψi, (12)

with ψi independent of time, for certain regular network
geometries they obtained closed analytical expressions for the
synchronization frequency as a function of time delay. The
shapes of some of these curves have a noteworthy similarity to
those obtained in our simulations on Rulkov and Hindmarsh-
Rose neurons. One of the weaknesses with the comparison,
however, is that in those papers the phases ψi are given fixed
values with the consequence that the phase synchronization is
assumed to be independent of the time delay. Evidently this
is not the case in the systems we have analyzed in previous
sections. Here we will not derive formulas for the frequency as

a function of time delay but instead derive a formula relating
the average frequency to the phase synchronization which,
given the Ansatz Eq. (12), takes the form

r = 1

N

∣∣∣∣∣∣

N∑

j=1

eiψj

∣∣∣∣∣∣
. (13)

With the same assumption, Eq. (10) can now be expressed in
the following way:

� = ω − ε

2iN

N∑

j=1

[ei(�τ+ψi−ψj ) − e−i(�τ+ψi−ψj )]. (14)

If we do a summation over both indices i and j , we obtain

� = ω − εr2 sin(�τ ), (15)

which provides a relationship between the average frequency
� and the phase synchronization r . Although Eq. (15) is
only an implicit formula, there are some conclusions to be
drawn. For weak coupling and moderate time delay (ε � 1
and �τ � 1), the magnitude of the deviation in frequency
from the natural frequency ω scales approximately with the
synchronization squared. Moreover, the sign of the deviation
varies periodically with the product of the time delay and the
frequency. Numerical simulations that we performed reveal
that the approximate validity of Eq. (15) holds also for
geometries where, instead of having each neuron interacting
with every other neuron, a smaller number of connections
are chosen randomly. In Fig. 8 are the results of computer
simulations performed on the system

φ̇i(t) = ω + εij

N∑

j=1

sin[φj (t − τ ) − φi(t)], (16)

where N = 50, ω = 1, and the parameter εij takes the nonzero
value 0.1 for a total of 200 pairs of indices (i,j ), half of which
are chosen according to the Watts-Strogatz algorithm and half
distributed randomly. On average, there are thus four couplings
per neuron; hence, the “effective” coupling strength ε could

FIG. 8. (Color online) Mean frequency � and phase synchro-
nization r obtained from computer simulations on the time-delayed
Kuramoto model given by Eqs. (16). The stars mark the value of the
right-hand side of Eq. (15) (assuming ε = 0.4), taking the simulated
values of � and r as parameters.
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FIG. 9. (Color online) Mean frequency � and phase synchro-
nization r obtained from computer simulations on the time-delayed
Kuramoto model given by Eqs. (17). The stars mark the value of the
right-hand side of Eq. (18) (assuming ε = 0.4), taking the simulated
values of � and r as parameters.

be estimated as ε = 0.1 × 4 = 0.4. The curves obtained for
the mean frequency and time-averaged phase synchronization
display a significant (although imperfect) resemblance to those
obtained previously on random nets with excitatory chemical
synapses. We see that the synchronization gradually goes
from an almost completely synchronized state to an almost
incoherent state, while the frequency follows the characteristic
curve seen previously. However, a notable difference shows up
in the Rulkov model, where the synchronization recovers more
quickly after the dip. In order to check how well the numerical
results on the system Eqs. (16) fit the functional relationship
Eq. (15), the simulated values of � and r were put into the
right-hand side of Eq. (15) (assuming ε = 0.4) together with
the corresponding time delay τ . The values obtained this way
were then plotted as stars in the same graph as the curve for
� [which would correspond to the left-hand side of Eq. (15)].
As can be seen, the simulated values fit Eq. (15) rather well,
at least in the first part.

If we now consider instead the system

φ̇i(t) = ω + εij

N∑

j=1

cos[φj (t − τ ) − φi(t)], (17)

with the same parameter values as before but with the sine
function replaced by a cosine. In this case, the relationship
between the frequency and the synchronization corresponding
to Eq. (15) reads

� = ω + εr2 cos(�τ ). (18)

Simulations on this system, which are shown in Fig. 9, re-
veal a behavior that resembles that obtained for the Rulkov and
Hindmarsh-Rose networks with inhibitory chemical synapses.
The choice of another trigonometric function phase-shifted in
relation to the sine is not completely arbitrary if one considers
the fact that, for the neuron networks, the curves in the case of
excitatory couplings are almost identical to the second half of
the curves for the networks with inhibitory synapses. In Fig. 9,
the stars mark the values of the right-hand side of Eq. (18)
(assuming ε = 0.4), taking the simulated values of � and r as
parameters. We see that the simulated values fit Eq. (18) well.

V. CONCLUSIONS

In this paper, we have studied, through numerical simula-
tions, the mean bursting frequency and phase synchronization
as a function of time delay on Rulkov and Hindmarsh-Rose
neuron networks with time-delayed chemical synapses. We
have found qualitatively similar results on both of these
models. As an attempt to gain further insight, we have also
studied time-delayed Kuramoto models that produced curves
similar to those obtained on the Rulkov and Hindmarsh-Rose
networks. For the Kuramoto models, we were able to derive
analytical expressions for the relationship between the mean
bursting frequency and the phase synchronization that agreed
well with numerical simulation. These formulas state that, for
weak coupling and moderate time delay (ε � 1 and �τ � 1),
the magnitude by which the average frequency is perturbed
away from its value in the absence of time delay scales
approximately with the square of the phase synchronization.
This could explain the similarity in shape between the phase
synchronization and the average frequency observed in certain
intervals.
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