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CHAPTER 31

FURTHER PROGRESS IN PARTIAL CONTROL
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The Partial Control technique is a new paradigm in the control of chaotic systems in the presence
of noise. This new approach of control allows one to keep trajectories of a dynamical system
inside a region from which nearly all the trajectories diverge. Its main advantage is that this goal
is achieved even if the corrections applied to the trajectories (control) are smaller than the action
of environmental disturbances (noise) on the dynamics. This is a rather counterintuitive result,
that is achieved thanks to what we call safe sets. Here, we study the use of the Partial Control
technique in one of the most famous chaotic maps, the Hžnon map, and the deep relationship
between the safe sets and the sets of points with different escape times, the escape time sets.
We also show how it is possible to find certain extended safe sets that can be used instead of
the safe sets in the Partial Control technique. We also discuss briefly the development of a new
algorithm to find these new safe sets in any dynamical system with a chaotic behaviour.
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1. Introduction

Some dynamical systems do not present a chaotic
attractor but, instead, they present a nonattractive
set in phase space where the dynamics is chaotic:
a chaotic saddle. In fact, it is common to find that

for a system with a chaotic attractor, by varying one
of the system’s parameters, a boundary crisis might
occur, by which the chaotic set becomes nonattrac-
tive and nearly all trajectories escape from it. This
kind of behavior is known as transient chaos [2,8,16].
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In dynamical systems with transient chaos a
complete analysis is possible for those showing a
horseshoe map. It is the horseshoe which allows
us to bound the location of the chaotic saddle in
the phase space and thus the chaotic and escaping
behavior.

In many real applications it might be desirable
to control all the orbits starting close to the chaotic
saddle while preserving the chaotic behavior. In
mechanics, for example, preservation of transient
chaos can prevent the appearance of undesired res-
onances. In lasers, it has been shown that main-
taining transient chaos can help to avoid undesired
intensity peaks. In engineering, it is known that
the thermal pulse combustor operates chaotically,
but when one tries to achieve high efficiency this
can destroy the chaos and to cause the engine
to flameout. In population dynamics the transi-
tion from transient chaos to periodicity is usually
related with pathological situations (extinctions).
These are examples that can be found in the tech-
niques that have been proposed in recent years to
achieve the goal of preserving transient chaos [3, 4,
6, 7, 14, 15, 18]. But two important issues must be
addressed to solve this problem: The first one is
the repulsive nature of the chaotic saddle, the sec-
ond one is the environmental noise present in many
physical situations, that typically makes the orbits
escape even faster (although in some cases noise can
slow down the escape process, see, [5]).

The partial control technique [20, 21] which is
based in the application of small perturbations that
will always keep the orbits inside the region Q, close
to the chaotic saddle, was recently proposed to con-
trol transient chaos. The remarkable achievement
of the partial control technique is that it allows
us to control the system even when the amplitude
of the corrections applied to the trajectories (the
control) is smaller than the maximum deviation of
the trajectories from their deterministic path due
to the presence of environmental noise (the noise).
The basic ingredient in order to obtain this some-
how counterintuitive result is the use of certain sets
referred to as safe sets [23] in Q. These sets have
certain particular geometrical properties that are
related to the typical stretching and folding action
of the horseshoe-like mapping of Q. This advanta-
geous control technique has been applied to well-
known physical models [1, 17,19,20,22,23].

The main goal of this chapter is to develop a
way of improving the partial control technique using
what we call extended safe sets [11], instead of the

safe sets. The extended safe sets are sets that we
build making use of the escape times sets, and as
we will show they also allow to keep trajectories
bounded, with control smaller than noise offering
some advantages over the safe sets. We will also
explore in this chapter how does perform the partial
control technique using safe sets, and extended safe
sets and we will show which one is the best choice
in different scenarios.

We also describe here an algorithm [12, 13] to
find safe sets automatically: given the region in phase
space from which trajectories escape and the value
of the noise and control, safe sets are readily found.
Basically we choose an initial phase space region and
by iterations the algorithm eliminates those parts
that do not hold with the condition required to be
a safe set to finally obtain the desired safe set. We
call it Iterative Sculpting Algorithm, as an analogy
to removing material as in sculpting a statue.

This chapter is organized as follows: In Sec. 2 we
describe the problem that we want to solve with our
control strategy and we describe the system that we
use in our explorations: the Hénon map. In Sec. 3
we review the main concepts of the safe sets. In
Sec. 4 we define the escape time sets and explore
their relation with the safe sets, and in Sec. 5 we
show the conditions that extended safe sets need to
fulfill. In Sec. 7 we review an algorithm that we have
proposed recently to find safe sets in more general
situations, i.e., situations where it is difficult to find
horseshoe maps or when they are topologically very
complex. Section 6 provides a numerical exploration
of our control technique and a comparison between
the results obtained with extended safe sets and safe
sets. In Sec. 8 we draw the main conclusions of this
work.

2. Problem Statement

We consider that the dynamics of the system con-
sidered is given by a map pn+1 = f(pn), that can
also be a Poincaré map, where pn ∈ R

2. We assume
that the map f acts on a square Q like a horse-
shoe like-map, for details see [21]. This implies that
nearly all the trajectories inside Q (except a zero
measure set) escape from it after some iterations.
On the other hand, the behavior inside the square
Q is erratic due to the existence of this zero measure
nonattractive set, the chaotic saddle.

As we said before, we consider systems with this
kind of escaping dynamics pn+1 = f(pn) and also
affected by noise. This is modeled here by adding at
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each iteration a random perturbation ξn ∈R
2 that

we refer to as the noise, that is bounded by the
constant ξ0, ‖ξn‖≤ ξ0. Thus, the system to be con-
trolled is pn+1 = f(pn) + ξn. The effect of noise is
that all the trajectories inside the square Q will now
escape from it under iterations. In order to test our
results we use here a noise with a uniform proba-
bility distribution but the control technique has to
work for any other kind of distributions.

The ubiquity of this type of dynamical systems
suggests that there are situations in which it might
be desirable to control the system in order to keep
the trajectories in the region where the horseshoe is
defined (and thus far from an undesired attractor),
although we might not need to determine exactly
where the trajectory will go in Q. We call this type
of control partial control of the system, and with
this purpose, we can design a control strategy based
on applying an accurately chosen control un each
iteration, that we assume also bounded by a positive
constant ||un|| ≤ u0, in such a way that the global
dynamics is given by

{
qn+1 = f(pn) + ξn

pn+1 = qn+1 + un,
(1)

so the control un depends on pn and ξn, as in other
paradigmatic control methods [10].

A question that arises naturally here is, which is
the value of u0 needed to control the system, given
the value of ξ0. If the control is very strong, such
that u0 > ξ0, it will not be difficult to find a strategy
allowing to avoid escapes from the region Q. If u0 =
ξ0, it might be possible. Remarkably, the partial
control technique that we describe below allow us
to achieve this goal even if the control is smaller
than the noise, that is, if u0 < ξ0. As it will become
clear later, this is due to the existence of certain
sets inside the square Q: the safe sets.

An example of this type of dynamical system is
the Hénon map with an adequate choice of parame-
ters. The Hénon map defined as

{
xn+1 = a − byn − x2

n

yn+1 = xn
(2)

is a paradigmatic system in nonlinear dynamics and
for that reason we have chosen it, from now on, to
show how the partial technique works.

We are interested here in the situation where
a = 6 and b = 0.4. This is due to the fact that
the Hénon map f acts like a horseshoe map on the
square Q ≡ [−4, 4] × [−4, 4], as shown in Fig. 1.

Fig. 1. The square Q = [−4, 4]× [−4, 4] (grey) and its image
under the Hénon map xn+1 = 6−0.4yn−x2

n, yn = xn (black).
These are the parameters used in the chapter, for which the
map acts like a horseshoe in Q. The two saddle fixed points
p∗ and p∗∗ are shown.

The first implementation of the partial control tech-
nique required that the considered map acts on a
square like a horseshoe map, i.e., that it satisfies
the Conley-Moser conditions [21]. For these values
of the parameters, the Hénon map satisfies these
conditions, so we use it here both to illustrate and
to numerically test our results.

In Fig. 1 we also show the two fixed points of
this horseshoe-like map, p∗ and p∗∗, the former will
play later an important role (remember that every
horseshoe map has associated two fixed points).
The chaotic saddle responsible for transient chaos
is shown in Fig. 2 and has been computed using
the DYNAMICS software [9]. Due to the horse-
shoe mapping, this set is topologically equivalent
to an intersection of two Cantor sets of vertical and
horizontal lines, as expected. Thus, nearly all the
points inside the square (except a zero measure set,
the chaotic saddle and its stable manifold) escape
from it under iterations. The dynamics inside the
set is chaotic, but we have transient chaos due to its
nonattracting nature for a typical trajectory start-
ing inside Q.

3. Safe Sets

The partial control technique was originally defined,
using safe sets, as the target of the control per-
turbations. We offer here a small review of their
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Fig. 2. Chaotic saddle for the Hénon map xn+1 = 6 −
0.4yn − x2

n, yn = xn.

main properties that would allow us to introduce
the extended safe sets in a natural way.

Basically the safe sets are a set of curves that
are placed in the square where is located the horse-
shoe map. We can see the form of different Sk safe
sets in the Hénon map with escaping dynamics in
Fig. 3. As we can see in that figure it is possible
to group these curves using a specific order that we
denote as k.

Bearing this graphical idea of safe sets in
mind we can already define the main properties
for the curves that are part of Sk (the safe set of
order k.):

• Sk consist of 2k vertical curves.
• Any vertical curve of Sk has two adjacent vertical

curves of Sk+1 closer to it than any other curve
of Sk.

• The maximum distance between any of the 2k

curves of Sk and its two adjacent curves of Sk+1,
denoted as δk, goes to zero as k → ∞.

• All the curves of a Sk set can be grouped in pairs.
Each pair would be composed of the two closest
curves.

The algorithm to find the adequate safe set in a
system with escapes make use of the inverse of the
horseshoe map. The procedure consists of making
backward iterations (applying the inverse map) of
a straight line centered in the square as we can see
in Fig. 4. Making these iterations and computing
their intersections with the square, we easily obtain
all the curves that are part of a particular Sk, where

the order of the safe set corresponds to the num-
ber of iterations. Thus, it is possible to obtain the
adequate safe set Sk that makes possible to avoid
escapes even with a control smaller than the noise.

To properly quantify the properties of the
partial control technique we need to define three
parameters to establish the condition of a control
smaller than the noise for a particular Sk:

• The first is the curve, ζi, that represents the mid-
dle distance in a particular pair of curves for a
given Sk set.

• The second is the distance, δmax(i), from the two
points of that pair whose distance to ζi is maxi-
mum.

• The third is the distance, δmin(i), from the two
points of that pair whose distance to ζi is mini-
mum.

We can visualize these parameters in Fig. 5 where
we have plotted all of them for the two pairs of
curves present in the S2 set.

If we label as δ∗max as the largest δmax(i) among
all the pairs of curves, then it is easy to understand
that the condition to have a control smaller than
the noise is that

ξ0 > δ∗max. (3)

When this condition is satisfied, we can also com-
pute the maximum control present in the system
if we consider δ∗min as the smallest of all the δmin

among all the pairs of curves. Then we have that

u0 = max{δ∗max, ξ0 − δ∗min}. (4)

4. Escape Time Sets

In order to define what is a extended safe set, it
is necessary to review the idea of escape time of
a trajectory starting in a region Q where exists a
escaping dynamics. A point has a escape time n if
the number of iterations that are needed to leave Q
is n.

Using the idea of escape time it is possible to
group all the points in the square Q in what we call
T n sets. We denote as T n sets the sets of points in a
square with a horseshoe dynamics, that stay inside
the square under n iterations or more, that is:

T n = {p ∈ Q/fn(p) ∈ Q}. (5)

This means that all the points with escape time n,
n + 1, n + 2 . . . etc lie inside T n. For example, T 3

would be composed of all the points with escape
time 3, 4, 5 and so forth into infinity.
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Fig. 3. The sets S1, S2, S3 and S4 that are the result of computing the corresponding preimage of S0, that would be the
vertical segment splitting the square into two equal rectangles. The set S1 consists of a pairs of curves, the set S2 has two
pairs of curves, the set S3 consists of four pairs of curves, and so on. Their geometrical properties are key for application of
the partial control technique.

The appearance of the T n sets, for a horseshoe-
like map, are quite similar to curved strips as we
can see in Fig. 6 for the T 3 set. With this graphical
idea of the T n sets it is possible to establish the
following properties for the T n sets:

• The T n set consist of 2n vertical strips.
• Inside each T n we have all the sets of higher order,

i.e T n′>n ⊂ T n.
• As the order n increases the width of the strips

of the size of T n sets decreases.
• All the strips of a T n set can be grouped in pairs.

Each pair would be composed of the two closest
strips.

We also know that the safe sets of order n (Sn)
are by definition inside the corresponding T n set.

This is due to the fact that on the one hand S0 has
escape time n = 0 and that on the other hand any
Sn set is computed using n preimages of S0. So it
is quite obvious that, for example, S1 has escape
time n = 1 because in one iteration all their points
are mapped to S0 that still stays in Q. For S2 we
have that in one iteration we go to S1 and in two
iterations to S0 so it has escape time n = 2. Thus
it is clear that

Sn ⊂ T n. (6)

Considering this, it might be possible that some
of the points inside T n (not only those of Sn) could
be used as “extended safe sets” (since they contain
more points than the normal safe sets). However,
not all the points of the T n sets are valid to achieve
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Fig. 4. Basic action to generate inductively the safe sets in
a map showing a horseshoe-like behaviour in the phase space.
We begin with a vertical segment (S0) that splits the square
in two equal halves and we compute the preimages of that
line in Q. The intersections of the kth preimage of S0 with
Q gives the set Sk, that consists of 2k curves.

Fig. 5. These are the parameters needed in the partial con-
trol technique using the S2 sets. The curves ζ1 and ζ2 are the
curves whose points are at the same distance from a curve
of each pair of curves of S2. We can also see that δmax(i) is

the maximum distance from each pair of curves of S2 to the
curves ζi as well as δmin(i) is the minimum distance.

Fig. 6. The escape time set T 3, i.e., the set of points that
escape from Q after 3 or more iterations. It consists of four
pairs of strips, and it is reminiscent of S3.

Fig. 7. In this picture we can see in grey the set of points
of T 2 (the set of points that stay in the square under 2 or
more iterations). We have also plotted in black the images
of those points under one iteration. Due to the fact that the
images of the strips do not lay between the pairs of strips, it
is impossible to use the T 2 sets with a control smaller than
the noise.

a control smaller than the noise, as we can see in
Fig. 7. In this figure, we can see the forward iterate,
in black, of the strips corresponding to the set T 2

(number of points that stay in the square under two
iterations or more) which appear colored in grey. We
can see in this figure that not all the parts of the
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forward iterates of the strips lie between some “pair
of strips”, and this is true for other T n sets. Thus,
if we use the set T n instead of a safe set in Sn in
the partial control strategy it will force us for the
worst conditions of noise to apply a control higher
than the noise, so it would not be possible to keep
trajectories inside Q with u0 < ξ0.

5. Obtaining Extended Safe Sets
from Escape Time Sets

As we said above, clearly the escape time sets T n

are not a good substitute for safe sets Sn in the
partial control technique. The next question would
be: which points on T n have to be discarded so
that the partial control strategy can be applied with
u0 ≤ ξ0? In this section we address this question.
We describe here the maximal extended safe set
En

max, that is a subset of T n that can be used in the
partial control technique so that trajectories can be
kept bounded with u0 = ξ0. From these sets we can
easily define the extended safe sets En, and for any
En we show that there is a ξ0 so that trajectories
can be kept inside Q with u0 < ξ0.

Recall the fixed point p∗ shown in Fig. 1. We
call W s(p∗) its stable manifold, and W s

L(p∗) the ver-
tical curve that is a piece of W s(p∗) inside Q con-
taining p∗. Consider now the set T 1 and the four
vertical curves of f−2(W s

L(p∗))∩Q shown in Fig. 8.

Fig. 8. The set T 1 (light grey) is subdivided using four
pieces of the stable manifold of p∗ (black curve) so we obtain
the maximal extended safe set E1

max (grey). The image of
E1

max under f is shown (black), each of its two pieces falls in
the space between the pair of strips of E1

max.

We call E1
max the set resulting of “cutting” the two

strips of T 1 into two thinner strips as these four
curves indicate. The strips of E1

max are mapped as
shown in Fig. 8. This is due to the horseshoe map-
ping and to the fact that points in the stable man-
ifold map into points of the stable manifold under
f . This is the limit point of the “good mapping”
that we are searching for: the image of each strip of
E1

max falls into the space between the pair of strips
of E1

max.
Considering this, we define inductively

En+1
max = f−1(En

max) ∩ Q = f−n(E1
max) ∩ Q. (7)

Clearly the set En
max consists of 2n strips, that also

can be grouped in 2n−1 pairs of curves from left to
right. Note that by definition it will be contained
in T n. Furthermore, it can be seen that the curves
that bound each vertical strip of En

max are pieces of
the stable manifold (since preimages of points of the
stable manifold also belong to the stable manifold).
These sets will reproduce the good kind of map-
ping observed for E1

max: The image of each strip of
En

max falls in the space between each pair of strips
of En

max. This is shown for example in Fig. 9 for
the set E2

max. Using the geometrical considerations
provided above, we can see that by using the sets
En

max instead of Sn in the partial control strategy
trajectories can be kept inside Q with u0 = ξ0.

Fig. 9. The set T 2 (light grey) is cut using eight pieces of
the stable manifold of p∗ (black curve) and gives rise to the
maximal extended safe set E2

max (grey). The images of each
strip of E2

max under f are shown (black), they fall in the
space between each pair of strips of E2

max.
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Fig. 10. In this figure we can see an extended safe set E2

and the parameters needed in the partial control technique
using the extended safe set E2.

With these elements in mind, we can define
the extended safe sets En as follows: An extended
safe set En is a set of 2n vertical strips, each of
them inside a different strip of En

max, so that their
vertical bounds do not intersect with the vertical
bounds of the strips of En

max. Thus, a extended
safe set is obtained when the width of all the
strips of the extended safe sets is reduced. If we
take zero-width strip we would obtain safe sets as
the ones described in Sec. 3. An example of an
extended safe set E2 obtained from E2

max is shown
in Fig. 10.

Before concluding this section, we would like
to point out that the same procedure that has
been carried out with the Hénon map to obtain
the extended safe sets could be repeated with the
same level of difficulty for any topologically equiv-
alent dynamical system, i.e., a dynamical system
acting as a horseshoe on a (topological) square Q.
It is important to notice that in order to find the
extended safe sets one needs to find the chaotic sad-
dle, a square enclosing it, the escape time sets and
the stable manifold of the fixed point of the horse-
shoe. These can be calculated using time series of
the system, and do not require to know exactly the
form of the map f . Thus, we consider that this is a
first advantage in the use of extended safe sets from
the point of view of its applicability.

6. Simulations

Here we show the results that we have achieved by
using this new technique. We have carried out dif-
ferent kind of simulations to check that this new
technique works as we expected and how it performs
for different levels of noise.

We have use as a basis to construct our
extended safe sets the T 2 and T 3 escape sets. Of
course not all the points inside T 2 or T 3 are valid
to keep the condition of a control smaller than the
noise. As we know from the 3th step of our strat-
egy, we should remove at least the points that lie
beyond the most external overlapping between the
stable manifold of the saddle point and the escape
time strips. In our simulation we have been a lit-
tle bit more aggressive and we have removed all the
points that had an image on some strip too. Those
have been the En sets in our simulation.

In our first simulation, we have considered that
the maximum level of noise present is ξ0 = 0.25
and the area from where we want to avoid the
escape is the square Q, where is located the chaotic
saddle. In this situation it is clear that the most
effective extended safe set that we can use here
is E3. We have carried out a succesful simulation
of 1000 iterations with a control smaller than the
noise, as can be seen in Fig. 11.

We have carried out another kind of simula-
tion to compare the technique developed in [23] and
the technique proposed here. As we expected, there
are some values of the noise in which the Sn are a
better strategy in terms of maximum control and

Fig. 11. Here we can see a simulation of 1000 iterations in
xn+1 = 6 − 0.4yn − x2

n; yn+1 = xn where the maximum
amplitude of noise is ξ0 = 0.25. As we can check the control
applied in each iteration u0 is smaller than the noise.
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Fig. 12. Here we show a comparison of the safe sets tech-
nique and the extended safe sets technique for different values
of noise. Here we have carried out series of 2000 iterations and
we have computed the maximun control needed for different
values of noise. As we can see in the graphic there are some
values of noise where the extended safe sets technique is most
efficient and others where the safe sets technique is the most
efficient. It is also possible to see here that the extended safe
set used in the simulation is going to be the optimum for
a continuous uniform distribution of noise with a maximun
amplitude of roughly 0.19.

others in which the En sets are a better solution.
This is what we can see in Fig. 12. We can also see
that there exists a transition point that indicates
the limit where both techniques are more efficient.

7. An Algorithm to Automatically
Compute the Safe Sets

The above methodology to find safe sets works in
situations in which we have a map that acts like
a horseshoe in a topological square Q. But it also
provided us the necessary insights to find safe sets
in more general settings. We sketch here an algo-
rithm [12] that we have designed in order to find
safe sets (and thus apply our partial control tech-
nique) in more general situations.

In order to find safe sets in more general set-
tings, one has to think first which is the basic prop-
erty of a safe set. Given a phase space region Q
from which a trajectory escapes under a map f ,
and where there is a noise ξ bounded by ξ0, and
where it is possible to apply perturbations u also
bounded by u0 before each iteration, a safe set S
is a set contained in Q that satisfies the following
property:

max
p∈S,|ξ|≤ξ0

d(f(p) + ξ, S) = u0 < ξ0, (8)

where d(·, ·) represents the distance between a point
and a set of points.

We can see that the safe sets found for horse-
shoe maps in the previous section satisfy this con-
dition. For this reason, it is not difficult to see why
any set satisfying equation (8) works as a suitable
safe set. Assume that p is any point on S. The map
takes it to f(p), but it will be deviated by the noise
to q = f(p) + ξ. Equation (8) implies that no mat-
ter which point we consider and the value of ξ, as
long as it is bounded by ξ0, the distance between
q = f(p) + ξ and S will be always smaller or equal
to u0, and smaller than ξ0. Thus, with an adequate
control u smaller than ξ0, we can put f(q) + ξ + u
on a point of the safe set and this can be repeated
forever. Of course, the safe sets for horseshoe maps
described previously satisfy this property.

Making use of this idea, we have designed an
algorithm [12] that is able to find safe sets in any
situation, provided that the phase space region from
which trajectories escape Q, the value of the noise ξ0

and the value of the control u0 are known. The basic
idea of this algorithm is to start with an initial set of
points and to take recursively only points that are
mapped in a good way (as prescribed by Eq. (8)),
until converging to the desired safe set. We have also
studied the dynamics of partial control by using the
safe sets obtained with this new algorithm [13].

The procedure is then the following: we start
with a given set of points S(0) inside the region Q
(it is possible to chose as S(0) a grid of points on
Q). Then, we pick as points of S(1) only the points
p ∈ S(0) that satisfy the following condition for all
ξ such that |ξ| ≤ ξ0:

d(f(p) + ξ, S(0)) ≤ u0. (9)

To obtain S(2), S(3), etc... we apply the general rule:
a point p ∈ S(n) belongs to S(n + 1) if it satisfies
that for all |ξ| ≤ ξ0:

d(f(p) + ξ, S(n)) ≤ u0. (10)

Thus, we generate iteratively certain sets

S(0) ⊃ S(1) ⊃ S(2) ⊃ S(3) ⊃ · · · ⊃ S(n). (11)

The resulting set S(∞), when n → ∞, unless it is
not an empty set, is a safe set.

8. Conclusions and Discussion

In this chapter we have shown that it is possible
to apply the partial control technique using certain
sets, the extended safe sets, that are deeply related
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with the escape time sets, in a square Q where a
horseshoe map exists. The notion of extended safe
sets generalizes the notion of safe sets when we use
these new sets in the partial control strategy, to
keep trajectories bounded in the square, with a con-
trol smaller than the noise. The procedure to obtain
extended safe sets from escape time sets has been
described and it implies the cut of the escapes times
using the stable manifold of a saddle fixed point in
a horseshoe map (remember that every horseshoe
map has associated two fixed points).

From an experimental point of view the use of
extended safe sets, being a nonzero measure set,
is advantageous. Having an extended surface, it is
easier to place trajectories on it without making
an error than when dealing with zero measure sets
as the safe sets. On the other hand, by construc-
tion they are computed from the escape time sets
and using the stable manifold of a fixed point as
a guide, and this information can be inferred from
time series of the system.

Throughout this chapter we have assumed that
our control has no errors, that is, that at each iterate
we can place the trajectory exactly where we want.
However, this is not a critical assumption. As with
safe sets, it is possible to keep the condition u0 < ξ0

using extended safe sets also if we have small con-
trol errors [21], i.e., even if at each iteration trajec-
tories are not placed exactly on the extended safe
sets. This tolerance to errors depends basically on
the value of u0 needed in absence of errors, the
value of ξ0 and on the expansiveness of the map
f , which somehow tells how much are we penal-
ized if we do not apply exactly the required control.
To provide an analytical estimate of such tolerance,
though, is complicated. However, due to the fact
that extended safe sets are “thicker” than the safe
sets, we expect that the tolerance for the former is
bigger.

We have also described a general algorithm that
allows to find safe sets for any nonlinear dynam-
ical system in order to apply the partial control
technique. Such safe sets can be found inside the
regions from which trajectories escape after having
some complex dynamical behavior, and their exis-
tence guarantees that trajectories can be kept inside
that region with a control smaller than noise. Our
algorithm is of a general nature, in the sense that it
can be applied for any map or flow. The algorithm
eliminates those parts from an initial phase space
region that do not hold with the condition of the
safe set to finally obtain the desired safe set. We

call it Iterative Sculpting Algorithm, as an analogy
to removing material as in sculpting a statue.

Finally, we want to emphasize that our anal-
ysis reveals the deep relation existing between the
escape time sets and these extended safe sets, so we
believe that any algorithm implemented in order to
detect extended safe sets should make use of this
relation: first, searching for the different escape time
sets and then discarding the points that are not
useful. As we said, this can be helpful both for an
experimental detection of safe sets that can allow
to obtain partial control with u0 < ξ0 as well as in
generalizations of the partial control technique to
dynamical systems in higher dimensions.
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