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Frequency dispersion in the time-delayed Kuramoto model
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We study the synchronization and frequency distribution in networks of time-delayed Kuramoto oscillators
with identical natural frequency. It is found that a pronounced frequency dispersion occurs in networks with
nonidentical degree distributions. The deviation of the average network frequency from its natural frequency,
induced by the time delay, is identified as a necessary component for this phenomenon. Altogether this results in
states intermediate between perfect synchronization and complete incoherence.
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I. INTRODUCTION

For many years, the Kuramoto model has served as a
kind of prototype for the study of various synchronization
phenomena among coupled oscillators. The Kuramoto model
has already been studied in many different versions [1],
including time-delayed coupling [2–7], which is the topic of
the present paper. The set of equations studied in the original
work of Kuramoto [8] looked as follows:

φ̇i(t) = ωi + K

N∑
j=1

sin[φj (t) − φi(t)]. (1)

This constitutes an all-to-all coupled system where the natural
frequencies ωi of each oscillator are drawn from some
symmetric probability distribution g(ω). The question raised
was: At which coupling strength K does the incoherent state
becomes unstable to synchronization? It was found that when
the coupling strength K passes a certain critical value Kc

those oscillators with natural frequencies sufficiently close to
the mean 〈ωi〉, which for strong enough coupling includes all
oscillators, will lock together at a common frequency while
the others will be drifting at their respective frequencies.
Altogether, this gives rise to a state intermediate between
perfect synchronization and complete incoherence.

Starting from another end, a sparsely connected network of
time-delayed Kuramoto oscillators was analyzed in an exact
manner by Earl and Strogatz [3]:

φ̇i(t) = ω + K

k

N∑
j=1

aij sin[φj (t − τ ) − φi(t)]. (2)

Here τ is the time delay and aij are coefficients that take the
value 0 or 1. The number of nonzero coefficients aij for a fixed
i is called the degree di of the oscillator φi and represents
simply the number of incoming connections. We will always
assume that the normalizing factor k is equal to the mean
degree, that is k = 〈di〉.

In the case of time-delayed interactions you may ask
for example: At which time delay does the completely
synchronized state loose its stability? If, as in our case, all the
oscillators have just one and the same natural frequency ω, then
one might expect an abrupt shift from perfect synchronization
to complete incoherence as the time delay τ increases. Indeed,
this is typically the case if we consider a network of time-
delayed Kuramoto oscillators with identical natural frequency
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and identical degree distribution, (which means that ω and di

are the same for all oscillators). Moreover, for identical degree
distribution it turns out that other aspects of the topology of the
network plays no role in determining the critical time delay at
which the in-phase synchronized state φi(t) = �t (where � is
a common fixed frequency) loses its stability [3].

In this study we will compare this latter system with one
where ω is still the same for all oscillators but where we
allow a nonidentical degree distribution over the network. As
we will see, this gives rise to states of intermediate synchro-
nization, which are somewhat reminiscent to those analyzed
by Kuramoto. In doing this, we might also come closer to
answer another pertinent question in the area of time-delayed
interactions, namely: What are the actual mechanisms behind
synchronization and decoherence? In a previous study [7],
a link between the phase synchronization and the average
frequency was found in certain time-delayed neuron networks
as well as in networks of time-delayed Kuramoto models.
Here, we will expand further on this theme and demonstrate
how, in fact, the frequency plays a clearly distinguishable role
in the transition between synchronization and incoherence.

Our focus will be on the behavior of the system given by
Eq. (2) where the network has a binomial degree distribution.
The latter was constructed by first choosing the degree of each
oscillator di from a binomial distribution with mean 4 and stan-
dard deviation 2

√
1 − 4/N , where N is the number of oscilla-

tor in the network. Given this number di , the indices j for which
aij = 1 (counting to a total of di) was chosen randomly. Nu-
merical simulations reveal that for this system we no longer see
an abrupt change from perfect synchronization to almost com-
plete incoherence at a certain time delay, but rather a gradual
decline in synchronization as a function of time delay. More-
over, this is accompanied by a phenomenon which we chose
to call frequency dispersion (this nomenclature was also used
for example in Ref. [9]). Despite the fact that each oscillator is
given the same natural frequency ω, in the stages of interme-
diate synchronization, the oscillators do not proceed with the
same time-averaged frequency. The main purpose of this paper
is to explain how these various phenomena are intertwined.

II. SYNCHRONIZATION, AVERAGE FREQUENCY, AND
FREQUENCY DISPERSION

The synchronization order parameter introduced by Ku-
ramoto is given by the following expression:

r(t) = 1

N

∣∣∣∣∣∣
N∑

j=1

eiφj (t)

∣∣∣∣∣∣ , (3)
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where N is the total number of oscillators. The time t is inserted
here explicitly to distinguish the momentary order parameter
r(t) from the time-averaged order parameter r to be introduced
below. For systems finite in size and where the oscillators
propagate at different frequencies you cannot expect the
synchronization order parameter r(t) to reach a value constant
in time. For this reason, we need to introduce some kind
of time-averaged order parameter, which for convenience we
simply denote by r . Since r(t) is strictly positive, one might
think that the most straightforward way to do this is to simply
integrate r(t) over time and then divide by the length of the time
interval. The latter definition has been used in several works,
including our previous study [7]. However, in this paper we
have chosen instead to calculate the root mean square of the
order parameter r(t):

r ≡
√

〈r2(t)〉T , (4)

〈r2(t)〉T ≡ 1

T

∫ T

0
r2(t)dt. (5)

There are some ways to argue why this might be a more proper
way to do the time averaging under conditions where r(t) never
reaches a constant value over time. One reason is that the
root mean square is typically much easier to treat analytically
and might therefore, in certain cases, facilitate a comparison
between analysis and simulations.

Moving on, the average frequency of each oscillator is
defined as

�i ≡ 1

T

∫ T

0
φ̇i(t)dt, (6)

where the integration is over the entire time interval T . If we
let � = 〈�i〉 be the average frequency of all oscillators, the
frequency dispersion is defined accordingly as

σ 2 ≡ 〈(�i − �)2〉, (7)

where the right-hand side denotes the average taken over all the
values of �i . Notice in particular that we are not concerned
here with the momentary dispersion in frequency. With the
above definition it is only necessary to know the initial and
final values of each phase variable φi .

The computer simulations have been performed with a
modified sixth-order Adams-Bashforth-Moulton integration
scheme with an iterated corrector formula [2,10]. This in-
tegration method is useful when the number of differential
equations in the system is large, which is typically the case
in coupled networks of oscillators. The integrator has been
compared with other well known methods with a high degree
of precision. The step size for the following simulations was
set to dt = 0.01.

In Fig. 1 we show the results of the computer simulations of
Eqs. (2) performed on networks consisting of 300 oscillators,
one class of networks with identical degree distribution (from
now on denoted as the uniform network) and another class
of networks with binomial degree distribution (denoted as the
nonuniform network). For maximum comparability, we have
chosen the total number of connections (i.e., the number of
nonzero aij ) to be the same in all cases. For all networks
the average node degree 〈di〉 was put equal to 4. For the

FIG. 1. (Color online) Time-averaged synchronization r , mean
frequency dispersion σ 2, and mean frequency � as a function of
time delay τ for a network of time-delayed Kuramoto oscillators
with identical degree distribution (dashed lines) and binomial degree
distribution (solid lines). For each degree distribution, the values
presented are averages taken from computer simulations of Eqs. (2)
performed on 32 different networks each consisting of a total of 150
oscillators. In the case of an identical degree distribution we see
an abrupt shift from synchronization to incoherence and negligible
frequency dispersion. For the binomial degree distribution we see a
more gradual shift from synchronization to incoherence accompanied
by a pronounced frequency dispersion. The critical time delay
τc = 0.86 marks the beginning of the transition from synchronization
to incoherence for the uniform network, which happens to coincide
with the maximum of the frequency dispersion for the nonuniform
network. The mean node degree 〈di〉 was equal to 4 in all cases, other
parameters values were K = 0.1, k = 4, and ω = 1.

uniform network the choice of initial conditions is crucial: If
you give the oscillators initial values (including initial history)
close to an in-phase synchronized state then the simulations
corroborate the analytical results of Earl and Strogatz [3],
where complete synchronization is obtained over a much wider
range of τ than would be the case for other initial values.
Here instead we have chosen initial conditions close to a
completely incoherent state (for example φj (0) = 2πj/N with
the initial history computed accordingly). As can be seen in
Fig. 1, for the uniform network (dashed line) we see a rather
abrupt change from complete synchronization to incoherence
accompanied by an abrupt change in the average frequency. In
this case, the frequency dispersion is negligible. On the other
hand, for the nonuniform network (solid line) we see a gradual
decline in synchronization accompanied by a gradual recovery
in average frequency and a pronounced frequency dispersion
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over a large time delay interval. In Sec. III we will try to explain
qualitatively this difference in behavior. The critical time delay
τc = 0.86 (also depicted in Fig. 1) marks the beginning of the
transition from synchronization to incoherence for the uniform
network, which happens to coincide with the maximum of the
frequency dispersion for the nonuniform network.

III. MEAN FIELD ANALYSIS

One of the keys to understanding the results lies in
observing what happens with the average frequency as the
time delay is increased. To get a feeling for this, we assume
that we have a frequency-locked synchronized state given
by φi(t) = �t . If we insert this expression into Eq. (2) and
assume a uniform network, then we obtain the following
self-consistency equation [3]

� = ω − K sin(�τ ). (8)

One can verify that the frequency as a function of time delay for
the uniform network presented in Fig. 1 fits Eq. (8) perfectly
for time delays lower than τc. In order to see how this hints
at an explanation for the frequency dispersion in the case
of nonuniform networks, the first thing one could observe
is that if |K| < |ω − �| then Eq. (8) has no solution. For the
nonuniform network, the degrees are not the same for all nodes,
hence, due to this nonuniformity in effective coupling strength,
one could anticipate a situation where the oscillators of lower
degree successively lose contact with the larger cluster. In
order to verify this, from the computer simulations we have
calculated (see Fig. 2) the average frequency as a function of
time delay for each node degree taken separately. In the figure
we let �d denote the average frequency of all oscillators with
degree d. As we can see, on average the nodes with lower
degree lose connection with the larger cluster more quickly.
With the purpose of analyzing this more quantitatively, we
define the effective coupling constant for each oscillator Ki as

FIG. 2. (Color online) Average frequency �d of all oscillators
with degree d as a function of time delay on a network with binomial
degree distribution. As can be seen, on average the nodes with lower
degree lose connection with the larger cluster more quickly. The
average frequency for the uniform network is also inserted in the
figure as a reference. The network used in the simulation consisted
of a total of 300 oscillators with mean node degree 〈di〉 equal to 4.
Other parameters values were K = 0.1, k = 4, and ω = 1.

FIG. 3. (Color online) Time evolution of the synchronization
order parameter r(t) with root mean square r = 0.93 (top), histogram
over the time-averaged frequencies of the oscillators (center), and
frequencies versus node degree (bottom) for τ = 0.52. In this case
Eq. (12) explains the numerical outcome to a good approximation.
The values of Eq. (12), for di = 1 and di = 2, are marked with arrows
in the histogram and solid lines in the bottom figure. The result was
obtained from a computer simulation of Eqs. (2) on a network with a
binomial degree distribution with 300 nodes. The mean node degree
〈di〉 was equal to 4, other parameters values were K = 0.1, k = 4,
and ω = 1.

follows:

Ki ≡ Kdi

k
, (9)

where k, as usual, is the average degree of the network. Now,
we consider the following differential equation:

φ̇i = ω + Ki sin(�τ t − φi). (10)

Here we have a system with only one oscillator interacting with
a larger cluster with frequency �τ (which is assumed to depend
on the time delay τ ). According to symbolic mathematical
software, Eq. (10) has an exact solution, but it appears to
be useless. Numerical simulations indicate, as it could be
suspected, that if |Ki | > |ω − �τ | then φi will be locked at
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FIG. 4. (Color online) Time evolution of the synchronization or-
der parameter r(t) with root mean square r = 0.735 (top), histogram
over the time-averaged frequencies of all the oscillators (center), and
frequencies versus node degree (bottom) for τ = τc = 0.86. In this
case approximately half of the oscillators are locked to a common
frequency while the others are spread out. The gray circles in the
bottom figure mark the average frequency for each node degree. The
result was obtained from a computer simulation of Eqs. (2) on a
network with a binomial degree distribution with 300 nodes. The
mean node degree 〈di〉 was equal to 4, other parameters values were
K = 0.1, k = 4, and ω = 1.

the frequency �τ . If we assume instead that |Ki | < |ω − �τ |
and treat Ki as a small parameter, then we can perform a
perturbation analysis by assuming the following form of the
solution:

φi = ψ0 + Kiψ1 + K2
i ψ2 + · · · . (11)

According to such a perturbation analysis, φi will propagate
with an effective time-averaged frequency ωi which, including
only the lowest-order correction term, is given by

ωi = ω − 1

2

K2
i

ω − �τ

. (12)

In Figs. 3, 4, and 5, we show the time evolution of the
synchronization r(t) as well as a histogram of the frequency
of the oscillators obtained from computer simulations of

FIG. 5. (Color online) Time evolution of the synchronization
order parameter r(t) (top), histogram over the time-averaged frequen-
cies of all the oscillators (center), and frequencies versus node degree
(bottom) for τ = 0.96. In this case the frequency distribution looks
almost uniform and the order parameter fluctuates erratically. At this
time delay, the time-averaged order parameter r is equal to 0.505. The
gray circles in the bottom figure mark the average frequency for each
node degree. The result was obtained from a computer simulation of
Eqs. (2) on a network with a binomial degree distribution with 300
nodes. The mean node degree 〈di〉 was equal to 4, other parameters
values were K = 0.1, k = 4, and ω = 1.

the nonuniform network at three different time delays. In
Fig. 3, we show the results obtained for τ = 0.52, which
is within the region of frequency dispersion but not close
to the critical transition point. Here we can see that most
oscillators are locked to a common frequency, but there are
also ensembles propagating at other frequencies. In particular,
two ensembles appear around the frequencies � = 0.99 and
� = 0.97 corresponding to the values of Eq. (12) for di = 1
and di = 2 (putting �τ equal to the average frequency obtained
in the simulation). Hence, in this case Eq. (12) explains the
numerical outcome to a good approximation. The bottom panel
of Fig. 3 plots the average frequency against node degree di for
each oscillator. It shows clearly that the oscillators with lower
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degree tend to have an average frequency closer to ω, while the
nodes of higher degree are locked to a common frequency. The
solid lines in the bottom panel mark the analytical predictions
of Eq. (12) mentioned before.

In Fig. 4 the time delay has been chosen to be corresponding
to the critical transition point between synchronization and
incoherence for the uniform network, that is τ = τc = 0.86.
In this case, approximately half of the oscillators are locked to
a common frequency while the others are spread out. It is worth
noticing that at this time delay the frequency dispersion reaches
its maximum and begins to drop for larger τ . At the time delay
τ = 0.96, depicted in Fig. 5, we have reached the midpoint of
the transition where the time-averaged order parameter r has
dropped close to 0.5. In this case, the frequency distribution
looks almost uniform and the order parameter r(t) fluctuates
erratically. At this point, it is worth mentioning that, on a
uniform network, it is very hard (or perhaps impossible) to
find stationary states with the order parameter r(t) fluctuating
around a value in the middle between 0 and 1, as has just
been demonstrated on nonuniform networks. From Fig. 1
one might get the impression that these states exist also
for uniform networks in a small window after the critical
time delay τc is passed, however, the apparent continuity
of the synchronization curve in the case of the uniform
network comes from averaging over many different network
configurations.

IV. CONCLUSIONS

In this paper we have studied sparsely connected net-
works of time-delayed Kuramoto oscillators with identical
and binomial degree distributions respectively. The results
differed in the sense that on the network with binomial
degree distribution, a pronounced frequency dispersion is
observed along with a relatively smooth transition from
synchronization to incoherence. An explanation for this
was given as a three-step cause and effect scheme. First,
the time delay induces a suppression of the time-averaged
frequency of the network. Due to the nonuniformity in effective
coupling strength over the network with binomial degree
distributions, each node has a different ability to cope with
this suppression of frequency leading eventually to frequency
dispersion. As a last consequence, this spread in frequency
leads to time-averaged levels of synchronization intermediate
between perfect synchronization and complete incoherence.
We hope that this paper has thereby shed some further light
on the mechanisms behind synchronization and incoherence
in networks with time-delayed interactions.
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