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Quantum entanglement between two field modes can be achieved through the collective squeezing of 
the two respective modes. If single-mode squeezing is performed prior to such a two-mode squeezing, an 
enhancement of entanglement production can happen. Interestingly, the occurrence of this enhancement 
can be implicitly linked to the local classical dynamical behavior via the paradigm of quantum–classical 
correspondence. In particular, the entanglement generated through quantum chaos is found to be hardly 
enhanced by prior squeezing, since it is bounded by the saturation value of the maximally entangled 
Schmidt state with fixed energy. These results illustrate that entanglement enhancement via initial 
squeezing can serve as a useful indicator of quantum chaotic behaviour.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

In the last decades, a number of quantum information pro-
tocols which utilizes continuous-variable (CV) entanglement have 
been developed [2,6,44]. The performance of these protocols is of-
ten constrained by the achievable degree of the entanglement that 
is being produced. In particular, a stable control of entanglement 
generation is necessary before quantum cryptography with a finite 
number of samples can be secured against the most general co-
herent attacks [15]. It is noteworthy that while various schemes 
of generating controllable CV entanglement have been proposed, a 
major scheme of interest is that of two-mode squeezing. In fact, 
it has been shown via diverse quantum systems that the genera-
tion of entanglement can be enhanced by performing single-mode 
squeezing prior to two-mode squeezing. In the Jaynes–Cummings 
model for example, it has been demonstrated that a stronger en-
tanglement between a two-level atom and an electromagnetic field 
mode can be achieved by using a squeezed state rather than a co-
herent state as the initial photon state [16]. Note that in this case 
the enhancement is observed only when the initial state of the 
field mode is sufficiently squeezed. Similar threshold has also been 
observed in systems of coupled harmonic oscillators [13]. Beyond 
the threshold, the maximum attainable entanglement is found to 
grow steadily with an increase in the initial squeezing parameter. 
In another interesting investigation, the enhancement in entangle-
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ment via unequal single-mode squeezing performed separately on 
the two field modes was studied [40]. Notably, entanglement was 
found to persist even in a decohering environment with high tem-
perature when the normal modes are squeezed [18].

Experimental schemes for generating CV entanglement was first 
proposed and realized in non-degenerate parametric amplifiers 
[38,47]. Later, non-degenerate three-level cascade laser was sug-
gested as an alternative optical system for the experimental gener-
ation of entangled quantum state. For this setup, an enhancement 
of intra-cavity quadrature squeezing was observed by coupling the 
cavity mode to a squeezed vacuum reservoir. The effect of the 
squeezed vacuum was studied and the result is a large enhance-
ment of the intra-cavity squeezing and entanglement in the two-
mode light [1]. Further investigations on this topic were focused 
on the search for effective ways to increase the initial single-mode 
squeezing with easily implementable schemes that can generate a 
high degree of squeezing and entanglement. On the other hand, 
our interest is to examine into new schemes which could exploit 
the effectiveness of initial single-mode squeezing on entanglement 
enhancement beyond the control of the amplitude and orienta-
tion of prior squeezing or the existence of a critical squeezing 
parameter. A particular novel idea is to employ the fundamental 
physics of quantum-to-classical correspondence to guide the pro-
cess of entanglement enhancement with initial squeezing through 
the perspective of classical dynamics. The potential effectiveness of 
this new approach would be surprising and counter-intuitive since 
both squeezing and entanglement are purely quantum phenomena.

Indeed, the correspondence between the physics of quantum 
systems and its classical counterparts has been well-established for 
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decades [5,17,33,42]. Notable examples include the manifestation 
of chaos in the energy-level distribution [42] of atomic systems, as 
well as the wave patterns that are exhibited in quantum chaotic 
systems which are known as ‘scars’ [5]. In recent years, there 
has been an increasing interest in correlating the entanglement 
production of a quantum system with the corresponding dynami-
cal behaviour in the classical domain. For example, the dynamical 
production of entanglement was studied on the N-atoms Jaynes–
Cummings model [17] for initial coherent states whose centers 
lie in different regions of the corresponding classical phase space. 
The entanglement production was found to be a good indicator of 
the regular-to-chaotic transition that happens in the classical do-
main. Similar studies were undertaken for kicked tops [3,4,8,14,31,
34], the 4D standard maps [28], nonlinear oscillators [10,46], the 
Dicke model [41], Rydberg molecule [30], triatomic molecules [24,
45], integrable dimers [23] and interacting spins [35]. In this pa-
per, we shall show the effectiveness of entanglement enhancement 
through initial squeezing, and more importantly, demonstrate its 
dependence on the local dynamical behavior of the correspond-
ing classical phase space. Interestingly, for initial coherent states 
whose centers lie in the regular regimes of the classical phase 
space, the maximum attainable entanglement can be enhanced sig-
nificantly by performing prior single-mode squeezing. In addition, 
the amount of entanglement enhancement is found to increase 
monotonically with the degree of prior squeezing. Conversely, for 
initial coherent states whose centers lie in chaotic regions of the 
classical phase space, prior single-mode squeezing is observed to 
have negligible effects in enhancing the quantum entanglement.

2. Model

In this study, we consider bipartite system composed of two 
coupled anharmonic oscillators [9,11,37]. Specifically, we focus on 
the following Hamiltonian:

H = p2
1

2
+ p2

2

2
+ 1

2
q2

1 + 1

2
q2

2 + λq2
1q2

2. (1)

In the equation, p1 and p2 denote the kinetic momenta, while q1
and q2 denote the oscillators’ positions, with λ being the coupling 
parameter. The classical dynamics of this model has been shown to 
range from regular, to mixed regular, and chaotic [37]. Upon quan-
tization, the corresponding dynamical production of entanglement 
with initial separable coherent states was found to relate closely 
to the classical trajectories [46]. Specifically, the maximum value of 
the entanglement production is found to correspond systematically 
to the classical invariant tori and is the largest when the initial 
state lies at the edge of the regular islands or in the chaotic sea.

The initial state is chosen to be a tensor product of the coherent 
state, |ψ(0)〉 = |α1〉 ⊗ |α2〉, whose center lies precisely on a clas-
sical phase point (q1, p1, q2, p2) with αk = (qk + ipk)/

√
2, where 

k = 1, 2. In other words, the classical phase point (q1, p1, q2, p2)

gives the center of the initial coherent state. Prior to the dynami-
cal generation of entanglement through the Hamiltonian given by 
Eq. (1), single-mode squeezing is performed individually on each 
subsystem initial state by the following squeezing operator:

Ŝ(ζk) = e
1
2 ζk

∗â† 2
k − 1

2 ζkâ2
k . (2)

The result is a product state of single-mode squeezed coherent 
state: |ψ(0)〉 = |α1, ζ1〉 ⊗ |α2, ζ2〉 where

|αk, ζk〉 = Ŝ(ζk)|αk〉, (3)

with k = 1, 2. Note that âk = (q̂k + i p̂k)/
√

2, with q̂k and p̂k be-
ing the position and momentum operators respectively. Also, ζk =
|ζk| exp(i2θk) denotes the squeezing parameter for mode k which 
quantifies the degree of single-mode squeezing.
The time evolution of the quantum state |ψ(t)〉 is given by
∣∣ψ(t)

〉 = Û (t)
∣∣ψ(0)

〉
, (4)

where the time evolution operator Û (t) is given by Û (t) = e−i Ĥt/h̄ , 
with Ĥ being the quantized Hamiltonian:
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of Eq. (1). The time evolved density matrix is then determined as 
follow:

ρ(t) = Û (t)ρ(0)Û (t)
†
, (6)

where ρ(0) = |ψ(0)〉〈ψ(0)|. By taking the partial trace of ρ(t) over 
the l-th subsystem, the reduced density matrix ρl(t) is obtained. 
The von Neumann entropy of entanglement S vn(t) is then evalu-
ated via

S vn(t) = −Tr
[
ρl(t) log2 ρl(t)

] = −
N∑

i=1

λi log2 λi, (7)

where l = 1 or 2 and N is the basis size employed in the numerical 
simulation.

3. Effect of squeezing on entanglement enhancement

To probe the dependence on local classical dynamics, we con-
sider specifically the effect of prior single-mode squeezing on 
entanglement enhancement for the situation when the classical 
phase space exhibits both a mixture of regular and chaotic be-
haviour. For this, the energy E = 150.75 and the coupling constant 
λ = 0.0075 is selected. The Poincaré surface is shown in Fig. 1
where we observe groups of regular islands within a sea of chaos. 
Specifically, the dynamics displayed by the trajectories of this sys-
tem is very different depending on the initial condition. While a 
regular orbit is restricted within a small region of the regular tori, 
the temporal position of a chaotic trajectory spreads out unpre-
dictably within the chaotic sea. In Fig. 2, we show entanglement 
dynamics of four initial coherent states with centers lie at differ-
ent positions of this classical mixed phase space. For each coherent 
state, a single-mode squeezing is performed on both the oscillator 
field modes (with ζ1 = ζ2 = ζ ) before the dynamical generation 
of quantum entanglement. Interestingly, the enhancement of en-
tanglement production is not uniform for the four chosen initial 
coherent states although each of them is subjected to the same 
amplitude of single-mode squeezing prior to two-mode squeezing 
which generates entanglement. In particular, entanglement produc-
tion is found to be higher for initial states with centers lie in the 
chaotic region compared to the regular region. When equal amount 
of prior single-mode squeezing are performed on the initial states, 
enhancement of entanglement is found to be larger for quantiza-
tion of the regular orbit versus that of the chaotic orbit (see Fig. 2). 
In addition, we found that entanglement can be effectively en-
hanced when a higher degree of single-mode squeezing is injected 
prior to the dynamical generation of entanglement as shown in 
Fig. 3. However, prior squeezing has minimal enhancement effect 
on entanglement generation when the center of the initial state 
lies in the chaotic regime of the classical counterpart. Note that 
similar results are obtained for numerical computation performed 
for prior squeezing with different angles (θ = π/4, π/2 and 3π/4).

4. Dependence of entanglement enhancement on local classical 
dynamical behaviour

While the correspondence between the quantum system and 
its classical counterpart has been witnessed in various contexts, 
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Fig. 1. A plot of the Poincaré section of the classical mixed phase space on the q1–p1 plane with q2 = √
5 and p2 > 0. The parameters used are E = 150.75 and λ = 0.0075. 

The cross markers show the initial conditions chosen to study the entanglement dynamics. They represent the centers of the initial coherent states: (q1, p1) = (0, 0), 
(q1, p1) = (

√
10/4, 0), (q1, p1) = (

√
10/4, 1.9102

√
10) and (q1, p1) = (

√
10/4, 2.2427

√
10) employed in our numerical simulations. In addition, they are the initial conditions 

that lead to the subplots (a), (b), (c) and (d) respectively in the subsequent figures. Note that the inset show the variance ellipses for the squeezed (green ellipse) and 
non-squeezed (blue circle) case to illustrate the size of the initial wave packet. (For interpretation of the references to color in this figure legend, the reader is referred to the 
web version of this article.)

Fig. 2. Entanglement dynamics for initial coherent states with centers sampled from different parts of the classical mixed phase space shown in Fig. 1. The classical dynamics 
are: (a) regular, (b) regular, (c) at the edge of regular and chaotic regimes, and (d) chaotic. Solid lines show entanglement dynamics for initial coherent states without prior 
single-mode squeezing while dashed lines with circles show entanglement dynamics for initial coherent states subjected to prior single-mode squeezing with ζ1 = ζ2 = ζ = 1.
this is the first illustration of its manifestation via the effect of 
initial squeezing on entanglement enhancement. Indeed, such en-
hancement can be a good indicator of regular-to-chaotic transition 
in the mixed phase space regime. Specifically, while the genera-
tion of entanglement is insensitive to the squeezing of initial states 
whose center lie in the chaotic region of the mixed phase space, 
the squeezing of initial states whose center lie in the regular part 
has a positive impact on the enhancement of entanglement. This 
observation can be discerned through a detailed numerical analysis 
based on the quantum density spectrum as shown in Fig. 4, which 
is obtained by yielding the diagonal elements of the density matrix 
of the coupled system evaluated at the eigenstates of the Hamilto-
nian given by Eq. (1) [46]. In fact, the calculation of the quantum 
density spectrum can also be performed by taking the Fourier 
transform of the autocorrelation 〈ψ(t)|ψ(0)〉, which is more effi-
cient. The upshot is that the degree of entanglement of the system 
is closely related to the number of significant components of the 
quantum density spectrum. Indeed, we observe that the quantum 
states which correspond to the chaotic regime possess more spec-
tral elements (Fig. 4(d)) and have a larger entanglement relative 
to that of the regular regime (Fig. 4(a) or 4(b)). More importantly, 
we uncovered that the inclusion of initial squeezing has the effect 
of increasing the number of components in the quantum density 
spectrum, as depicted in Figs. 4(e) to 4(f). The increase is larger for 
the regular case and the case that borders between regularity and 
chaos than the chaotic case, which is consistent with our earlier 
result that a larger entanglement enhancement occurs within the 
regular tori versus that of the chaotic sea.

In the coupled kicked top model, dynamically generated entan-
glement is found to be bounded by a finite value [3]. In particular, 
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Fig. 3. Dependence of the entanglement entropy at saturation on the amplitude of 
prior squeezing for the four initial states used in Fig. 2. Here the dot and the star 
markers denote the regular initial conditions. The cross marker denotes the ini-
tial condition selected from the boarder of the chaotic sea and the KAM island. The 
square markers show the entanglement maxima of the point selected from the mid-
dle of the chaotic sea. The parameters employed are E = 150.75 and λ = 0.0075.

for initial states that lie within the chaotic sea, entanglement pro-
duction is observed to saturate within a short time. Interestingly, 
by starting from a maximally entangled initial state, time evolution 
would partially disentangle the state such that in the long time 
limit, entanglement would reach the same saturation value. Now, 
the results in the previous section seem to suggest that entangle-
ment between two oscillators generated by quantum chaos cannot 
be increased beyond a certain limit by prior squeezing. Here, we 
shall examine into the ‘entanglement bound’ by evolving a ‘maxi-
mally entangled’ state:

|ψ〉 = 1√
Nm

Nm−1∑
m=0

|m〉[1] ⊗ |m〉[2], (8)

where |m〉[1] and |m〉[2] are the one dimensional harmonic oscil-
lator eigenfunctions of subsystem 1 and 2. Note that Eq. (8) takes 
the form of the Schmidt decomposition of |ψ〉, and in our case, 
we need to ensure that the average energy 〈ψ |Ĥ |ψ〉 given by this 
state is close to the energy associated with the chaotic initial con-
dition, which is E = 150.75. By means of numerical calculation, 
the number of Schmidt modes is determined to be Nm ≈ 108. We 
next examine the entanglement dynamics with this maximally en-
tangled initial state based on the Hamiltonian given by Eq. (5). As 
Fig. 5. A plot of the entanglement entropy against time t for the classically chaotic 
orbits. The dashed and dotted curves show the entanglement dynamics of the 
chaotic initial condition with (ζ1 = ζ2 = ζ = 1.0) and without prior single mode 
squeezing respectively. The upper solid curve illustrates the entanglement dynam-
ics for an initial maximally entangled state with Schmidt mode number Nm = 108. 
Here, the chosen system parameters are: E = 150.75 and λ = 0.0075.

time increases, we observe that the entanglement entropy reduces 
from its maximum value to a stationary saturated value as shown 
in Fig. 5. We shall take this stationary value as the upper bound of 
the entanglement entropy in accordance with Ref. [3]. We observe 
that the entanglement entropy for the quantization of classically 
chaotic trajectory at the steady state is close to this bound. Inter-
estingly, it seems that prior single-mode squeezing is not able to 
generate entanglement that surpasses this entanglement bound. In 
consequence, there is no significant enhancement in entanglement 
generation when prior single-mode squeezing is applied to a co-
herent state with center lies in the chaotic sea. On the other hand, 
for quantization of regular orbits, the entanglement entropy is far 
below the entanglement bound and hence is not constrained by it.

Finally, we explore the quantum-to-classical correspondence by 
first defining a classical Gaussian ensemble in the four dimensional 
phase space with a mean value μ = (q1, p1, q2, p2) which corre-
sponds to the initial quantum coherent state. Note that a sample 
of M initial points is considered in this ensemble. Then, the time 
evolution of the initial ensemble is then calculated using the classi-
cal Hamilton equations. On the other hand, for the case with prior 
squeezing, we shall create a squeezed ensemble of the M samples 
from the above Gaussian ensemble using the covariance matrix
Fig. 4. A plot of the quantum power density spectrum which corresponds to the initial state selected in Fig. 2. The left column is for spectral obtained via initial coherent 
state and the right column for that determined from initial squeezed coherent state with ζ = 1. The first row (a) and (e) is for regular orbit; the second row (b) and (f) is 
for another regular orbit; the third row (c) and (g) is for the case at the border of regular and chaotic orbit; while the last row (d) and (h) is for chaotic orbit.
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Fig. 6. A plot of the average classical power spectral density which corresponds to the quantum power density spectrum of Fig. 4. Note that both the ensemble size used for 
the Gaussian and squeezed Gaussian ensemble is 50. The left column is obtained via the initial Gaussian ensemble while the right column from the initial squeezed Gaussian 
ensemble with δ = 2. The first row (a) and (e) is for regular orbit; the second row (b) and (f) is for another regular orbit; the third row (c) and (g) is for the case at the 
border of regular and chaotic orbit; while the last row (d) and (h) is for chaotic orbit.

Fig. 7. Dependence of the classical entropy of entanglement at saturation on the amplitude of prior squeezing for the four initial classical distribution which correspond to 
the quantum state used in Fig. 2. The classical dynamics are: (a) regular, (b) regular, (c) at the edge of regular and chaotic regimes, and (d) chaotic. The parameters employed 
are M = 10 000, δ = 2.0, E = 150.75 and λ = 0.0075.
Sq = δ

4

⎡
⎢⎢⎢⎣

exp(−2r1) 0 0

0 exp(2r1) 0 0

0 0 exp(−2r2) 0

0 0 0 exp(2r2)

⎤
⎥⎥⎥⎦

before subjecting it to time evolution from the Hamilton’s equa-
tion. Here δ is the classical analog of the Planck constant h̄. r1 and 
r2 is analogous to the squeezing parameter ζ1 and ζ2 respectively. 
For the i-th trajectory qi

1(t) from either of these ensembles, we 
compute the classical power spectral density [46]:
I i
1(ω) = 1

2π
lim

T →∞
1

T

∣∣∣∣∣
T∫

0

dtqi
1(t)exp(−iωt)

∣∣∣∣∣
2

, (9)

from which we obtain the average classical power spectral density

Ī1(ω) = 1

M

M∑
i=1

I i
1(ω). (10)

A plot of Ī1(ω) against ω is given in Fig. 6 where the left col-
umn corresponds to the initial Gaussian ensemble while the right 
column to the squeezed initial Gaussian ensemble. Like the quan-
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Fig. 8. The time evolution of the classical distribution centered on a regular initial 
condition is plotted at different instants of time in the projected phase-space q1–p1. 
Figures (a), (b) and (c) show coherent distribution with r = 0.0 at time t = 0, t = 30
and t = 100 respectively. On the other hand, figures (d), (e) and (f) illustrate time 
evolution of a squeezed distribution with r = 1.0 at time t = 0, t = 30 and t =
100 respectively. Here, the ensemble size used is M = 10 000 and the parameters 
employed are E = 150.75 and λ = 0.0075.

tum density spectrum, the number of significant average classical 
power spectral density components is larger for initial Gaussian 
ensemble in the chaotic sea than in the regular tori. In addition, 
prior squeezing of the Gaussian ensemble has the effect of increas-
ing the number of spectral components, with a larger enhance-
ment for the regular initial states than the chaotic counterparts 
just like the quantum case.

Next, we plot the classical entropy of entanglement introduced 
by Casati et al. [7] in Fig. 7. For this, we partition the two-
dimensional phase plane q1–p1 with square cells of side 

√
δ. The 

classical entropy is defined as

Scl(δ, t) = −
∑

i

wi(t)

M
ln

wi(t)

M
, (11)

where wi(t) is the number of phase points in the ith cell at time t . 
Casati et al. [7] had found that this classical entropy would ap-
proximate the entropy of the quantum reduced ensemble at the 
semiclassical limit. In Fig. 7, we have plotted the classical entropy 
for the squeezed and non-squeezed ensemble for all the four ini-
tial states. From the figure, it is obvious that the enhancement in 
saturation value of the classical entropy is smaller for the chaotic 
case in comparison to the regular case. This is exactly in accor-
dance with the results based on the von Neumann entropy of 
entanglement. In addition, we have analyzed the time evolution 
of classical distributions which correspond to the initial coherent 
and initial squeezed states. Our results are plotted in Figs. 8 and 9
for the regular and chaotic orbits respectively. The figures show 
that the phase space region occupied by the distributions increase 
as time progresses. For the regular orbits as shown in Fig. 8, the 
phase space region occupied by the evolved distribution is small 
which is expected from the observed lower value of the classi-
cal entropy. Note that Figs. 8(a), (b) and (c) are for initial classical 
distributions with a non-squeezed ensemble, while Figs. 8(d), (e) 
Fig. 9. The time evolution of the classical distribution centered on the chaotic initial 
condition is plotted at different instants of time in the projected phase-space q1–p1. 
Figures (a), (b) and (c) show coherent distribution with r = 0.0 at time t = 0, t = 30
and t = 100 respectively. On the other hand, figures (d), (e) and (f) illustrate time 
evolution of a squeezed distribution with r = 1.0 at time t = 0, t = 30 and t =
100 respectively. Here, the ensemble size used is M = 10 000 and the parameters 
employed are E = 150.75 and λ = 0.0075.

and (f) are for distributions that begin with a squeezed ensemble 
of r = 1.0. Notice that initial squeezing has led to an increase in 
phase space region accessed by the evolved distribution. On the 
other hand, Fig. 9 shows that the time evolved distribution of the 
chaotic orbits occupy a larger phase space which explains its larger 
entropies. While initial squeezing in this case does increase the ac-
cessible region of the phase space as illustrated via Figs. 9(c) and 
(f), the relative increase is observed to be smaller than that be-
tween Figs. 8(c) and (f) for the regular case. This is because the 
squeezed and non-squeezed ensemble for the chaotic case has al-
ready accessed almost all parts of phase space and any increase in 
accessible regions through squeezing can give only a small contri-
bution. This explains the negligible enhancement of the classical 
entropy via squeezing for the chaotic initial conditions, and also 
account for the results displayed in the classical power spectra. 
In summary, the initial conditions from the squeezed ensemble 
in the regular domain has led to a sampling of a larger range of 
regular tori in the phase space than the non-squeezed case. The 
consequence is the addition of new quasi-periodic frequency com-
ponents to the average classical power density spectrum. On the 
other hand, for the chaotic case, trajectories from initial conditions 
that originate from the squeezed or non-squeezed ensemble are 
found to sample a very similar chaotic phase space. Thus, we ex-
pect a very similar average classical power spectral density with a 
similar number of frequency components. Since the average clas-
sical power spectral density indicates the energy levels that are 
involved in the corresponding quantum evolution [19,20,46], this 
explains the analogous results displayed by the quantum density 
spectrum. With the number of components in the quantum density 
spectrum being directly related to the amount of entanglement 
production, our results affirm the idea of quantum–classical corre-
spondence and demonstrates concretely the dependence between
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entanglement production and the local classical dynamical be-
haviour.

5. Conclusion

When single-mode squeezing is injected into the initial sepa-
rable coherent states prior to the entanglement generation pro-
cess, it is possible to obtain highly entangled CV quantum states. 
These highly entangled CV quantum states are resources that are 
invaluable for the implementation of various quantum protocols 
employed in quantum cryptography [15] and quantum telecloning 
[32]. The maximum attainable entanglement depends on both the 
orientation and amplitude of the prior single-mode squeezing. In 
this paper, we show that the enhancement of entanglement by 
prior squeezing can be influenced by the local dynamical behav-
ior of the system’s classical counterpart. For initial coherent states 
whose centers lie in the regular regimes of the classical phase 
space, the maximum attainable entanglement can be enhanced 
significantly by performing prior single-mode squeezing. On the 
other hand, for initial coherent states whose centers lie in chaotic 
regimes of the classical phase space, prior single-mode squeez-
ing has minimal effects on quantum entanglement enhancement. 
This result suggests the application of entanglement enhancement 
via initial squeezing as an indicator of quantum chaotic behaviour. 
Indeed, in the literature, there are various indicators of quantum 
chaos, such as the fidelity measure between two quantum states 
[25,36,12], the Kullback–Leibler quantum divergence [26], and the 
purity of quantum states [39]. The quantum signature of chaos 
can also be identified using the universal correspondence between 
the eigenvalue and eigenvector statistics of quantized classically 
chaotic system and the canonical ensembles of random matrix the-
ory [21,22,27]. A more visual approach would employ quantum 
distribution function where the quantum manifestations of clas-
sical chaos in phase space can be discerned through the Wigner 
or the Husimi distribution function [29]. While quantum entan-
glement has been known to act as a signature of quantum chaos 
[34,43], the inclusion of initial squeezing has the advantage of de-
tecting local quantum chaotic behaviour without the need to make 
comparison between the entanglement entropy of the chaotic and 
regular quantum states. In other words, the detection is performed 
by probing a quantum chaotic system with an initial coherent 
and an initial squeezed state, and examining the consequential 
entanglement enhancement. The magnitude of the enhancement 
shall indicate whether the quantum chaotic system resides in the 
regular or chaotic regime. We perceive that our findings here is 
general and could be applicable to other quantum chaotic sys-
tems.

Acknowledgements

S.K.J. acknowledges the warm hospitality during his research 
stay in Nanyang Technological University. This work was supported 
by the Spanish Ministry of Science and Innovation under project 
number FIS2009-09898.

References

[1] E. Alebachew, Enhanced squeezing and entanglement in a non-degenerate 
three-level cascade laser with injected squeezed light, Opt. Commun. 280 
(2007) 133.

[2] U.L. Andersen, G. Leuchs, C. Silberhorn, Continuous-variable quantum informa-
tion processing, Laser Photonics Rev. 4 (2010) 337.

[3] J.N. Bandyopadhyay, A. Lakshminarayan, Testing statistical bounds on entangle-
ment using quantum chaos, Phys. Rev. Lett. 89 (2002) 060402.

[4] J.N. Bandyopadhyay, A. Lakshminarayan, Entanglement production in coupled 
chaotic systems: case of the kicked tops, Phys. Rev. E 69 (2004) 016201.

[5] M.V. Berry, Quantum scars of classical closed orbits in phase space, Proc. R. 
Soc. Lond. A 423 (1989) 219–231.
[6] S.L. Braunstein, P. van Loock, Quantum information with continuous variables, 
Rev. Mod. Phys. 77 (2003) 513.

[7] G. Casati, I. Guarneri, J. Reslen, Classical dynamics of quantum entanglement, 
Phys. Rev. E 85 (2012) 036208.

[8] S. Chaudhury, A. Smith, B.E. Anderson, S. Ghose, P.S. Jessen, Quantum sigs of 
chaos in a kicked top, Nature 461 (2009) 768–771.

[9] N.N. Chung, L.Y. Chew, Energy eigenvalues and squeezing properties of general 
systems of coupled quantum anharmonic oscillators, Phys. Rev. A 76 (2007) 
032113.

[10] N.N. Chung, L.Y. Chew, Dependence of entanglement dynamics on the global 
classical dynamical regime, Phys. Rev. E 80 (2009) 016204.

[11] N.N. Chung, L.Y. Chew, Two-step approach to the dynamics of coupled anhar-
monic oscillators, Phys. Rev. A 80 (2009) 012103.

[12] J. Emerson, Y.S. Weinstein, S. Lloyd, D.G. Cory, Fidelity decay as an efficient 
indicator of quantum chaos, Phys. Rev. Lett. 89 (2002) 284102.

[13] C.H. Er, N.N. Chung, L.Y. Chew, Threshold effect and entanglement enhance-
ment through local squeezing of initial separable states in continuous-variable 
systems, Phys. Scr. 87 (2013) 025001.

[14] H. Fujisaki, T. Miyadera, A. Tanaka, Dynamical aspects of quantum entangle-
ment for weakly coupled kicked tops, Phys. Rev. E 67 (2003) 066201.

[15] F. Furrer, T. Franz, M. Berta, A. Leverrier, V. Scholz, M. Tomamichel, R. Werner, 
Continuous variable quantum key distribution: finite-key analysis of compos-
able security against coherent attacks, Phys. Rev. Lett. 109 (2012) 100502.

[16] S. Furuichi, A.A. Mahmoud, Entanglement in a squeezed two-level atom, J. Phys. 
A, Math. Gen. 34 (2001) 6851.

[17] K. Furuya, M.C. Nemes, G.Q. Pellegrino, Quantum dynamical manifestation of 
chaotic behavior in the process of entanglement, Phys. Rev. Lett. 80 (1998) 
5524–5527.

[18] F. Galve, L.A. Pachón, D. Zueco, Bringing entanglement to the high temperature 
limit, Phys. Rev. Lett. 105 (2010) 180501.

[19] S. Ghose, B.C. Sanders, Entanglement dynamics in chaotic systems, Phys. Rev. A 
70 (2004) 062315.

[20] M. Gutzwiller, Chaos in Classical and Quantum Mechanics, Interdisciplinary Ap-
plied Mathematics, Springer-Verlag, 1990.
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