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a b s t r a c t

Ghost-stochastic resonance is a noise-induced resonance at a fundamental frequency miss-
ing in the input signal. We investigate the effect of a high-frequency, instead of a noise, in a
single Duffing oscillator driven by a multi-frequency signal FðtÞ ¼

Pn
i¼1fi cosðxi þ Dx0Þt;

xi ¼ ðkþ i� 1Þx0, where k is an integer greater than or equal to two. We show the occur-
rence of a high-frequency induced resonance at the missing fundamental frequency x0. For
the case of the two-frequency input signal, we obtain an analytical expression for the
amplitude of the periodic component with the missing frequency. We present the influence
of the number of forces n, the parameter k, the frequency x0 and the frequency shift Dx0

on the response amplitude at the frequency x0. We also investigate the signal propagation
in a network of unidirectionally coupled Duffing oscillators. Finally, we show the enhanced
signal propagation in the coupled oscillators in absence of a high-frequency periodic force.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Response of nonlinear systems to a harmonic force with a single frequency has been investigated in detail. A non-mono-
tonic variation of the amplitude of the response occurs [1,2], in a typical nonlinear system when the frequency of the driving
force is varied. In particular, the oscillation amplitude of the system output increases with the increase in the frequency of
the external force, it reaches a maximum at a particular frequency and then it decreases with further increase in the fre-
quency. This resonance phenomenon is widespread and has been utilized in several devices. In bistable and multistable sys-
tems when the amplitude of the external periodic force is below a threshold (that is, there is no switching motion between
the coexisting stable states), then a transition between the coexisting states can be induced by a weak noise. At an appro-
priate optimum noise intensity, almost a periodic switching between coexisting states occurs resulting in a maximum sys-
tem response. This noise-induced resonance phenomenon is termed as stochastic resonance [3,4]. Resonance can be realized
when the noise term is replaced by a high-frequency periodic force and is called vibrational resonance [5,6]. Furthermore, it is
possible to generate a chaotic signal that mimics the probability distribution of the Gaussian white noise. Such a signal can
also give rise to a resonant effect analogous to the noise-induced resonance and is called chaotic resonance [7]. In all the
above resonance phenomena, in absence of a resonance inducing source, the system is driven by a weak harmonic force with
a single frequency. There are signals with multiple frequencies. Examples include human speech, musical tones and square-
waves. Design of an approximate multi-frequency signal is very important in minimizing the nonlinear distortion in the
multi-frequency system identification methods [8,9].
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Chialvo et al. [10,11] investigated the response of a threshold device to an input signal containing several frequencies in
the presence of noise. When the frequencies of the driving force are of a higher-order of a certain fundamental frequency,
then the system is found to show a maximum response at the missing fundamental frequency at an optimum noise intensity.
This fundamental frequency, which is absent in the input signal, detected by the device is called ghost-frequency and the
underlying resonance phenomenon is termed as ghost-stochastic resonance [10,11]. When the input signal is set into an
anharmonic by introducing a same frequency shift to all the harmonic terms, the system is found to show a resonance at
a certain shifted frequency. This ghost resonance phenomenon can be used to explain the missing fundamental illusion in
which a third lower pitched tone is often heard when two tones occur together [11].

The occurrence of a ghost resonance induced by noise has been analysed mostly in excitable systems. For example, it was
found in the sudden dropouts exhibited by a semiconductor laser [12], two laser systems coupled bidirectionally [13], ver-
tical-cavity surface emitting lasers [14], monostable Schmitt trigger electronic circuit [15], an excitable Chua’s circuit [16], a
chaotic Chua’s circuit [17] and a system of n-coupled neurons [18]. Subharmonic resonance behavior in a nonlinear system
with a multi-frequency force containing the fundamental frequency in the absence of a high-frequency input signal is stud-
ied in [19].

Because nonlinear systems with double-well and multi-well potentials are wide-spread it is foremost important to inves-
tigate the response of these systems to the multi-frequency force and analyse the occurrence of ghost resonance in them and
also with sources other than external noise. Motivated by the above considerations, in the present work, we explore the pos-
sibility of a ghost resonance induced by a high-frequency deterministic force rather than a noise. We consider the Duffing
oscillator driven by multi-frequency force FðtÞ and a high-frequency force g cos Xt. The multi-frequency force FðtÞ is given by
FðtÞ ¼
Xn

i¼1

f i cosðxi þ Dx0Þt; xi ¼ ðkþ i� 1Þx0 ð1Þ
with k P 2 and X� xnð¼ ðkþ n� 1Þx0Þ. We begin our analysis with n ¼ 2; k ¼ 2 and Dx0 ¼ 0. We show the occurrence of
a resonance at the fundamental frequency x0 missing in the input signal FðtÞ. The value of g at which the resonance at the
frequency x0 occurs, increases monotonically while the value of the response amplitude Qðx0Þ at resonance decreases with
x0. Interestingly, the case of n ¼ 2 by applying a theoretical method, we are able to obtain an approximate analytical expres-
sion for the response amplitudes QðxiÞ; i ¼ 0;1;2. Theoretical results are in good agreement with the numerical predictions.
We study the influence of the number of periodic forces n, the parameters k and g and the frequency shift Dx0 on Qðx0Þ. For
values of k > 2 or Dx0 – 0, the response amplitude Qðx0Þ becomes 0 when the oscillation center of the orbit is at the origin
and this happens for g values above a certain critical value.

Next, we consider a network of unidirectionally coupled N-Duffing oscillators with the multi-frequency force and the
high-frequency force applied to the first oscillator only. The first system is uncoupled. The coupling term is chosen to be lin-
ear. We denote Q iðx0Þ as the response amplitude of the ith oscillator at the frequency x0. For a coupling strength above a
critical value, an undamped signal propagation, that is, QNðx0Þ > Q 1ðx0Þ occurs at the missing fundamental frequency, even
in the absence of the high-frequency periodic force. Interestingly, in the undamped signal propagation case, the response
amplitude increases with the unit number i and then becoming a constant. The saturation value of Q is found to be indepen-
dent of the parameters k; n and Dx0 in FðtÞ. Finally, we consider a network of unidirectionally coupled oscillators, where all
the oscillators are driven by the external forces.

2. Resonance in a single Duffing oscillator

We consider the equation of motion of the Duffing oscillator driven by n harmonic forces FðtÞ given by Eq. (1) and the
high-frequency periodic force g cos Xt as
€xþ d _xþ axþ bx3 ¼ FðtÞ þ g cos Xt: ð2Þ
Throughout our study we fix the values of the parameters as d ¼ 0:5; a ¼ �2; x0 ¼ 0:5; b ¼ 1; X ¼ 30x0 and treat g as
the control parameter. The potential associated to the system in the absence of damping and external force is of a double-
well form, since a < 0 and b > 0.

2.1. Numerical analysis

From the numerical solution of Eq. (2), we compute the sine and cosine components Q sðxÞ and Q cðxÞ respectively of the
solution at various frequencies in the interval x 2 ½0;20� using the equations
Q sðxÞ ¼
2

NT

Z NT

0
xðtÞ sin xt dt; ð3aÞ

Q cðxÞ ¼
2

NT

Z NT

0
xðtÞ cos xt dt; ð3bÞ
where T ¼ 2p=x and N is say 500. Then QðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2

s þ Q2
c

q
=f with f ¼ ð1=nÞ

Pn
i¼1fi.
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First, we consider the system (2) with n ¼ 2; k ¼ 2 and Dx0 ¼ 0, that is FðtÞ ¼ f1 cos x1t þ f2 cos x2t where
x1 ¼ 2x0; x2 ¼ 3x0 and x0 ¼ 0:5. We compute Qðx0Þ; Qð2x0Þ and Qð3x0Þ for (i) f1 ¼ f ; f 2 ¼ 0, (ii) f1 ¼ 0; f 2 ¼ f and
(iii) f1 ¼ f2 ¼ f with f ¼ 0:1. Fig. 1 shows the variation of numerically computed Qð2x0Þ with the parameter g for the cases
(i) and (iii) (represented by continuous and dashed curves respectively) and Qð3x0Þ for the cases (ii) and (iii) (continuous
and dashed curves respectively). For f2 ¼ 0; Qð3x0Þ ¼ 0 while for f1 ¼ 0; Qð2x0Þ ¼ 0. In both cases Qðx0Þ ¼ 0. When
f1 – 0 and f2 – 0 both Qð2x0Þ and Qð3x0Þ are present in the solution of the system (2). Q at x ¼ 2x0 and 3x0 exhibits res-
onance. For a wide range of g; Qð2x0Þ of the cases (i) and (iii) are almost the same. This result is observed for Qð3x0Þ except
for the values of g near the first resonance of Qð2x0Þ. We can say that there is no significant effect of the presence of the
periodic force f1 cos 2x0t on Qð3x0Þ and f2 cos 3x0t on Qð2x0Þ. However, in the presence of these two periodic low-fre-
quency forces and with g ¼ 0 the solution of the system (2) contains periodic components with certain frequencies other
than 2x0 and 3x0. However, Q at these frequencies are very weak.

Fig. 2 presents QðxÞ versus g for x ¼ x0; 4x0 and 5x0. In this figure, we find that Qðx0Þ– 0 in the absence of a high-
frequency force (g ¼ 0). However, its value is � 0. When g is varied QðxÞ at x ¼ x0; 4x0; 5x0 exhibits a resonance. The
resonance of Qðx0Þ is relatively stronger than at the frequencies 4x0 and 5x0. We note that the fundamental frequency
x0 is missing in the input signal FðtÞ. The resonance phenomenon induced by an external noise at a frequency that is absent
in the input signal is termed as ghost-stochastic resonance [10,11]. We call the high-frequency deterministic force induced
resonance at the missing frequency of the input signal as ghost-vibrational resonance. There are two fundamental differences
between the ghost resonance induced by noise and by the high-frequency force. In the noise driven case, when the intensity
D of the noise is varied, the signal-to-noise ratio at a missing fundamental frequency becomes maximum at one value of D.
Further, the resonances at the frequencies present in the input signal are weak. In the high-frequency induced ghost reso-
nance, the response amplitude can be maximum at more than one value of the parameter g (as shown in Fig. 2). In the sys-
tem (2), the resonance at the frequencies present in the input signal are stronger than the resonance at the missing
fundamental frequency. The resonance at the frequencies 2x0 and 3x0 is the well known vibrational resonance.
Fig. 1. Qð2x0Þ and Qð3x0Þ versus g of the system (2) with FðtÞ ¼ f1 cos 2x0t þ f2 cos 3x0t for the cases (i) f1 ¼ 0:1; f 2 ¼ 0 ðQð2x0Þ– 0 (continuous curve),
Qð3x0Þ ¼ 0Þ, (ii) f1 ¼ 0; f 2 ¼ 0:1 ðQð2x0Þ ¼ 0; Qð3x0Þ – 0 (continuous curve)) and (iii) f1 ¼ f2 ¼ 0:1 (both Qð2x0Þ and Qð3x0Þ are nonzero and are
represented by dashed curves).

Fig. 2. Variation of QðxÞ with g in the system (2) for the frequencies x ¼ x0 ð¼ 0:5Þ, 4x0 and 5x0 missing in the input signal FðtÞ (Eq. (1)) with
n ¼ 2; k ¼ 2; Dx0 ¼ 0 and f1 ¼ f2 ¼ f ¼ 0:1.
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We numerically compute gVR, the value of g at which a first resonance occurs and the corresponding value of the response
amplitude, Qmax, for a range of values of x0. The result is shown in Fig. 3. gVR increases almost linearly with x0 while Qmax

decreases nonlinearly with x0.

2.2. Theoretical calculation of Qðx0Þ

It is possible to obtain analytical expressions for the response amplitudes QðxÞ at various values of x. For the system (2)
with n ¼ 2 we assume that its solution consists of a low-frequency component X and a high-frequency ðXÞ component w.
Substituting x ¼ X þ w in Eq. (2) we obtain
Fig. 3.
frequen
€X þ d _X þ aX þ bX3 þ 3bX2hwi þ 3bXhw2i ¼ f1 cos x1t þ f2 cos x2t; ð4Þ

€wþ d _wþ awþ bw3 þ 3bX2 w� hwið Þ þ 3bX w2 � hw2i
� �

¼ g cos Xt; ð5Þ
where hwmi ¼ ð1=2pÞ
R 2p

0 wmds and s ¼ Xt. Since w is rapidly oscillating, it is reasonable to approximate the Eq. (5) as
€w ¼ g cos Xt, which gives w ¼ �ðg=X2Þ cos Xt. For this solution hwi ¼ 0; hw2i ¼ g2=ð2X4Þ and hw3i ¼ 0. Then, Eq. (4) becomes
€X þ d _X þ CX þ bX3 ¼ f1 cos x1t þ f2 cos x2t; ð6Þ
where C ¼ aþ 3bg2=ð2X4Þ. Slow oscillations of (6) occur about its stable equilibrium points. Eq. (6) with f1 ¼ f2 ¼ 0 admits
three equilibrium points
X� ¼ 0; �
ffiffiffiffiffiffiffiffiffiffiffiffi
�C=b

p
for g < gc ¼ �2aX4

3b

" #1=2

ð7Þ
and only one equilibrium point X� ¼ 0 for g > gc. For convenience, we introduce the change of variable Y ¼ X � X�. This gives
€Y þ d _Y þx2
r Y þ bY3 þ 3bY2X� ¼ f1 cos x1t þ f2 cos x2t; ð8aÞ
where
x2
r ¼ aþ 3bg2

2X4 þ 3bX�2: ð8bÞ
For a weak nonlinearity, an approximate solution of Eq. (8) can be constructed through an iterative process [2], wherein
we obtain the sequence of approximations Y0ðtÞ;Y1ðtÞ; . . . by solving the equations
€Y0 þ d _Y0 þx2
r Y0 ¼ FðtÞ; ð9Þ

€Y1 þ d _Y1 þx2
r Y1 ¼ FðtÞ � bY3

0 � 3bX�Y2
0 ð10Þ
and so on. We determine both Y0 and Y1. The solution of Eq. (9) in the long time limit is
Y0ðtÞ ¼ A1 cosðx1t þ /1Þ þ A2 cosðx2t þ /2Þ; ð11aÞ
where
Ai ¼
fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2
r �x2

i

� �2 þ d2x2
i

q ; /i ¼ tan�1 � dxi

x2
r �x2

i

� �
; i ¼ 1;2: ð11bÞ
Variation of (a) gVR, the value of g at which first resonance at the frequency x0 occurs, and (b) Qmaxðx0Þ ¼ QðgVR ;x0Þ with the missing fundamental
cy x0 in the input signal in the system (2). The values of the parameters in (1) are as in Fig. 2.
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Substituting the above expression for Y0 in (10), we can find the solution Y1. In addition to the frequencies x1 and x2, the
solution Y1 contains certain other frequencies, namely, lx0, where l ¼ 1; k� 1; k; kþ 1; kþ 2; 2k; 2kþ 1;
2kþ 2; 3k; 3kþ 1; 3kþ 2; 3kþ 3 due to the terms Y2

0 and Y3
0 in Eq. (10). When k ¼ 2 the various frequencies present in Y1

are x ¼ lx0; l ¼ 1;2; . . . ;9. The lowest and the highest frequencies in Y1 are x2 �x1 ¼ x0 and 3x2 respectively.
Retaining only the terms containing x0; x1; x2; x1 �x0 (which will become x0 if k ¼ 2) in the right-side of Eq. (10) we

obtain (with Y1 ¼ Y1ðx0;x1;x2;x1 �x0Þ)
Fig. 4.
x0 ¼ 0:
Y1 ¼
a01

s0
cos x0t þ /0 � /1 þ /2ð Þ þ a02

s01
cos ðx1 �x0Þt þ /0 þ 2/1 � /2ð Þ þ a1

s1
cos x1t þ /1 þ /2ð Þ

þ f
s1

cos x1t þ /1ð Þ þ a2

s2
cos x2t þ 2/2ð Þ þ f

s2
cos x2t þ /2ð Þ; ð12aÞ
where
/i ¼ tan�1 � dxi

x2
r �x2

i

� �
; i ¼ 0;1;2 ð12bÞ

xi ¼ ðkþ i� 1Þx0 þ Dx0; i ¼ 1;2 ð12cÞ

si ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

r �x2
i

� �2 þ d2x2
i

q
; i ¼ 0;1;2 ð12dÞ

s01 ¼ s0 x0 ! x1 �x0ð Þ; Ai ¼
f
si
; i ¼ 1;2 ð12eÞ

a01 ¼ 3bX�A1A2; a02 ¼
3
4

bA2
1A2; ð12fÞ

a1 ¼
3
4

bA1 A2
1 þ 2A2

2

� �
; a2 ¼

3
4

bA2 A2
2 þ 2A2

1

� �
: ð12gÞ
For k ¼ 2 and Dx0 ¼ 0 we notice that x1 �x0 ¼ x0. In this case the first two terms in the right-side of Eq. (12a) are peri-
odic with frequency x0, otherwise the first term alone is periodic with a frequency x0.

In Eq. (12a) for jf1 ¼ f2 ¼ f j � 1 we can drop the third and fifth terms in the right-side because a1 and a2 are of the order of
f 3, while the fourth and sixth terms are of the order of f only and the minimum value of si is dxi which is not very small for
d ¼ 0:5 and x0 ¼ 0:5. Then the amplitude of the periodic components in the solution (12a) with the frequencies x0; x1 and
x2 are
Aðx1Þ ¼
f
s1
; Aðx2Þ ¼

f
s2
; ð13aÞ

Aðx0; k ¼ 2;Dx0 ¼ 0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

01 þ a2
02 þ 2a01a02 cosð2/2 � 3/1Þ

q
s0

; ð13bÞ

Aðx0; k – 2orDx0 – 0Þ ¼ a01

s0
¼ 3bX�f 2

s0s1s2
: ð13cÞ
Then QðxiÞ ¼ AðxiÞ=f .
To verify the theoretical treatment, we plot in Fig. 4 both theoretically and numerically calculated Qðx0Þ; Qð2x0Þ and

Qð3x0Þ as a function of the parameter g. We notice that theoretical Q at x ¼ x0; 2x0 and 3x0 are in very good agreement
with the numerically computed Q.

QðxiÞ becomes maximum when x2
r ¼ x2

i ; i ¼ 1;2. Then, the analytical expressions for g at which resonances occur,
denoted as gVR, are given by
Theoretically calculated (continuous curve) and numerically computed (dashed curve) Qðx0Þ; Qð2x0Þ and Qð3x0Þ versus g for the system (2) with
5; n ¼ 2; k ¼ 2; Dx0 ¼ 0 and f1 ¼ f2 ¼ f ¼ 0:1.
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gð1ÞVRðxiÞ ¼ X2 1
3b
ð2jaj �x2

i Þ
	 
1=2

; i ¼ 1;2; ð14aÞ

gð2ÞVRðxiÞ ¼ X2 2
3b
ðx2

i þ jajÞ
	 
1=2

; i ¼ 1;2; ð14bÞ
where 2jaj > x2
i . Because Aðx0Þ is a complicated function of g it is very difficult to find an analytical expression for gVR at x0.

3. Effect of k; n and x0 on resonance in the single Duffing oscillator

The theoretical procedure employed in the previous section for the determination of an analytical expression for Qðx0Þ
can be extended for n > 2. Since such an analysis involves tedious mathematics we perform a numerical simulation. We
choose fi ¼ f ; i ¼ 1;2; . . . ;n.

Fig. 5(a) presents Qðx0Þ versus g for several values of k with n ¼ 2 and Dx0 ¼ 0. Qðx0Þ (as well as Qðx1Þ and Qðx2ÞÞ
decays to zero with k. For k – 2 the theoretical expression for Aðx0Þ in Qðx0Þ ¼ Aðx0Þ=f is given by Eq. (13c). For a fixed
value of g as k increases the quantities si; i ¼ 0;1;2 increase and A1 and A2 decrease. Since Aðx0Þ is directly proportional
to A1; A2 and 1=s0, its value decreases with increasing values of k. We notice in Fig. 5(a) that Qðx0Þ ¼ 0 for
g > gcð¼ 259:81Þ when k > 2. This is because for g > gc the equilibrium point about which a slow oscillation takes place
is X� ¼ 0 and hence Qðx0Þ becomes zero (refer Eq. (13c)). That is, for k > 2 the output signal will have a periodic component
with the missing frequency x0 only if the center of oscillation of the output xðtÞ is – 0 which will happen for g < gc. We note
that gc (given by Eq. (7)) depends on the parameters a; b and X.

The value of Qðx0Þ at resonance, as shown in Fig. 5(b), increases with the number of periodic forces, n, and attains a sat-
uration. For k > 2 resonance occurs for n P 2, but the value of Qðx0Þ at resonance decreases when n increases.

Next, we consider the system (2) with Dx0 – 0. When Dx0 ¼ 0 the frequencies of the periodic forces in FðtÞ are integer
multiples of the fundamental frequency x0. For Dx0 – 0 the frequency difference between successive periodic components
remains the same. The frequencies of the periodic components are essentially shifted multiples of x0. Each component in
FðtÞ is periodic while the force FðtÞ is aperiodic, that is, anharmonic. Fig. 6(a) displays the effect of Dx0 on the response
the amplitude profile for k ¼ 2; n ¼ 2 and x0 ¼ 0:5. For Dx0 – 0 the amplitude Aðx0Þ given by Eq. (13c) is inversely propor-
tional to s0s1s2. For a fixed value of g, the quantities si; i ¼ 0;1;2 increase with increase in Dx0. Consequently, Aðx0Þ and
hence Qðx0Þ ¼ Aðx0Þ=f decrease with increase in Dx0. This is evident in Fig. 6(a). We observe a similar result in Fig. 6(b)
where Qðx0Þ is plotted as a function of k and g for n ¼ 2 and Dx0 ¼ 0:1. In Fig. 6(c) Qðx0Þ versus g for various values of
n is plotted for k ¼ 2 and Dx0 ¼ 0:1 where Qðx0Þ attains a saturation. This result is similar to the one shown in Fig. 5(b)
for Dx0 ¼ 0. In all the subplots in Fig. 6 Qðx0Þ ¼ 0 for g > gcð¼ 259:81Þ because Aðx0Þ / X� and X� ¼ 0 for g > gc.

4. Signal propagation in one-way coupled systems

In this section we analyse the features of signal propagation at the missing fundamental frequency in a regular network of
one-way coupled Nð¼ 200Þ units. We consider the cases of multi-frequency signal applied to (i) first unit only and (ii) to all
the units.

4.1. Description of the network model

The network essentially consists of N units. The first unit is uncoupled and is alone driven by both a multi-frequency input
periodic signal and the high-frequency periodic signal. The interaction is along one direction. We choose the coupling term to
be linear and the system representing each unit as the Duffing oscillator. The equation of motion of the network is given by
Fig. 5. Three-dimensional plot of Qðx0Þ versus g and (a) k for n ¼ 2 and (b) n for k ¼ 2 for the system (2) with x0 ¼ 0:5 and f ¼ 0:1.



Fig. 6. Qðx0Þ versus g for various values of (a) Dx0 for k ¼ 2; n ¼ 2, (b) k for n ¼ 2; Dx0 ¼ 0:1 and (c) n for k ¼ 2; Dx0 ¼ 0:1. In all the cases x0 ¼ 0:5 and
f ¼ 0:1.
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€x1 þ d _x1 þ ax1 þ bx3
1 ¼ FðtÞ þ g cos Xt; ð15aÞ

€xi þ d _xi þ axi þ bx3
i ¼ dxi�1; i ¼ 2;3; . . . ;N ð15bÞ
and FðtÞ is given by Eq. (1). The dynamics of the first oscillator is independent of the dynamics of the other oscillators. We fix
the values of the parameters in the network as d ¼ 0:5; a ¼ �2; b ¼ 1; x0 ¼ 0:5 and X ¼ 30x0.
4.2. Undamped signal propagation

In the input signal FðtÞ the fundamental frequency x0 is absent. We numerically calculate the response amplitude Qiðx0Þ
using Eq. (3). Fig. 7(a) shows Qiðx0Þ as a function of the unit i for a few fixed values of the coupling strength d with the values
of the parameters in FðtÞ as n ¼ 2; k ¼ 2; x0 ¼ 0:5; Dx0 ¼ 0; f 1 ¼ f2 ¼ . . . ¼ fn ¼ f ¼ 0:1 and g ¼ 0. In the absence of the
high-frequency force Q1 ¼ 0:01874. For d < dc ¼ 1:78; Qi < Q 1 for i� 1. For d P dc as i increases the value of Qi increases
slowly then increases rapidly and reaches a saturation. Q200 > Q1 and the network displays undamped signal propagation.
For very large i the response amplitude Qi oscillates about a value with small amplitude. Neglecting this small oscillation in
Q i, we notice that Qi becomes almost constant for sufficiently large values of i. We denote Q L as the limiting (saturation)
value of Q i. In Fig. 7(a) Q L increases with increase in d from dc. The undamped and enhanced propagation of signal with
the frequency x0 missing in the input signal takes place even in the absence of the high-frequency periodic force. The
enhanced signal propagation is due to the unidirectional coupling. Note that the input signal FðtÞ is applied to the first oscil-
lator only.

We plot Q i versus i for three values of g with d ¼ 2 in Fig. 7(b). Q L is independent of the amplitude g. The values of g have a
strong influence on Qi only over a certain range of values of i denoting the oscillators number. In Fig. 7(b) roughly in the 40th
to 70th oscillators Q i varies with g. In this interval of i; Qi rapidly increases with i. As g increases from 0 the Qi profile oscil-
lates and becomes stationary for sufficiently large values of g. Similar effects are found for various fixed values of the param-
eter k and the number of periodic forces n. Fig. 7(c) and (d) report the influence of k and n respectively on Qi for d ¼ 2 and
g ¼ 0. In Fig. 7(c) the Qi versus i profile evolves to a stationary one with increase in the value of k. The Q i profile remains the
same for n P 5 in Fig. 7(d). An interesting result is that Q L is independent of g; k and n and depends on d. A numerical



Fig. 7. Dependence of Qi versus i curve on (a) the coupling strength d for g ¼ 0; k ¼ n ¼ 2, (b) the amplitude g of the high-frequency periodic force for
d ¼ 2; k ¼ n ¼ 2, (c) the parameter k in FðtÞ for d ¼ 2; n ¼ 2 and g ¼ 0 and (d) the number of periodic forces in FðtÞ for d ¼ 2; g ¼ 0 and k ¼ 2. In all the cases
x0 ¼ 0:5; f ¼ 0:1; Dx0 ¼ 0 and X ¼ 30x0. The first oscillator alone is driven by the force FðtÞ and g cos Xt.
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simulation is performed for Dx0 – 0. Results similar to the case Dx0 ¼ 0 are observed. Furthermore, Q L is found to be inde-
pendent of Dx0.

4.3. A network with all the units driven by external forces

Next, we consider the network with all the units driven by the force FðtÞ and g cos Xt and the units are coupled unidirec-
tionally. The equation of motion of the network is
Fig. 8.
k ¼ 2;
€x1 þ d _x1 þ ax1 þ bx3
1 ¼ FðtÞ þ g cos Xt; ð16aÞ

€xi þ d _xi þ axi þ bx3
i ¼ dxi�1 þ FðtÞ þ g cos Xt; i ¼ 2;3; . . . ;N: ð16bÞ
Fig. 8 shows Q i versus g and i for two fixed values of d. We observe ghost resonance in each unit. For d ¼ 0:3 (Fig. 8(a)) the
value of Qi at resonance increases with the unit number i and then reaches a saturation with Q N;max > Q1;max. For d ¼ 0:5
(Fig. 8(b)) we can clearly notice small oscillatory variation of Qi with i for the values of g near resonance. The oscillatory var-
iation of Q i is found in the network system (15) also. Comparing the Figs. 7 and 8, we observe that the enhancement of the
response amplitude at resonance in the network (16) is relatively higher than that of the network (15). Fig. 9 presents the
variation of hQi ¼ ð1=NÞ

PN
i¼1Qiðx0Þ with the parameters d and g.

For the network system (15), in Fig. 7(a) Q of the last unit is < 3 for d < 2. Furthermore, Q of the last unit is independent of
the value of g. For the network system (16), in Fig. 8 Q of the last unit depends on the value of g. Further, in Fig. 9 hQi is > 3
Variation of Qi with g and i for two values of d of the network system (16) where d ¼ 0:5; a ¼ �2; b ¼ 1; f ¼ 0:1; x0 ¼ 0:5; X ¼ 30x0;

n ¼ 2 and Dx0 ¼ 0.



Fig. 9. Average response amplitude versus the control parameters d and g of the network (16) with f ¼ 0:1; x0 ¼ 0:5; X ¼ 30x0; k ¼ 2; n ¼ 2 and
Dx0 ¼ 0.
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for a wide range of values of d. In the system (15) undamped signal propagation with Q N > Q 1 occurs for d > 1:78 and even
for g ¼ 0. In contrast to this, in the system (16) QN > Q 1 takes place only for certain range of values of g, however, hQi > Q 1

even for a wide range of values of d < 1:78. As far as the signal amplification and propagation at a missing frequency x0 is
concerned, driving all units in the unidirectionally coupled system considerably improves the response amplitude over a cer-
tain range of values of g and d compared to the driving the first unit alone.
5. Conclusion

In a linear system driven by a single periodic force the output contains only the frequency present in the driving force. The
response of a nonlinear system to a sinusoidal signal with a single frequency contains the input frequency and its harmonics.
When a linear system is subjected to a multi-frequency force, the frequencies present in the output are the same as those in
the input. However, changes occur in the magnitudes and phases of the various frequency components. In the case of a non-
linear system driven by a multi-frequency signal, the response not only contains the harmonics of the various input frequen-
cies but inter-modulation components of harmonics can also be generated.

In the present work we have shown the enhancement of response amplitude of a nonlinear system at the missing fun-
damental frequency in the input multi-frequency signal. In the nonlinear system driven by multi-frequency force and noise,
resonance at the missing fundamental frequency is the dominant one and it occurs at a relatively lower value of the noise
intensity compared to the resonance at the frequencies present in the input signal. For these types of resonance to occur, the
system must have a bistability or excitability. High-frequency induced ghost resonance can occur even in single-well non-
linear systems.

As shown in Fig. 1, the difference between, for example, Qð2x0Þ when the input signal contains only the frequency 2x0

and its value when other frequencies are also present in the input signal is negligible. That is, the response amplitude at a
frequency x present in the input signal is not affected appreciably by the presence of the other frequencies Xi, as long as Xi

are not widely separated from x. If any of the Xi � x, then the vibrational resonance at the frequency x occurs.
When the input signal contains only a very few number of periodic components, then it is easy to obtain an analytical

expression for the amplitudes of the periodic components with various frequencies. For the single oscillator, Qðx0Þ decays
with the parameters k and Dx0, while it reaches a saturation with the number of forces. In the network where the oscillators
are coupled unidirectionally and only the first oscillator is driven by the external forces, an enhanced and undamped signal
propagation at the missing fundamental frequency takes place above a certain critical value of the coupling strength even in
the absence of high-frequency force. Moreover, Qiðx0Þ becomes constant for sufficiently large values of i. Finally, an inter-
esting result is that, the limiting value of Q is independent of the values of g; k and Dx0.
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