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Abstract

We consider a dynamical model of cancer growth including three interacting cell
populations of tumor cells, healthy host cells and immune effector cells. The
tumor-immune and the tumor-host interactions are characterized to reproduce ex-
perimental results. A thorough dynamical analysis of the model is carried out,
showing its capability to explain theoretical and empirical knowledge about tu-
mor development. A chemotherapy treatment reproducing different experiments
is also introduced. We believe that this simple model can serve as a foundation
for the development of more complicated and specific cancer models.
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1. Introduction

It is increasingly apparent that the growth deregulation within a tumor can
only be explained once we understand the contributions of the host healthy cells
present with it, which play key roles in driving tumor cell proliferation. Signaling
interactions between the stromal and the neoplastic tissue may ultimately prove to
be as important as the cancer cell autonomous mechanisms in explaining tumor
cell proliferation (Hanahan and Weingberg, 2000). The importance of the immune
system fighting the growth of tumors is undeniable, to the point that immunother-
apy is lately focusing major attention of cancer therapists and researchers (Couzin-
Frankel, 2013). Also chemotherapy treatments are under constant examination, in
the pursuit of better distribution mechanisms that diminish the toxicity of the anti-
cancer drugs (Pastorino et al., 2006), as well as protocols that evade the resistance
of tumor cells to such cytotoxic substances (Lavi et al., 2012). Mathematical
modelling of tumor growth (Bellomo et al., 2008) has been widely used to ex-
plain different aspects of tumor progression, such as tumor dormancy, sneaking
through, angiogenic switch, invasion, morphology, etc. Therefore, the develop-
ment of validated and simple mathematical models representing several types of
tissues and the nonlinear interactions among them, as well as therapy protocols, is
of paramount importance.

The main goal of the present work is to develop a validated ODE model of
tumor progression with three interacting cell populations representing the healthy
tissue, the neoplastic tissue and the immune effector cells. For this purpose we
derive the dynamical system equations from a similar validated model describing
immune and tumor dynamics (De Pillis et al., 2005), but that considers different
cell populations for innate and specific immune responses and disregards tumor-
host interplay. Here, the immune response is integrated in a single cell population,
as it was the case of older models (De Pillis and Radunskaya, 2003), allowing us
to include a population representing the healthy tissue and still to visualize in a
simple manner their dynamical phase space. By means of the least-squares fit-
ting method, we adjust the model to experimental data (Diefenbach et al., 2001),
verifying that the lysis of cancer cells by the effector constituents of the immune
system is accurately reproduced by the model. As a completely new feature re-
garding previous modelling of this nature, we also introduce a chemotherapy pro-
tocol validated with in vivo experiments in mice (Hiramoto and Ghanta, 1974).
To reproduce the time evolution of the experimental fractional tumor cell kill by
the chemotherapeutic agents a new method is proposed, that avoids dealing with
complex pharmacokinetical models. The study is closed with the examination of
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correlations between the model and the experiments.

2. Model development

All the biological assumptions considered to set up the model equations are
based on both accepted knowledge of basic laws governing tumor growth and the
immune system function (De Pillis et al., 2005; Diefenbach et al., 2001; Kuznetsov
et al., 1994). The tumor-host competition for space and resources is developed fol-
lowing previous modelling (De Pillis and Radunskaya, 2003; Gatenby and Gawl-
insky, 1996; Kirschner and Panetta, 1988; Pinho et al., 2002), while the law gov-
erning the fractional tumor cell kill of by the chemotherapeutic drugs is derived
from the exponential kill model (Gardner, 1996), developed in accordance with in
vitro experiments.

The growth of the cell populations is assumed to be logistic for both the tumor
T and the healthy cells H , with growth rates r1 and r2, and carrying capacities
K1 and K2. Other types of laws, such as Gompertz law, have no relevant conse-
quences in the dynamics, and might be used as well. We use ordinary competition
terms frequently appearing in Lotka-Volterra models, identical to those used in
De Pillis and Radunskaya (2003) and Gatenby and Gawlinsky (1996). Finally, the
immune response and the destruction of the neoplastic tissue is built up from the
one presented in De Pillis et al. (2005), which was validated with data from pub-
lished mouse (Diefenbach et al., 2001) and human (Dudley et al., 2002) studies.
The model of cell-mediated immune response described in that work consists of a
tumor cell population T interacting with two immune cell populations, the natural
killers N and the CD8+ T lymphocytes L. The fractional tumor cell kill by T
cells is given by a Hill function D(L, T ) depending on L/T , while the fractional
tumor cell kill by NK cells is proportional to the number of such cells. The NK
cells dynamics is modelled with four terms: a constant input σ responsible for
innate immunity, a recruitment contribution gT 2/(h + T 2)N , a competition term
pNT with tumor cells, and a decay term representing the death fN of the natural
killers, which after several interactions with the tumor cells become inactivated.
The CTLs dynamics is governed by analogous laws, but there is no constant in-
put of cells, since they correspond to acquired immunity. On the other hand, it
includes the stimulation of T lymphocytes in response to the interaction between
NK and tumor cells rTN . The activation term is jD2T 2/(k +D2T 2)L, the death
term is mL and the competition one is qLT .

It can be numerically shown that for many initial conditions and not long times
these two immune cell populations are more or less related in a linear fashion.
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In this manner, we identify them and linearly combine their equations, simply
referring to them as effector cells E. The resulting model is

Ṫ = r1T

(
1 − T

K1

)
− a12HT − a13ET −D(E, T )T

Ḣ = r2H

(
1 − H

K2

)
− a21TH

Ė = σ − d3E + g̃
T 2

h̃+ T 2
E + g

D2(E, T )T 2

h+D2(E, T )T 2
E − a31TE,

(1)

with

D(E, T ) = d
(E/T )λ

s+ (E/T )λ
. (2)

This fractional cell kill law was a novel feature discovered and introduced in
De Pillis et al. (2005), so deserves some comments. To give some hints on the
significance and possible explanations of this law we rewrite it in the following
form

D(E, T ) = d
Eλ

sT λ + Eλ
. (3)

Written this way, the law states that the more effector cells, the greater the
fractional cell kill, but bearing in mind the saturation of antigen-mediated immune
response, which depends on the tumor load. The value for which the fraction cell
kill is half of its maximum is given by Ehm = s1/λT , what means that bigger
tumors are harder to fight by T lymphocytes. If two tumors of the same nature and
different size at a certain time instant, are lysed at the same rate by the immune
system, the bigger tumor will require more effector cells. This is because an im-
mune cell destroys tumor cells one by one and the number of encounters is limited
by the inactivation of the effector cells. Or equivalently, if two tumors of different
size are reduced to a particular fraction of its size after a certain period of time, the
bigger tumor will require more effector cells. On the other hand, in our opinion,
the saturation effect in this law might be tacitly including geometrical properties
of the tumor and their consequences (e.g., crowding effects and accessibility of
the immune cells). We believe that it would be desirable to propose a general law
of the form

D(E, T ) = d
Eλ

h(T ) + Eλ
, (4)
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and study different functions depending on the tumor load h(T ) for different
tumors. In the cited work h(T ) = sT λ is used. We have tested the impor-
tance of the parameter λ by studying deviations from this function in the form
h(T ) = sT λ+∆λ, and we have found that shifts ∆λ/λ even higher than one are
still capable of validating in an accurate manner the immune response by sim-
ply decreasing the value of the parameter s. The precise relation between ∆λ
and s is depicted in Fig. 1, and it is explained by noting that the function h(T )
can be thought as a surface in the parameter space (λ, s), so that changes in the
parameters along a level curve sT λ = c(T ) are also capable of validating the ex-
perimental results. This means that the rational form E/T appearing in (2) may
not generally hold, and can not be derived solely from the experiments used in
De Pillis et al. (2005). What can be safely deduced from such experiments is that
h(T ) increases with the tumor size. Therefore, the dePillis-Radunskaya-Wiseman
law (PRW law) states that the number of the T cells for which the fractional tumor
cell kill is half of its maximum, increases monotonically with the tumor burden.
It remains unexplained why the same does not happen for the NK cells as well.
As pointed out in De Pillis et al. (2005), this might be due to the fact that NK
cells are less effective destroying tumor cells. Generally, a T lymphocyte is able
to destroy more tumor cells during its life cycle than a natural killer cell (Mallet
and De Pillis, 2006). Note also that to obtain similar values for the lysis of tumor
cells by T cells and NK cells, much higher values of the Effector:Target ratio are
required for the last (De Pillis et al., 2005). This hypothesis is also supported by
the fact that the PRW law fits better the experimental results for which the immune
system is more effective, as can be seen in Fig. 2.

The model shown above fits the data accurately, but it is quite hard to manage
when investigating its dynamical properties. A simplified version of this model
capable of reproducing experimental data can be obtained by neglecting the re-
cruitment and lysis of the NK cells, which are more ineffective fighting the tumor
cells. Note however, that the role of the NK cells is indirectly present in the model,
in the background source rate σ. The equations are now

Ṫ = r1T

(
1 − T

K1

)
− a12HT −D(E, T )T

Ḣ = r2H

(
1 − H

K2

)
− a21TH

Ė = σ − d3E + g
D2(E, T )T 2

h+D2(E, T )T 2
E − a31TE.

(5)
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Figure 1: In this figure, we show the changes in the parameter s required to validate the model
when the parameter λ in the function h(T ) = sTλ is changed to λ + ∆λ. The case ∆λ = 0
corresponds to the (ll) values shown in Tab. 1. The relation is explained by the level curves
of the function sTλ in the parameter space (λ, s), which can be expressed in the form log s =
log c(T ) − λ log T . Averaging this equation in time, we obtain the equation log s = a − bλ.
A linear regression has been performed to confirm the previous assertion, obtaining the relation
log s = −0.46 − 5.79∆λ, with a coefficient of determination R2 = 0.9996.

The chemotherapy treatment is here described by the exponential kill model,
which proposes the fractional cell kill law ki(C) = bi(1− e−ρiC), with i = 1, 2, 3,
and C the drug concentration at the tumor site, which dynamics is given by a
single compartment model and first order pharmacokinetics. Therefore, the whole
set of equations reads

Ṫ = r1T

(
1 − T

K1

)
− a12HT −D(E, T )T − k1(C)T

Ḣ = r2H

(
1 − H

K2

)
− a21TH − k2(C)H

Ė = σ − d3E + g
D2(E, T )T 2

h+D2(E, T )T 2
E − a31TE − k3(C)E

Ċ = I(t) − keC,

(6)
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with I(t) the input of drug and ke the rate of elimination of the drug from the
body. In fact, to reproduce in vivo experiments the fractional cell kill law k(C) is
modeled depending on the time-delayed concentration of drug C(t− τ).

Finally, the cooperation between the healthy and the tumor tissues is not mod-
elled here. The reason is that the paracrine signals stimulating tumor growth come
from ancillary cells (e.g. fibroblasts), different from the host cells (e.g. epithelial
cells) from which the tumor evolves (Olumi et al., 1999). Moreover, the stromal
cells cooperating with the tumor differ from the normal stromal cells. Therefore,
a model with several healthy cell populations representing the different types of
tissues should be considered to rigorously represent the tumor microenvironment.

3. Fitting the model to experimental data

We fit both, the model and its simplified version, to four experimental situa-
tions, proving that the tumor-immune interaction is again validated with accuracy.
The data used to arrange the equations and fix the parameters of our mathematical
model are obtained from Diefenbach et al. (2001). In this work the authors study
the effects of ectopically expressing NKG2D ligands in three tumor cell lines,
which resulted in the rejection of the tumors by syngeneic B6 mice. Such rejection
was mediated by NK cells and CD8+ T cells. Their experimental results demon-
strate that a high enough expression of these ligands creates a significant barrier
to the tumor establishment in mice. In particular, the data borrowed from this
work and used to fit the model corresponds to the point where the authors address
whether prior immunization with tumor cells that express ligands of the NKG2D
receptor induces protective immunity to ligand-negative tumor cells. The NK and
CD8+ T cells lysis of a T-cell lymphoma after primary challenging with ligand-
expressed cell transductants and being again challenged with ligand-transduced or
ligand-negative-transduced cells is reported. More specifically, we deal with four
possible scenarios: a primary challenge with control-transduced cells followed by
a secondary challenge with ligand or control cells, and a primary interaction with
ligand-transduced cells followed again by ligand or ligand-negative rechallenges.

Firstly, we give a summary of the parameters used, which are listed in Table 1
and Table 2, together with the corresponding sources in which the parameter esti-
mation methods are explained. As in Gatenby and Gawlinsky (1996), we consider
similar carrying capacities Ki for the tumor and the healthy tissue, assuming that
generally the tumor occupies a region that otherwise would be filled with normal
cells. Also the rates of growth ri of both cell populations take very close values,
following the same reference, but we assume that the tumor grows faster in the
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absence of competition and immune surveillance, since its dependence on cell to
cell signaling for growth is smaller (Hanahan and Weingberg, 2000). These four
parameters, the recruitment rates and steepnesses, the constant input, as well as
the inactivation rate of the effector cells, are borrowed from Refs. 6 and 10. It has
been demonstrated that the Gompertz law of growth of tumor cell populations is a
robust emergent feature of cancer dynamics under nutrient competition among tu-
mor cells (Ferreira et al., 2002). It is commonly considered (De Pillis and Radun-
skaya, 2003) that the competition between the neoplastic and the healthy tissues is
indirect, what means that cells do not kill each other, but struggle for territory and
nutrient resources. However, a very important source of competition between the
tumor and the healthy host cells is due to the acidic environment in which tumor
cells develop, which is a consequence of the primitive metabolic pathways they
use (Gatenby and Gawlinsky, 1996; Warburg, 1956; Van der Heiden et al., 2009).
In fact, if we neglect spatial dependence in the equation governing the excess of
H+ ions in the model presented in Gatenby and Gawlinsky (1996), the stationary
state gives a fixed point for ion concentration proportional to the number of tumor
cells. Clearly stated, the more tumor cells, the lower the pH and the worse for the
healthy tissue. When substituted in the reaction-diffusion equation governing the
dynamics of the healthy host cells, we obtain another competition term between
the host and the tumor cells. Therefore, we assume that the tumor cells compete
in a more aggressive manner and set a12 < a21. The effects of changing these
parameters is reported in Sec. 4, and rough estimates are provided in Sec. 6.

According to the experiments taken from Diefenbach et al. (2001), the model
validation should be carried out in two separate steps, one for each type of effector
cells. For instance, the first could involve the validation of the results concerning
NK cells to obtain the value of the parameter a13 for the ligand and ligand-negative
transduced cells. Then, after setting a13 to zero, the experimental lysis of CD8+

T cells should be fitted for the different cases. Finally, both contributions would
be added to the model. However, another possibility is to fit only CTLs results
and let the parameter a13 take diverse values. This procedure allows more accu-
rate fittings and has the advantage of suggesting a generalization of the PRW law,
as explained at the end of the present section. To avoid the risks of overfitting
because of using too many parameters, we have to proceed carefully. Since the
model is derived from an original validated model, we take the values of a13 used
in such work and modify them the least as possible to obtain curves that resemble
the ones shown there. The same procedure is followed for the steepness s of the
saturation term in the PRW law. Then, the curves are fitted using the parameters d
and λ. Trajectories are runned up to a maximum time of four hours tmax = 0.167
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(a) (b)

(c) (d)

Figure 2: The data and the predicted curves from the models for the lysis of tumor cells by the
effector cells. The green curve represents the general model, while the blue corresponds to its
simplified version. (a) The experiment where the effector cells are primary challenged with ligand-
negative-transduced cells and then rechallenged again with control-transduced cells (nn). (b) The
case for which the effector cells are primary challenged with ligand-negative-transduced cells and
then rechallenged with ligand-transduced cells (nl). (c) In this case the effector cells are primary
challenged with ligand-transduced cells and then rechallenged with control-transduced cells (ln).
(d) The experiment where the effector cells are primary challenged with ligand-transduced cells
and then rechallenged again with ligand-transduced cells (ll).
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(a) (b)

(c) (d)

Figure 3: The differences between the experimental data and the model estimated values (residu-
als) obtained from the predicted curves for the lysis of tumor cells by effector cells. The green bars
correspond to the the general model, while the blue bars belong to its simplified version. They are
more or less randomly distributed. (a) The (nn) case represented in Fig. 2(a). (b) The (nl) case
represented in Fig. 2(b). (c) The (ln) case represented in Fig. 2(c). (d) The (ll) case represented
in Fig. 2(d).
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days, at which the lysis of tumor cells 1 − T/T0 is measured in the experiments.
Initial conditions are chosen to guarantee that the experimental Effector:Target
ratios E0/T0 belong to the computed interval. The lysis of the tumor cells is ob-
tained at tmax for the various initial conditions and optimization is achieved by
the least-squares method using a grid of values for the two parameters. The fit-
ted curves for the model and its simplified version are shown in Fig. 2, while the
residuals are depicted in Fig. 3. The general model fits the data nicely, with ran-
domly distributed residuals. As expected, the reduced version gives worse results,
specially for the control-transduced cells. The first four points in Fig. 2(a) and
Fig. 2(b) can be fitted with exactness, but not the last one. Hence, a combination
of a nonsaturating law with the PRW law gives considerably better results for the
cases in which the immune response is less effective. These results suggest ex-
tending the PRW law by considering a fractional cell kill F (E, T ) given by the
sum of a power law function and a Hill function

F (E, T ) = cEν + d
Eλ

h(T ) + Eλ
. (7)

Two limits can be clearly distinguished in this law. On the one hand, we have
the situation in which the immune response is more or less effective c ≈ 0, as
shown in Figs. 2(c) and 2(d). On the other hand, an ineffective immune response
is given by d ≈ 0, which corresponds to the NK cell lysis in De Pillis et al.
(2005). Intermediate situations are better represented by (7), as shown in Figs. 2(a)
and 2(b). An heuristic explanation as to why less effective cells do not show
saturation in practice can be given as follows. Suppose that we have two identical
tumors of size T in presence of the same number of effector cells, but the first E
being very effective recognizing and lysing tumor cells, while the second Ẽ being
ineffective. The difference between these two cell populations can be represented
by considering that in the second case only a small fraction f of the effector cells
are interacting with the tumor Ẽ = fE. Therefore, the PRW law becomes

D(Ẽ, T ) = d
fλEλ

h(T ) + fλEλ
= d

Eλ

h̃(T ) + Eλ
, (8)

where h̃(T ) = h(T )/fλ. In the case f � 1, and as long as E is not much
higher than T , we get h̃(T ) � Eλ, what yields the fractional cell kill D(E, T ) =
Eλ/h̃(T ). If the variation of T is small or h(T ) varies slowly with T , then the
approximation cEλ holds. For example, if we consider the parameter values of
the (ll) experiment in Tab. 1 and take f = 10−4, then we get a value for h̃(T )
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Parameter Units Value Description Source
r1 day−1 5.14 × 10−1 Tumor cells growth rate (6)
K1 cell 9.8 × 108 Tumor carrying capacity (6)
a12 cell −1 day −1 1.1 × 10−10 Competition of host cells with tumor cells

a13(nn) cell−1 day−1 5.2 × 10−8 Fractional tumor cell kill of the power law (6)
a13(nl) 1.6 × 10−7 (6)
a13(ln) 3.2 × 10−8 (6)
a13(ll) 8.5 × 10−9 (6)
d(nn) day−1 2.20 Saturation level of fractional tumor cell kill of the PRW law
d(nl) 3.47
d(ln) 2.60
d(ll) 7.86

s(nn) None 1.6 Steepness coefficient of the PRW law
s(nl) 2.5
s(ln) 1.4 × 10−1

s(ll) 4.0 × 10−1

λ(nn) None 1.2 × 10−1 Exponent of the PRW law
λ(nl) 2.1 × 10−1

λ(ln) 7.0 × 10−1

λ(ll) 7.0 × 10−1

r2 day−1 1.80 × 10−1 Host cells growth rate (6,11)
K2 cell 1.0 × 109 Host cells carrying capacity (6,11)
a21 cell −1 day −1 4.8 × 10−10 Competition of tumor cells with host cells

σ cells day−1 7.5 × 104 Constant source of effector cells (10)
d3 day−1 6.12 × 10−2 Inactivation rate of effector cells (6)
g̃(n) day−1 2.5 × 10−2 Maximum recruitment rate related to the power law (6)
g̃(l) 2.0 × 10−1 (6)
g(nn) day−1 3.75 × 10−2 Maximum recruitment rate related to the PRW law (6)
g(nl) 3.75 × 10−2 (6)
g(ln) 1.13 × 10−1 (6)
g(ll) 3.00 × 10−1 (6)
h̃ cell2 2.02 × 107 Steepness coefficient for recruitment related to the power law (10)
h cell2 2.02 × 107 Steepness coefficient for the recruitment related to the PRW law (10)
a31 cell −1 day −1 2.8 × 10−9 Immune-tumor competition (10)

Table 1: The values of the parameters used to compute the curves representing the lysis of cancer
cells by the effector cells, for the general model given by (1). The parameters of the PRW law, λ
and d, are obtained by a least-squares fitting of the solutions of the system of differential equations
to the experimental data. The parenthesis represent four different cases: a primary challenge with
control-transduced cells followed by a secondary one with ligand (nl) or control (nn) cells, and a
primary interaction with ligand-transduced cells followed again by ligand (ll) or ligand-negative
(ln) rechallenges.

two or three orders of magnitude higher than Eλ, depending on the values of the
Effector:Target ratio.
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Parameter Units Value Description Source
r1 day−1 5.14 × 10−1 Tumor cells growth rate (6)
K1 cell 9.8 × 108 Tumor carrying capacity (6)
a12 cell −1 day −1 1.1 × 10−10 Competition of host cells with tumor cells
d(nn) day−1 2.6 Saturation level of fractional tumor cell kill of the PRW law
d(nl) 7.1
d(ln) 2.7
d(ll) 7.9

s(nn) None 1.8 Steepness coefficient of the PRW law
s(nl) 5.0
s(ln) 1.4 × 10−1

s(ll) 4.0 × 10−1

λ(nn) None 2.2 × 10−1 Exponent of the PRW law
λ(nl) 2.5 × 10−1

λ(ln) 7.3 × 10−1

λ(ll) 7.0 × 10−1

r2 day−1 1.80 × 10−1 Host cells growth rate (6,11)
K2 cell 1.0 × 109 Host cells carrying capacity (6,11)
a21 cell −1 day −1 4.8 × 10−10 Competition of tumor cells with host cells

σ cells day−1 7.5 × 104 Constant source of effector cells (10)
d3 day−1 6.12 × 10−2 Death of effector cells (6)

g(nn) day−1 3.75 × 10−2 Maximum recruitment rate related to the PRW law (6)
g(nl) 3.75 × 10−2 (6)
g(ln) 1.13 × 10−1 (6)
g(ll) 3.00 × 10−1 (6)
h cell2 2.02 × 107 Steepness coefficient for the recruitment related to the PRW law (10)
a31 cell −1 day −1 2.8 × 10−9 Immune-tumor competition (10)

Table 2: The values of the parameters used to compute the curves representing the lysis of cancer
cells by the effector cells, for the simplified model given by (5). The parameters of the PRW
law, λ and d, are obtained by a least-squares fitting of the solutions of the system of differential
equations to the experimental data. The parenthesis again represents four different cases: a primary
challenge with control-transduced cells followed by a secondary one with ligand (nl) or control
(nn) cells, and a primary interaction with ligand-transduced cells followed again by ligand (ll) or
ligand-negative (ln) rechallenges.
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4. Parameter and phase space analysis

Even though the simplified model fits better the experiments where cells are
primary challenged with ligand-transduced cells, to study the dynamics we con-
centrate on the control-transduced choice of parameters. The reason is that the cell
lines used in the experiments do not normally express ligands of the NKG2D re-
ceptor (Diefenbach et al., 2001). We begin by nondimensionalizing (5), redefining
the cell populations and the time

T̃ =
T

K1

, H̃ =
H

K2

, Ẽ =
r1E

σ
, t̃ = tr1. (9)

The new parameters are related to the previous ones in the following way

ã12 =
a12K2

r1

d̃ =
d

r1

s̃ = s

(
K1r1

σ

)λ

r̃2 =
r2

r1

ã21 =
a21K1

r1

d̃3 =
d3

r1

ã31 =
a31K1

r1

g̃ =
g

r1

h̃ =
h

(K1r1)2
.

(10)

Dropping the tildes, our nondimensionalized system becomes

ẋ = x(1 − x) − a12yx−D(x, z)x

ẏ = r2y(1 − y) − a21xy

ż = 1 − d3z + g
D2(x, z)x2

h+D2(x, z)x2
z − a31xz.

(11)

The rescaled parameters are a12 = 0.195, d = 5.0, λ = 0.21, s = 11.5,
r2 = 0.35, a21 = 0.954, d3 = 0.112, g = 0.29, h = 7.95 × 10−11 and a31 = 5.25.
Unless specified, these parameters are used all along our study.

We now describe all the nullclines and equilibria for the current set of param-
eters. The fixed points of the system are given by ẋ = ẏ = ż = 0, which yields
the system of equations

0 = x (1 − x− a12y −D(x, z))

0 = y (r2 − r2y − a21x)

0 = 1 − d3z + g
D2(x, z)x2

h+D2(x, z)x2
z − a31xz.

(12)
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Nullclines can be read directly from (12). There is a total of five nullclines:
the x − z and y − z planes, the surface S1 represented by the implicit equation
1 − x − a12y − D(x, z) = 0, the plane Π given by r2 − r2y − a21x = 0, and
the surface S2, which implicit equation is given by the last of the three equations
shown above. If we restrict our attention to the biologically meaningful region,
which is the positive octant R+ × R+ × R+, the intersections of the different
nullclines yield five different fixed points x∗i , as shown in Fig. 4. We give the
numerical values of the fixed points and also analyze their stability by examining
the eigenvalues of the Jacobian at each of them.

Figure 4: The positive octant of the phase space with the nullclines and the fixed points. The
surfaces represent the different nullclines, with the fixed points placed at some of their intersec-
tions. Every fixed point is the intersection of three surfaces. The surface S2 has not been ploted
completely for clarity, but it also intersects the y − z plane. The green point is the healthy state,
while the red point is the tumor stable fixed point. The other three fixed points are saddles.

The first fixed point is x∗1 = (0, 0, d−1
3 ), in particular (0, 0, 8.93), a saddle with

two positive eigenvalues corresponding to the x-axis and the y-axis, and a nega-
tive eigenvalue along the z-axis. The point x∗2 = (0, 1, 8.93) represents the healthy
state, for which there are only healthy and immune cells. Therefore, we represent
it in green color. This fixed point is stable, being one of the attractors of the dy-
namical system. The other stable fixed point is x∗3 = (0.65, 0, 0.31), representing
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a stable solution for which there are only tumor and immune cells. As in previous
works (Gatenby and Gawlinsky, 1996), we associate this fixed point to malig-
nant growth, so we have colored it in red. The fixed point x∗4 = (0.06, 0, 6.55)
is a saddle fixed point with two unstable and one stable directions, separating the
stable tumor attractor and the state x∗1, which is attractive in such plane, and for
which there are only immune cells. A stable and an unstable direction are in the
plane y = 0, while the remaining unstable direction is given by the eigenvector
(0.01, 0.08, 1). The last fixed point is x∗5 = (0.1, 0.74, 3.02), corresponding to the
saddle fixed point, which two dimensional stable manifold separates the basins of
attraction of the healthy and the tumor stable states. Hence, the system is bistable.
The evolution of the three cell populations for an initial condition leading to the
malignant tumor state is shown in Fig. 5(d).

We begin the parameter analysis studying the effects of varying d, that affects
the intensity with which the immune system destroys cancer cells. In Figs. 5(a)
and 5(b) we depict the change in the basins size due to increasing such param-
eter to a value of d = 6.5, while in Fig. 6(a) a bifurcation diagram is computed,
showing the evolution of the fixed points as such parameter is varied. Starting
from high values of d, for which there is only a healthy stable state and the fixed
point x∗1, the parameter reaches a critical value of dc = 7.4185 and a saddle-node
bifurcation occurs. Another similar bifurcation appears for dc = 7.4095. In total,
four fixed points are born: three unstable and one stable. Only two of them are in
the positive octant, the tumor fixed point x∗3 and x∗4, both unstable. As we keep on
decreasing the immune strength, for a value of dc = 7.2650, the stable fixed point
enters the positive octant and a transcritical bifurcation occurs, through which the
malignant state switches its stability with the stable fixed point. These results are
in agreement with Diefenbach et al. (2001), where cells that express ligands reject
tumors, while control cells do not. The existence of a critical value dc beyond
which there is not a malignant tumor attractor constitutes an important prediction
of the model, and might be used to estimate the minimum level of ligands required
to ensure tumor regression through ligands expression. Also the parameter s is im-
portant in the model. Its behavior is opposed to the previous. As it is decreased,
for a value of sc = 7.55, a transcritical bifurcation occurs, turning unstable the
malignant attractor. It again disappears through a saddle-node bifurcation for the
critical value sc = 7.35. However, the parameter λ does not change the stability of
our dynamical system after considerable variations (even twenty times), although
its increase leads to more negative eigenvalues of the tumor attractor, making this
fixed point more attractive.

Looking at the basin of attraction in Fig. 5(c), it might result surprising that a
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Figure 5: (a) The stable manifold of the fixed point x∗5 (blue) separating the basins of attraction of
the healthy x∗2 (green) and the tumor x∗3 (red) stable fixed points for d = 5.0. (b) Same figure but
for d = 6.5. As the immune system response is stronger, the healthy basin enlarges and the tumor
coordinate of the malignant attractor becomes smaller. (c) A section of the basins of attraction for
z = 3.5. Oncogenic mutations can be understood as a crossing from the green basin to the red
one. (d) Time series with the evolution of the three cell populations (nondimensional variables).
As the tumor starts growing and replacing the normal tissue, the immune system orchestrates his
response, activating the effector cells to counteract the proliferation of tumor cells. However, the
effort is insufficient.

healthy state is always stably preserved. The reason is that cancer is the result of
accumulated mutations and no mutations between healthy and cancerous pheno-
types have been considered in the present model. This is in accordance, but also
in contrast, with a simple logistic growth model, for which the zero value of the
tumor cell population is a fixed point, but it is unstable, so that any small pertur-
bation pulls the dynamics away from it. The homologous to such zero cell popu-
lation fixed point in the present model is x∗1, which is always unstable. However,
as we argue in detail in the next paragraph, a healthy stable state will be preserved
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Figure 6: (a) The bifurcation diagram for the tumor coordinate as we vary the parameter d, asso-
ciated to the maximum fraction cell kill of the effector cells. As such parameter is decreased from
values d > 7.4, for which there is only a healthy state, two saddle-node (SN1 and SN2) bifurca-
tions occur, giving birth to four fixed points, among which figures the tumor one, still unstable.
Later on, a transcritical bifurcation (TC) turns the tumor stable fixed point x∗3 stable, by switching
stability with another fixed point. The stable attractor is shown in green, while the unstable saddles
are painted in red. (b) The bifurcation diagram for the tumor coordinate as we vary the parameter
a21. For high values of a21, the fixed point x∗6, corresponding to an equilibria for which all the
cell populations coexist, is unstable and placed out of the positive octant. As we decrease a21, it
enters the positive octant and switches stability with the malignant tumor fixed point x∗3 through a
transcritical bifurcation (TC). The tumor shrinks as we keep on decreasing the value of a21.

unless the action of the immune system and the competition of the healthy cells
with the cancer cells are negligible, what is in consonance with the fact that apop-
tosis is a major barrier to tumor growth that must be circumvented (Hanahan and
Weingberg, 2000). The effect of mutations can be associated to a passage from
one basin to the other. The smaller the basin of attraction of the healthy point is,
the easier for a tumor to be born. Mutations can be modeled in several manners,
for example, considering multiplicative noises on some parameters of the model,
or introducing balanced decay and growth terms in the host and the tumor cell
differential equations respectively (Ideta et al., 2008; Gardner, 2002), like in the
quasispecies formalism (Nowak, 1992).

Concerning the tumor-host competition terms a12 and a21, the following be-
havior is observed. In an ordinary Lotka-Volterra competition model with two
populations (N1,N2) (no immune response), the stability of the fixed point (0, K2)
depends upon the competition term a12 affecting the other population, and vice
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versa. In such a model, if a12 > r1/K2, then the fixed point (0, K2) is stable,
while if it is smaller, the point becomes unstable. The immune system introduces
an innovation in this scenario as long as d is not very small, since no matter how
small a12 is made, the effector cells are killing tumor cells, what means that there
is always a healthy state. On the other hand, if we decrease the parameter a21 more
than the critical value 0.535, a transcritical bifurcation occurs for which the tumor
fixed point x∗3 becomes unstable and a equilibria x∗6 representing the coexistence
of the three species arises in the positive octant, becoming stable. As can be seen
in Fig. 6(b), for a21 = 0.5 such equilibria is x∗6 = (0.63, 0.10, 0.32). A big tumor
coexists with the healthy tissue. As we keep on decreasing the value of a21, the
tumor shrinks and the healthy tissue swells, what corresponds to a more benignant
state. Thus, the maximum size a tumor can reach according to our model, depends
noticeably on its capability to reduce the host healthy cells living with it, which in
part is related to aerobic glycolysis.

5. Fitting the chemotherapy treatment to experiments

Therapies are the main practical reason for studying tumor growth. Two im-
portant restrictions in the application of chemotherapy are the toxicity of the drugs
and the resistance of tumor cells to such cytotoxic agents. In order to properly
model and understand these two processes in our context, a realistic modelling of
chemotherapy must be attained in the first place. Depending on their particular
mechanism of action (alkylation, topoisomerase inhibition, antimetabolism, etc.),
cytotoxic chemotherapeutic agents can be classified in two main groups: cell cy-
cle specific (CS) and nonspecific (CNS). Both types of drugs appear commonly
combined in many therapies. For example, locally advanced breast cancer uses cy-
clophosphamide, doxorubicin and docetaxel. Therefore, we shall utilize a model
capable of reproducing CS and CNS drugs, preferably not requiring explicit mod-
elling through several cell populations in different stages of the cell cycle, as in
other works (Panneta and Adam, 1995). A mechanistic model that has been tested
with in vitro experiments for both types of drugs is the exponential kill model.
This model has been already used (De Pillis et al., 2005; Gardner, 2002; De Pillis
et al., 2006), and proposes a fractional cell kill law of the form

k(C) = b(1 − e−ρC), (13)

where C is the drug concentration at the tumor site, and for CS drugs b depends
on the fraction of cells in a vulnerable part of the cell cycle at a certain time
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instant, and the cells rate of entry and abandon of such phase of the cycle. In
the case of CNS drugs such parameter is equal to one. The scaling parameter
ρ is related to the levels of drug resistance. This factional cell kill law means
that for a given dose of drug, after a certain period of time the tumor is reduced
to a particular fraction of its size, no matter how big or small it was initially
(Hiramoto and Ghanta, 1974). Survival fractions can be analytically obtained
assuming exponential growth and constant concentrations of the drug (Gardner,
1996), but neither of these two situations generally hold for in vivo experiments.
We have modified this law so that it depends on the time-delayed concentration.
This is the simplest modification we have been able to elucidate that permits to
fit the data. The significance of this method will be discussed ahead. In this first
approach, to fit the experiments we neglect the cytotoxic effects of the drug on the
healthy tissue. The resulting nonautonomous dynamical system reads

ẋ = x(1 − x) − a12yx−D(x, z)x− b(1 − e−ρu(t−τ))x

ẏ = r2y(1 − y) − a21xy

ż = 1 − d3z + g
D2(x, z)x2

h+D2(x, z)x2
z − a31xz,

(14)

with u(t) = u0e
−ket for t ≥ 0 and zero if t < 0. Hence, a single dose of drug

is administered at t = 0, but it starts to cause its effect at time τ . The relations
between the chemotherapy parameters of the nondimensional model and the orig-
inals shown in (6) are

b̃ =
b

r1

τ̃ = τr1 k̃e =
ke
r1

, (15)

where tildes have been excluded again in (14).
The data used to fix the parameters of the chemotherapy treatment are bor-

rowed from Hiramoto and Ghanta (1974). In this study a plasmacytome is inocu-
lated into BALB/c mice and allowed to grow up to a certain size. Then the animals
receive cyclophosphamide, a cell cycle nonspecific alkylating agent, and tumor re-
gression is observed days later. To validate the modelled chemotherapy treatment,
we use the results from two experiments. In the first one, five mice are given sub-
cutaneous injections of 1×103 viable MOPC 104E cells, and the tumor is allowed
to grow up to 0.09 g (1 g equals 1× 109 tumor cells). Cyclophosphamide is given
at a single dose after palpable nodules are present. In the second experiment three
mice receive intravenous injections of 1 × 106 cells of the same cell line, and the
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tumor is allowed to proliferate up to maximum size of 2.90 g. They use three
mice as control with mescaline treatment and three more with a single dose of
cyclophosphamide. They are able to estimate the size of the tumor from the im-
munoglobuline M levels using a linear model Ṁ = T−kM , beingM the IgM lev-
els and T the tumor size, which is assumed to grow exponentially T (t) = T0e

αt,
with α a function of the doubling time of tumor cells. The parameter k represents
the removal rate of IgM from circulation. The dose of drug administered in the
experiments is 200 mg/kg, and the mice weight around 20 g, so we take u0 = 4
mg. We consider that the drug elimination rate is ke = 2.5 day−1, what approxi-
mately corresponds to a half-life of 6.5 h. In the first experiment in Hiramoto and
Ghanta (1974), the averages of the tumor weight and the mass percentage of the
tumor respect to the total mass are reported. In the second experiment the same
magnitudes are addressed for each of the three mice. We limit ourselves to the
first mouse results, which tumor grows bigger. Because no data concerning the
tumor-immune interaction is provided in these two experiments, we can not prop-
erly fit the model given by (5). For this reason, we use the nondimensional model
with the parameter values given in Sec. 4, and the mass percentage of the tumor
measured in the experiments, and set the initial conditions (x0, y0, z0) proceeding
as follows. In the first experiment the therapy begins at day 22, when the tumor
size reaches the 4 % of the total body weight. Therefore, we consider that the x
coordinate of the fixed point associated to the malignant tumor state x∗3, represents
a size of 5 % of the total body, i. e., x0 = x∗3 · 0.4/0.5. An identical prescription is
followed with the second experiment, for which the tumor reaches a size of 12 %
of the total body weight. Now we make x0 = x∗3 · 12/15. Since in the second ex-
periment large implants of intravenously disseminated tumors are studied, while
the first experiment deals with small localized subcutaneous tumors, we consider
different initial conditions concerning the effector cells for each experiment, as-
suming that in the second one the immune response is stronger. In particular, the
values we use are respectively z0 = 7.0 and z0 = 1.0. The initial condition for
the healthy tissue is taken y0 = 0.5 in both experiments. These initial conditions
lead to the tumor stable fixed point in the absence of treatment, and other choices
might be used as well. The parameter values τ and ρ arranged to fit the fractional
tumor cell kill by cyclophosphamide are obtained following the same method as
in Sec. 3. We show them in Table 3 for both cases. The time-delay is longer in the
first experiment, probably because small localized tumors are harder to reach than
large implants. The levels of drug resistance are certainly low (high values of ρ),
and similar for the two experiments.

In Fig. 7 and Fig. 8, we can see that the model validates well the experimental
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(a)

(b)

Figure 7: (a) Data in the first experiment and the model predicted curve for the tumor decay after
a single dose injection of cyclophosphamide is delivered into the mice. The y-axis represents the
fraction of tumor cells in the body. During the first days, the drug has little effect on the host,
and then the tumor cells are strongly reduced. (b) Data for the second experiment and the model
predicted curve for the tumor decay after a single dose injection of cyclophosphamide is delivered
into the mice.

results. During the first three/four days the drug has little effect on the tumor,
and from this day on a severe decrease is observed. Along these first days, we
recognize that the curves are slightly concave and then rise up, before cyclophos-
phamide starts to be effective. This is a consequence of the immune system, that is
destroying proliferating tumor cells. After this first period of time the drug starts
to cause its effect and dominates the dynamics during the next five/six days. From
this day on, the immune system takes care of the remaining part of the tumor and
the healthy tissue regenerates. The action of chemotherapy can be thought as a
passage from the red basin to the green one in Fig. 5(c). We believe that the lag
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in the action of the drug is due to complex pharmacokinetics. In general, it takes
a time for the drugs to reach the tumor site and be absorbed, as well as to inflict
damage to the proliferating cells through its cytotoxic mechanism. In particu-
lar, it might happen that different drugs have different time-delays, what might
play a role in modelling combination therapy when studying tumor resistance to
chemotherapeutic agents, and also their toxicity.

(a) (b)

Figure 8: (a) Residuals of the fitted data in the first experiment, corresponding to Fig. 7(a). (b)
Residuals of the fitted data in the second experiment, corresponding to Fig. 7(b).

The dynamical response to chemotherapy mainly consists in a change of the
basin size. The higher the dose, the bigger the healthy basin. The manifold sepa-
rating the basins of attraction moves to the right and rotates clockwise. The results
are similar to those shown in Fig. 5(a) and Fig. 5(b), and also in previous works
(De Pillis and Radunskaya, 2003), so we do not show them. It is important to
recall that the nonautonomous system given by (14) tends to the original system
asymptotically. This means that although the basins structure and size change dur-
ing the treatment, once the drugs are eliminated, the original dynamical system is
restored, and so they are its stability properties. Consequently, a tumor relapse
requiring to resume the chemotherapeutic treatment would be expected. On the
other hand, as shown in Sec. 4, therapies implying a change in the parameter val-
ues of the dynamical system, as it is the purpose of immunotherapeutic vaccines
(Diefenbach et al., 2001; De Pillis et al., 2006), are obviously more advantageous,
because they can change the stability properties of the dynamical system perma-
nently, preventing the disease from recurring.
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Experiment 1
Parameter Units Value Description

ρ mg−1 4.04 × 103 Level of drug resistance
τ day 4.18 Time-delay

Experiment 2
Parameter Units Value Description

ρ mg−1 4.03 × 103 Level of drug resistance
τ day 3.56 Time-delay

Table 3: The values of the level of drug resistance and the time it takes the drug to start causing its
cytotoxic effect. They are obtained through a least-squares fitting of the solutions of (14) to two
different experimental situations were mice are treated with cyclophosphamide.

6. Experimental correlations with the model

This section is devoted to expose some correlations between the model and
the experimental data appearing in Hiramoto and Ghanta (1974), with the aim
of obtaining rough estimations of the parameters a12 and a21. In particular, the
experimental results correspond to the same experiment as those shown in Fig.
7(b), but now we focus on the growth of the tumor before therapy is applied.
In that experiment, the actual body weight, which is defined as the difference
between the total weight of each mouse and the weight of their respective tumors,
is computed. For the cyclophosphamide treated group, the data are registered at
days 10, 18 and 21, the last corresponding to the beginning of the treatment (see
Fig. 9). It is hard to know if these variations are due to differences in the tumor
cells and the healthy cells interacting with them, consequence of other cells in
the body, changes in the metabolism or, more simply, nourishment. Nevertheless,
we believe that it is good to show that our model is compatible with such results,
mainly to assure ourselves that the parameter values of the competition terms
are biologically reasonable. For these reasons and because no data concerning
the tumor-immune interaction is available in these experiments, we do not fit the
curves.

We relate the total body weight to the sum of the three cell populations, while
the actual body weight is considered to be the sum of the healthy and the immune
cell populations. Since the last is considerably smaller than the former, the actual
population of cells looks like the normal cells population. We also consider the
approximation d = 0 (otherwise small tumor sizes lead to the healthy attractor),
which is reasonable during the first days of tumor growth, since it takes the body
some time to develop an immune response. The plots in Fig. 9 show similar
behaviors of the experimental data and the theoretical predicted values by the
model at days 18 and 21 for the three mice. In some cases the correspondence is
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not only qualitative, but also quantitative.
As we can see in Fig. 9, for the first mouse there is a decrease of the healthy

cell population, what implies a decrease of the actual and total populations at day
18. Later on, the tumor increases and the total population rises, while the healthy
host cells keep on being destroyed. Interestingly, in this case, a better correlation
between the experimental data and the theoretical predicted curves at day 21 can
be achieved if saturation of the competition term given by a21 with the tumor load
is considered. This saturation would be explained by the fact that competition
for space occurs between nearby cells, and competition for nutrients occurs along
the direction of the gradient of nutrient concentration. For the second mouse the
tumor grows very slowly, so the cell populations remain almost constant. In the
third case, since the mouse has smaller weight, we choose a smaller value of the
healthy cell population as an initial condition. The population starts to increase,
and so does the tumor. A maximum actual weight is observed at day 18, and
then the healthy cell population starts to decrease due to the growth of the tumor.
However, the total weight at day 21 is almost the same, because the tumor has
grown considerably. The parameters we have had to change from the ones settled
in (5) to reproduce the experiments are shown in Table 4. Note that for every
mouse a21 > a12 holds, as conjectured in Sec. 3.

7. Conclusions and Discussion

We have developed a model of tumor growth taking into account the hetero-
geneity of the tissue as a complex interaction between several types of cells. The
model includes tumor-immune and tumor-host interactions, which are in confor-
mity with experimental data. We have examined the dynamical properties of the
model, showing its correlation with theoretical and empirical knowledge of tu-
mor progression. Also chemotherapy has been studied and a way to overcome
the problem of modelling complex drug dynamics has been proposed. We believe
that the model might be useful when attempting to embark the study of tumor
growth. Of course, ODE-based modelling and the present model itself are both
far away from being definitive. Rather, they might be used as a foundation upon
which to build up different and increasingly more sophisticated models, capable
of reproducing the many aspects of the tremendously complex dynamics of cancer
inception and evolution at its different, but inextricably related, scales.
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Figure 9: The time series given by the model (solid curves) and the experimental data of the tumor
(•), the actual (×) and the total (◦) cell populations for the three mice in the second experiment
in Hiramoto and Ghanta (1974). The first points are used to fix initial conditions. (a) For the first
animal the actual and the total sizes first decrease because the healthy tissue is being destroyed.
Then the growth of the tumor rises and the total and the tumor cell populations become equal. (b)
In the second animal the tumor grows very slowly and the cell populations are almost constant. (c)
In the third case the healthy cells start to grow together with the tumor, but as the tumor increases
the normal cells reach a peak and begin to die.
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Mouse 1
Parameter Units Value Description

K1 cells 3.4 × 109 Carrying capacity of tumor cells
K2 cells 3.5 × 109 Carrying capacity of healthy cells
r1 day−1 0.95 Rate of growth of tumor cells
r2 day−1 0.06 Rate of growth of normal cells
a12 cells−1day−1 4.8 × 10−11 Competition of healthy cells with tumor cells
a21 cells−1day−1 6.0 × 10−10 Competition of tumor cells with healthy cells

Mouse 2
Parameter Units Value Description

K1 cells 3.4 × 109 Carrying capacity of tumor cells
K2 cells 3.5 × 109 Carrying capacity of healthy cells
r1 day−1 0.62 Rate of growth of tumor cells
r2 day−1 0.13 Rate of growth of normal cells
a12 cells−1day−1 4.8 × 10−11 Competition of healthy cells with tumor cells
a21 cells−1day−1 1.3 × 10−10 Competition of tumor cells with healthy cells

Mouse 3
Parameter Units Value Description

K1 cells 3.4 × 109 Carrying capacity of tumor cells
K2 cells 3.5 × 109 Carrying capacity of healthy cells
r1 day−1 0.82 Rate of growth of tumor cells
r2 day−1 0.49 Rate of growth of normal cells
a12 cells−1day−1 3.7 × 10−11 Competition of healthy cells with tumor cells
a21 cells−1day−1 2.3 × 10−10 Competition of tumor cells with healthy cells

Table 4: The values of the parameters in the simplified model that were required to change in order
to describe the growth of the plasmacytome, the time evolution of the body weight and the time
evolution of the actual body weight, for the three mice in the second experiment in Hiramoto and
Ghanta (1974).
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