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Cyclic motifs as the governing topological factor in time-delayed oscillator networks
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We identify the relative amount of short cyclic motifs as an important topological factor in networks of
time-delayed Kuramoto oscillators. The patterns emerging from the cyclic motifs are most clearly distinguishable
in the average frequency and the momentary frequency dispersion as a function of the time delay. In particular,
the common distinction between bidirectional and unidirectional couplings is shown to have a decisive effect
on the network dynamics. We argue that the behavior peculiar to the sparsely connected unidirectional random
network can be described essentially as the lack of distinguishable patterns originating from cyclic motifs of any
specific length.
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I. INTRODUCTION

The influence of various topological features on the
dynamics of complex networks forms an intriguing, though
also often elusive, area of investigation [1–3]. A model often
studied in this context is the Kuramoto model [4] which,
despite its simple and abstract form, is able to capture many
aspects of seemingly more complicated systems. For example,
within the area of physics, it has been applied successfully to
arrays of Josephson junctions [5] and neuron networks with
time-delayed interactions [6]. The time-delayed Kuramoto
model has already been investigated extensively [7–11]. In
particular, the topic of cyclic motifs was treated in a paper
by D’Huys et al. [10] where implicit equations were derived
for the locking frequencies of unidirectional and bidirectional
cycles. In this paper, we will show how these equations provide
a heuristic explanation for the difference in behavior between
networks of time-delayed Kuramoto oscillators that contain
different proportions of short cyclic motifs. The importance
of specific network motifs in biological systems has, for a
long time, been an active area of research often involving
statistical techniques [12]. Our approach, on the other hand,
is not statistical. Instead, we will make use of exact analytical
results obtained on isolated cyclic motifs to explain the overall
behavior of complex networks where these motifs form the
main building block.

A fundamental question for any network is whether the
connections are unidirectional or bidirectional. For example,
in a social network, acquaintances are most likely to be
bidirectional (mutual). On the other hand, the links between
internet pages are often unidirectional. The problem dealt with
in this paper was first encountered when studying precisely
this distinction on a sparsely connected network of Kuramoto
oscillators with unitary natural frequency and time-delayed
interactions:

φ̇i(t) = 1 + K

d

N∑
j=1

aij sin[φj (t − τ ) − φi(t)]. (1)

Here, τ is the time delay and K is the coupling strength, for
which we always chose the value K = 0.1 in our computer
simulations. The coefficients aij , which take the value zero
or one, make up the connectivity matrix. We always require
that aii = 0. The node degree of oscillator i is defined as the

number of incoming connections or, equivalently, the number
of nonzero coefficients aij for fixed i. The normalizing factor
d is always taken as the average node degree. A coupling
between two oscillators i and j is said to be bidirectional if
aij = aji = 1. If, on the other hand, only one of the coefficients
is equal to one, then the coupling is said to be unidirectional.

The initial motivation for the problem was formulated
as the difference in behavior between networks containing
(almost) exclusively either one of these types of connections.
However, our explanation is best understood if we consider
the bidirectional coupling as a unidirectional cycle of length
two. In general, a unidirectional cycle of length n is defined as
an ordered set (up to rotational symmetry) of n distinct indices
(i,j,k, . . . ,x) such that aij = ajk = · · · = axi = 1.

II. THE NETWORKS

We will develop our line of argument by considering four
different classes of networks, denoted by B, T , Q, and U .
These classes of networks are defined by the algorithm used to
construct them. First, we specify the total number of nodes N

in the network and the average node degree d. Hence, from the
outset, we have thereby fixed the total number of connections
(number of nonzero aij ) to be exactly N × d. We will only
consider sparsely connected networks for which d � N .

Starting from an all-zero connectivity matrix (aij ≡ 0), for
network B, pairs of indices (i,j ) were chosen successively
at random and if, at each step, the coefficients aij and aji

were zero, they were both set equal to one. This process was
continued until the total number of connections had reached
N × d. For network T , the algorithm was the same except that
ordered triplets (i,j,k) were chosen successively at random,
and, if aij , ajk , and aki were all zero, they were put equal to
one, again until the total number of connections had reached
N × d. In this way, the networks B and T were “doped” with
unidirectional cycles of length two and three, respectively.
Correspondingly, for network Q, ordered quadruples were
chosen in the same manner, forming unidirectional cycles of
length four. The cycle length used in the construction of these
networks will be referred to as the formative cycle length.
Finally, we let U denote the well-known unidirectional random
network where, simply, N × d ordered pairs of indices (i,j )
for which aij = 1 were chosen randomly with no additional
structure added. (We always require that i �= j .) It must be
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emphasized, however, that because of the random selection
of nodes, all of our networks may contain cycles of any
length within the limits set by the network size. Moreover,
for all network classes, the node degree distribution will not
be identical. The algorithms merely guarantee that networks B,
T , and Q have a larger number of certain short cyclic motifs,
as compared to network U .

Regarding network U , we can state the following standard
analytical results: The degree distribution will be binomial and
the expectation value C(k) for the number of directed cycles
of length k is given by

C(k) = pk

k

(
N

k

)
. (2)

Here, p is the probability for the existence of a connection
between two randomly chosen nodes, which in our case is
equal to p = d/(N − 1). Clearly, for network U , the number
of short cyclic motifs depends strongly on both the network
size N and the average degree d. If we keep d fixed, the
number of short cycles relative to the network size diminishes
as N increases. Our decision to limit the study to include
only sparsely connected networks can now be motivated more
clearly. If the connection density d were to be given a value
of the same order of magnitude as the network size N , then
all of the networks would become dominated by bidirectional
couplings and the distinction between the networks would be
of no use for our analysis.

In Sec. IV, we will have reason also to consider a
slightly modified family of networks constructed with the extra
condition that all node degrees be the same. These modified
networks, denoted by B∗, T ∗, Q∗, and U∗, were constructed
with the same algorithms already described for networks B, T ,
Q, and U , with the only difference being that at each step we
also made sure that no node degree surpassed the value d. With
the exception of network U∗, one is likely to face problems
carrying this through consistently at the very last step since the
remaining nodes might not be able to form an additional cycle
(they may have already formed a cycle). When encountered,
this problem was solved by simply choosing some random
unidirectional couplings for the remaining nodes, which had
no visible effect on the overall result.

For our computer simulations, we chose the network
parameters N = 150 and d = 4. The average number of cycles
of length two, three, and four of each class of networks is
presented in Table I. For network B and B∗, the number of
3 and 4 cycles are put in parentheses since, although counted
correctly according to our definition, they all form part of the
bidirectional cycles which behave differently as compared to
pure unidirectional cycles; see Ref. [10].

III. AVERAGE FREQUENCY

For a given time interval T , we define the average frequency
�i of each individual oscillator as follows:

�i ≡ 1

T

∫ T

0
φ̇i(t)dt, (3)

TABLE I. Average number of unidirectional cycles of length two,
three, and four for all network classes considered. For each class,
averages were taken over a total of 32 network realizations where
the total number of nodes was set to N = 150 and the average node
degree to d = 4.

Cycle length

Networks 2 3 4

B 300 (20) (65)
T 8 220 128
Q 8 37 276
U 8 21 63

B∗ 300 (8) (4)
T ∗ 6 206 13
Q∗ 6 19 50
U∗ 8 21 16

from which we calculate the average network frequency as

� = 1

N

∑
i

�i. (4)

In order to interpret the results of our computer simulations,
we recollect the analytical formulas presented in the paper by
D’Huys et al. [10] for the locking frequencies ω of an isolated
unidirectional cycle of length n,

ω = 1 + K sin(�φ − ωτ ), (5)

where the phase difference �φ between each neighboring
oscillator is given by

�φ = 2jπ

n
, 0 � j < n. (6)

Moreover, the locking frequency ω is stable if

K cos(�φ − ωτ ) > 0. (7)

In Fig. 1, we have plotted the average network frequency
� as a function of time delay, calculated from computer
simulations on each class of networks separately. These results
do not depend on the initial conditions. In the same graph, we
have superimposed (marked with red curves) the stable locking
frequencies, given by Eq. (5), for the cycle length correspond-
ing to that with which the network was doped. In the case of
network U , we have included only the in-phase stable locking
frequencies common to all cycle lengths. These correspond
to j = 0 in formula (6). We observe that at every time delay,
the average frequency curve tends to be attracted to the stable
locking frequency that is closest to the natural unit frequency.
When monitoring the overall phase coherence in the network,
it is also clear that when the frequency is attracted to the stable
in-phase locking frequencies (j = 0), the network stays in
a completely or partially phase-synchronized state, whereas
when the frequency starts to get attracted to the out-of-phase
stable locking frequencies (j �= 0), the network enters into a
state almost completely out of phase. For further discussion on
the phase synchronization order parameter, see Refs. [6,11].

Focusing on the middle region, we have placed the graphs
in an order so as to visually convey the gradual change from
the pronounced oscillation in average frequency in the case of
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FIG. 1. (Color online) Average network frequency � (blue lines)
as a function of time delay, calculated from computer simulations on
the network classes B on top, followed by T, Q, and finally U at the
bottom. The red curves mark the stable locking frequencies, given
by Eq. (5), for the cycle length corresponding to that with which
the network was doped. For each network class, averages were taken
from a total of 32 network realizations with N = 150 and d = 4.

network B to the almost flat curve in the case of network U .
Based on this observation, it might be tempting to interpret
the results obtained on network U as the limiting case as the
formative cycle length increases. However, there are some
cautionary remarks to be made about this interpretation. As
we see it, there is nothing in the outcome that prevents
us from instead viewing network U as a primary neutral
state that does not display any characteristic cyclic patterns
unless doped with the corresponding cyclic motif. With the
latter interpretation, the explanation for the flattening of the
frequency curve as the formative cycle length increases would
be somewhat different. Essentially, for a fixed network size,
it is harder to efficiently dope a network with a longer cyclic
motif than a shorter one. We observe, for example, that through
the algorithms we have used, it is possible for a longer cycle to

be intercepted by a shorter cycle in the sense that there may be
shortcuts. Moreover, as we increase the formative cycle length,
the relative number of those cycles as compared to those of
the same length occurring naturally in network U [given by
Eq. (2)] will diminish. Hence, the other perspective would be
that the above-mentioned circumstances, rather than the cycle
length itself, could to a large part explain the gradual flattening
of the frequency curve. We leave it as an open question which
of these perspectives is the most accurate, but, in any case, we
think that an appropriate way to characterize the result obtained
on network U is to view it as the lack of distinguishable patterns
originating from any specific cycle length.

IV. FREQUENCY DISPERSION

In a previous paper [11], the sustained frequency dispersion
σ 2 ≡ 〈(�i − �)2〉 was studied on networks of time-delayed
Kuramoto oscillators with identical natural frequencies and
homogeneous time delay. One of the conclusions of this study
was that a nonidentical node degree distribution (or, alterna-
tively, nonidentical coupling strength) is a necessary condition
for a nonvanishing σ 2. When simulations are performed
over sufficiently long time intervals T , this conclusion still
holds. However, if we look instead at the average momentary
frequency dispersion,

s2 ≡ 1

NT

∫ T

0

∑
i

[φ̇i(t) − �(t)]2dt, (8)

where �(t) = ∑
i φ̇(t)/N , there will be clear patterns emerg-

ing instead from the cyclic motifs. Clearly, a nonzero σ 2

necessarily implies a nonzero s2, but the converse is not true.
In Fig. 2, we have plotted the average momentary frequency

dispersion s2 against the time delay, calculated from computer
simulations on each class of networks separately. As discussed
before, part of this momentary frequency dispersion must
result from the nonidentical node degree distribution present
in the networks B, T , Q, and U . However, by repeating the
simulations on the family of networks with identical node
degree distribution [13], B∗, T ∗, Q∗, and U∗, we could
distinguish the remaining parts (marked with gray color) that
are instead directly related to the cyclic motifs. For networks
B, T , and Q, these areas show up as bumps with centers
situated at the time delays where the respective stable locking
frequencies, given by Eq. (5), have equal distance to the natural
unit frequency and, as it happens, when the average frequency
� crosses the unit frequency with upward slope. For network
U , on the other hand, this area shows up as a continuous
interval in the middle part of the graph. Also here, we can
see the gradual change in appearance of the graphs as we
move from network B to network U . All of the graphs contain
some asymmetries which seem to persist even when averages
are taken over many network realizations. Here, we are not in
a position to explain these asymmetries in detail, we merely
point out that since the frequency ω occurs on the right-hand
side of Eq. (5), there is not a perfect mirror symmetry in the
transformation �φ → 2π − �φ and τ → 2π − τ .

In order to further clarify the difference between σ 2

and s2, in Fig. 3 we show the sustained frequency disper-
sion σ 2 ≡ 〈(�i − �)2〉 (solid blue curves) superimposed, for
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FIG. 2. (Color online) Average momentary frequency dispersion
s2 (red curves) as a function of time delay, calculated from computer
simulations on the network classes B on top, followed by T, Q,
and finally U at the bottom. The momentary frequency dispersion
is caused in part by the nonidentical node degree distribution and in
part by the cyclic motifs. The gray areas mark the dispersion that is
directly related to the cyclic motifs and were found as the remaining
part when the simulations were repeated on the family of networks
B∗, T ∗, Q∗, and U∗ constructed with the extra condition that all
node degrees be the same. For each network class, averages were
taken from a total of 32 network realizations with N = 150 and
d = 4.

comparison, with the momentary frequency dispersion s2 ≡
1

NT

∫ T

0

∑
i[φ̇i(t) − �(t)]2dt (dashed red curves). As we can

see, in the middle region between the extremal bumps, σ 2 van-
ishes almost completely except for network B which, for the
chosen parameters, is the only network that manages to push
the average frequency sufficiently far away from the unit fre-
quency so that, again, a noticeable sustained frequency disper-
sion σ 2 shows up. For further discussion on σ 2, see Ref. [11].

FIG. 3. (Color online) Sustained frequency dispersion σ 2 (solid
blue curves) and average momentary frequency dispersion s2 (dashed
red curves) as a function of time delay, calculated from computer
simulations on the network classes B on top, followed by T, Q,
and finally U at the bottom. For each network class, averages were
taken from a total of 32 network realizations with N = 150 and
d = 4.

V. CONCLUDING REMARKS

To conclude, we have shown that one of the most important
topological factors in networks of time-delayed Kuramoto
oscillators is the relative amount of short cyclic motifs.
Returning to our initial motivation for the study, our analysis
has shown that the bidirectional random network B and the
unidirectional random network U could be seen as opposite
ends of a spectrum of different classes of networks. In the case
of network B, the dynamics is strongly influenced by one short
cyclic motif, whereas for network U , no clear pattern can be
found from any specific cyclic motif. We note, in particular,
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that the only time-delay region where the average frequency
of U deviates from the unit frequency is where there exist
stable locking frequencies common to unidirectional cycles of
all lengths.
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