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Abstract The phase control method on the dissipative standard map and the Hénon
map is studied. We observe that the phase of the control signal can suppress or en-
hance the chaotic behavior in the bouncing ball map and in Hénon map. We analyze
the crisis induced intermittency in the bouncing ball system when the phase of the
control signal is varied, also the scaling behavior of the average Lyapunov exponent
near the phase induced crisis is studied. Future applications of the phase control
method are also discussed.

1 Introduction

The term control of chaos is used mostly to denote the area of studies lying at the
interfaces between the control theory and the theory of dynamical systems. The
important characteristic of a chaotic dynamical system is the exponential sensitivity
to the initial conditions. Even arbitrary close trajectories diverge with time at a finite
distance, thus the long term predictions are impossible. This is called butterfly effect
as concocted by Philip Merilees

Does the flap of butterfly’s wings in Brazil set off tornado in Texas ?

If that is true, our natural counter question is, what happens when an another butter-
fly flaps its wings, will the effect get canceled ? Our answer is yes.

Yorke and his collaborators discovered that by a very small variation of a system
parameter, it is possible to transform a chaotic trajectory into periodic one and vice
versa [20]. In their paper, the parameter is varied by means of a feed back. In the
subsequent publication this effect was confirmed experimentally.
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Instead of the conclusion that chaos cannot be fore-casted, but can be controlled
gave rise to an explosive interest to researchers. Despite numerous publications on
this field, only few strict facts were established, and many issues remain open. In
view of the wide scope of possible applications, this area is of interest both to the
theorists and Control Engineers [1, 8, 28].

1.1 Phase control method

Chaos control methods are usually classified within two categories, depending on
how they interact with the chaotic system. The first category corresponds to feed-
back methods, which are aimed to stabilize one of the stable orbits that lie in the
chaotic attractor by applying small perturbations that depend on the time-varying
state of the system. The experimental implementation of the feedback methods are
hard to achieve since it demands fast response to the time variation of the system
state. For this reason, non-feedback methods have appeared more useful in many
practical cases. The non-feedback methods allow to switch between different dy-
namical behaviors by applying either parameter perturbations or external forcing
signals that do not depend on the current state of the system [3, 14, 22].

We are focusing on a non-feedback control technique called phase control
method [28]. This technique has been used to control the chaotic behavior of a Duff-
ing oscillator [26] to control intermittencies [27] and to avoid escapes in a nonlinear
oscillator [23]. Similar ideas have been also applied in the context of Josephson
junctions [4, 5] and in population dynamics in Theoretical Ecology [11].

Nonfeedback methods have been mainly used to suppress chaos in periodically
driven dynamical systems.

ẋ = f(x,p)+Fcos(ωt), (1)

where x, f and F are vectors of the m−dimensional phase space, and p is the param-
eter vector of the system. The main idea of these nonfeedback methods is to apply
a harmonic perturbation either to some of the parameters of the system

ẋ = f(x, pi(1+ ε cos(rωt +ϕ)), p j)+Fcos(ωt) (2)

for j = 1 . . .n being j ̸= i, or as an external additional forcing to the system,

ẋ = f(x,p)+Fcos(ωt)+ εucos(rωt +ϕ), (3)

where u is conveniently chosen as a unitary vector. Here r determines the ratio
between the frequency of the forcing and the natural frequency of the system, and ϕ
is the phase difference between the natural oscillation and the forcing signal.

In resonant parametric perturbation methods, the numerical and experimental
explorations have been essentially focused on the role played by the perturbation
amplitude ε and the resonance condition r, but the role of phase difference ϕ has
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hardly been explored. However it is observed that the phase difference ϕ between
the periodic forcing and the perturbation have certain influence on the dynamical
behavior of the system. The type of control based on varying the phase difference ϕ
in search of a desired dynamical behavior is known as the phase control technique.

2 Dissipative maps

In dissipative maps the phase space volume is not conserved. The phase-space vol-
ume shrinks as time proceed. Hence the value of the Jacobian is less than one. In
area preserving maps the value of the Jacobian is unity. In area preserving maps
we cannot observe a definite chaotic attractor. However in a dissipative map we can
observe a definite chaotic attractor. We are going to study two different dissipative
chaotic maps called, the dissipative bouncing ball map and the Hénon map which
are the two simple paradigmatic models for the dissipative map.

2.1 Bouncing ball map

An acceleration mechanism of cosmic ray particles interacting with the time-
dependent magnetic field was proposed by Fermi in 1949 [7]. This phenomenon
was explained later in terms of a simple classical model by Stanislaw Ulam [25].
Afterward this model became popular as the Fermi-Ulam model [18] and several
modified versions were proposed over the years because of its interesting dynam-
ical properties [2, 17]. Among the different models, the simplest one that displays
chaotic behavior is the system with one ball bouncing on a vibrating table under the
action of gravity. This is widely known as the bouncing ball system [12, 13].

In simple bouncing ball model, a ball is bouncing on a sinusoidally vibrating
table under the action of gravity. The evolution of the bouncing ball system is a
mix of continuous and discrete evolution. In between the collisions the evolution
of the system is continuous but it is discontinuous at the time of collision. Using
this property we can easily make a discrete map of the system by analyzing the
impact time series. Let X(t) be the position of the ball with respect to the ground
reference frame then the series X(t0),X(t1),X(t2), ...,X(tn), represents the impact
time position series of the ball.

Let V̄k be the velocity of the ball with respect to the fixed reference frame, just
after the time of impact tk and V̄

′
k be the velocity just before the impact time tk. The

nature of the impact is relevant, so that if the impact between table and the ball is
inelastic we have

V̄k = −αV̄
′
k , (4)

where α is the coefficient of restitution 0 < α ≤ 1, when α = 1 the collision is
completely elastic. We are interested in the quantities which are in the ground frame
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of reference. Considering the k +1 collision, consequently we will get

V̄k+1 = −αV̄
′
k+1, (5)

V̄k+1 = Vk+1 −Uk+1, (6)

V̄
′
k+1 = V

′
k+1 −Uk+1. (7)

Where Uk+1 is the velocity of the vibrating table at the k +1-th collision. Substitut-
ing Eq. (6) and Eq. (7) in Eq. (5) we get

Vk+1 −Uk+1 = −α(V
′
k+1 −Uk+1),

Vk+1 = (1+α)Uk+1 −αV
′
k+1. (8)

The variable t represents the instantaneous time between two adjacent collisions
(tk ≤ t ≤ tk+1), where tk is the time of the k-th impact on the table, and tk+1 is the
time of the (k +1)-th one. Let X(t) be the vertical position of the ball in the ground
frame of reference, then according to Newton’s law the instantaneous position of
the ball is given by,

X(t) = Xk +Vk(t − tk)− g
2 (t − tk)

2 (9)

and the velocity of the table is given by,

Vk+1 =
dX
dt

|t=tk+1 . (10)

Now we can compute the impact velocity equation. The table position is given by
s(t) = Asin(ωt +θ0). Thus our table velocity is given by

Uk+1 =
ds
dt

|t=tk+1 . (11)

The instantaneous distance between the table and the ball is given by d(t) =
x(t)− s(t). We can find the impact time by solving d(tk+1) = 0 since impact occurs
when the distance between the table and the ball goes to zero. Therefore

Xk +Vk(tk+1 − tk)−
1
2

g(tk+1 − tk)2

−Asin(ωtk+1 +θ0) = 0. (12)

The above equation is called the time recurrence equation. If we substitute Uk =
Aω cos(ωtk + θ0) and V

′
k+1 = Vk − g(tk+1 − tk) in Eq. (8), we can obtain Eq. (13),

which is the recurrence velocity equation

Vk+1 = (1+α)Aω cos(ωtk+1 +θ0)
−α [Vk −g(tk+1 − tk)]. (13)

The complete recurrence equations are given by
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Xk +Vk(tk+1 − tk)−
1
2

g(tk+1 − tk)2

−Asin(ωtk+1 +θ0) = 0, (14)

Vk+1 = (1+α)Aω cos(ωtk+1 +θ0)
−α [Vk −g(tk+1 − tk)]. (15)

These are the exact time and velocity recurrence equations, respectively. But one
of them is explicit and another one is implicit. Since we want to construct a non-
linear map out of these equations, we need both equations to be explicit. To solve
this problem we make use of an approximation, which is called the high bounce
approximation.

2.1.1 High bounce approximation

In this approximation we assume that the bouncing height of the ball is large com-
pared with the vibration of the table. Thus we say that the velocity of the ball simply
change its sign for the k +1-th collision. Therefore,

V
′
k+1 = −Vk. (16)

But using the equation of motion we have,

V
′
k+1 = Vk −g(tk+1 − tk). (17)

Substituting Eq. (16) in Eq. (17) we have,

tk+1 = tk +
2Vk

g
. (18)

Thus the approximated explicit recurrence equations are given by

tk+1 = tk +
2Vk

g
, (19)

Vk+1 = (1+α)Aω cos(ωt +θ0)−α[Vk −g(tk+1 − tk)].

If we transform Eq. (19) and Eq. (20) to make them dimensionless by changing
variables as xk = ωtk +θ0, yk = (2ω/g)Vk, β = (2ω2A/g)(1+α) we get,

xk+1 = xk + yk
yk+1 = β cosxk+1 −α[yk −2(xk+1 − xk)].

(20)

If we substitute the phase equation xk+1 = xk + yk in Eq. (20) we get the complete
approximated explicit recurrence equations, which is given by,
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xn+1 = xn + yn
yn+1 = αyn +β cos(xn + yn)

(21)

Here x is associated with the time interval between collisions and y is associated with
the velocity of the ball just after the impact. Here α is the coefficient of restitution.
Jacobian matrix of a two dimensional map is defined by

J =
∂ (xi+1,yi+1)

∂ (xi,yi)
(22)

Thus the Jacobian matrix of the bouncing ball map is given by,

J =
[

1 1
βS α +βS

]

where S = sin(xk + yk). In order to calculate the dissipation effect, let us take deter-
minant of the Jacobian matrix, which is given by,

|J| =
∣∣∣∣ 1 1
β sin(xk + yk) α +β sin(xk + yk)

∣∣∣∣
|J| = α (23)

Here in dissipative bouncing ball model we are considering the inelastic collisions
of the ball with the table. Hence the energy is not conserved. The energy loss is
determined by the dissipation coefficient α . Hence, it is evident that α is the dissi-
pation coefficient so here α gives the measure of the contraction of phase space.

Eigenvalues of the Jacobian matrix is given by,

Λ 2 −Λ Tr(J)+ |J| = 0, (24)
(25)

where Tr(J) means the trace of the matrix J. Thus, by solving this equation,

Λ =
1
2
[ (1+α +βS)±

√
(1+α +βS)2 −4α], (26)

where S = sin(Xk +Yk), and Λ are the local Lyapunov exponents. The global Lya-
punov exponents are defined as,

λ j = lim
n→∞

1
n

ln |Λ j|, j = 1,2, (27)

where Λ j are the eigenvalues of M =
n

∏
i=1

Ji(Xi,Yi). If the value of λ j is positive, then

the phase space trajectories diverge exponentially, which in turn gives the chaotic
behavior in the system.



Phase control of chaotic maps 7

Since bouncing ball system is a dissipative one there exist a definite chaotic at-
tractor, which is shown in Fig. 1. Here the width of the attractor depends on the
dissipation coefficient α . If the value of α is closer to zero the width of the attractor
is minimum and the width is maximum when the value of the alpha is closer to unity.
If the value of the dissipation coefficient α reaches unity then the specific chaotic
attractor vanishes and the system shows Hamiltonian chaos.

Fig. 1 The figure shows the chaotic attractor of the dissipative boucing ball map. Here we have
taken the parameter values α = 0.1 and β = 6.56.

2.1.2 Standard map

If the coefficient of restitution is unity then the dissipative bouncing ball map re-
duces to standard map.

xn+1 = xn + yn
yn+1 = yn +β cos(xn + yn)

(28)

This is an area preserving map since the determinant of the Jacobian matrix is unity.
This is one of the important chaotic map studied in connection with the kicked rotor.
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2.2 Hénon map

Lorentz system consists of three first-order differential equations, whose solutions
tend toward a strange attractor called Lorentz attractor. Hénon’s orginal idea was
to replace these first-order differential equations by a simple two dimensional map
which shows the same properties of the Lorentz system. He was inspired by the work
of the numerical results of Pomeau on the Lorentz system, which shows clearly how
a volume is stretched in one direction, and at the same time folded over itself, in the
course of one revolution.

We are going to consider Hénon’s original derivation of the map [15]. Consider
a region elongated along x axis, we begin the folding by,

T
′
: x

′
= x, y

′
= y+1−ax2. (29)

We complete the folding by a contraction along the x axis,

T
′′

: x
′′
= bx

′
, y

′′
= y

′
. (30)

Finally we come back to the orientation along x axis by,

T
′′′

: x
′′′

= y
′′
, y

′′′
= x

′′
. (31)

The final mapping will be defined as the product T = T
′′′

T
′′
T

′
. If we write (xn,yn)

for (x,y) and (xn+1,yn+1) for (x
′′′
,y

′′′
) Then we have,

xn+1 = yn +1−ax2
n

yn+1 = bxn
(32)

The above map is called Hénon map, but we use slightly different version of the
Hénon map, which is given by,

xn+1 = A+Byn − x2
n

yn+1 = xn
(33)

This is one of the important examples of dynamical systems that exhibit chaotic
behavior. Here A and B are the parameters of the map. The Jacobian of the map is
given by,

|J| =
∣∣∣∣−2xn B

1 0

∣∣∣∣
Hence the jacobian is given,

|J| = −B (34)

Here −B is the measure of contraction of the phase-space area in the Hénon map.
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Fig. 2 The figure shows the chaotic attractor for the Hénon map. Here we take the parameter values
A = 1.3 and B = 0.285

We can observe a definite chaotic attractor in a Hénon map. The chaotic attractor
for the Hénon map is shown in Fig. 2.

3 Phase control of chaos

Now we are going to apply the phase control method on nonlinear chaotic maps
called the dissipative bouncing ball map and the Hénon map. The key idea of the
phase control method is to apply a harmonic external perturbation to one of the
variables of the map. It is possible to control chaos in the system simply by tuning
the phase of the external perturbation.

3.1 Control of chaos in the bouncing ball map

We apply the phase control method on bouncing ball map Eq. (21), by adding an
external harmonic perturbation to the parameter β . Finally the equation used for the
numerical exploration of our technique reads,

xn+1 = xn + yn
yn+1 = αyn +β (1+ ε sin(2πrn+ϕ))

×cos(xn + yn),
. (35)
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where ε , ϕ and r are used as free parameters, and α = 0.1 is fixed throughout the
calculation. When the forcing amplitude ε is zero, this map reduces to the simple
bouncing ball map.

One of the key ideas of this control technique consists in assuming that the exter-
nal perturbation is of small amplitude, so that once we may fix r and for a consider-
ably small value of parameter ε , we may use only ϕ as a free parameter to control
the system. Physically it means we are adding an external small sinusoidal pertur-
bation on the table frequency and changing only the phase of the applied control
signal.

In order to analyze the effect of phase control on bouncing ball system, first we
have to observe the dynamics of the system without the control. In bouncing ball
system chaos appears as a result of period doubling

Thus we have analyzed the bifurcation diagram of the unperturbed bouncing ball
system by changing the value of parameter β . This is shown in the Fig. 3, where we
can see some regions of chaotic behavior and some periodic windows. For example,
the one centered at β = 6 and the one centered at β = 10.3. If we apply our phase

Fig. 3 The figure shows the bifurcation diagram of the bouncing ball system, by varying the pa-
rameter β . Here we can observe two wide periodic windows at β = 6 and at β = 10.3.

control method it is possible to change the behavior of the system from chaotic to
periodic and vice versa. Thus we simply start with parameter values which give
chaotic dynamics in the unperturbed bouncing ball system. In order to evaluate in a
detailed way the role of ε and ϕ , we calculate the largest Lyapunov exponent over
every point in a 200× 200 grid in the rectangle of the parameter plane 0.02 ≤ ε ≤
0.07, 0 ≤ ϕ ≤ 2π , fixing r for each computation, which is shown in Fig. 4. We
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Fig. 4 The figure shows the sign of the largest Lyapunov exponent λ computed at every point
of a 200× 200 grid of (ε,ϕ) values. The range of variation is 0 ≤ ϕ ≤ 2π,0.02 ≤ ε ≤ 0.07 for
different values of the resonant condition, (a) : r = 0.5,(b) : r = 1.0,(c) : r = 1.5,(d) : r = 2.0. The
Lyapunov exponent is negative in the black regions. These regions have a structure that follows
the expected symmetry around ϕ = π when r is an odd multiple of 0.5 and the trivial symmetry
around ϕ = 2π for an even multiple of 0.5. We set the parameters β = 6.56, α = 0.1 .

consider that the perturbation acting on the system is small, and consequently this
requires small values of ε . As we are searching for areas in the parameter plane
where the transition between chaotic and regular motion takes place, we take care
of transient states by waiting for a sufficiently long time to fix the corresponding
stable regime. We plot the results of several integer and half integer r values. The
black and white color associated to each point in the (ε,ϕ) plane indicate the sign
of the largest Lyapunov exponent. If it is greater than zero (white region) then the
dynamics is chaotic, and if it is less than zero (black region) then the system shows
a regular periodic behavior.

Figure 4 shows that there exist wide regions of the (ε,ϕ) plane where λ is smaller
than zero, and therefore chaos is suppressed. We note that the control regions, far
from having a trivial or irregular shape, present a symmetry that depends on the
parity of the r parameter. The π symmetry when r is odd an multiple of 0.5 and
2π symmetry when r is even multiples of 0.5. The most interesting feature is the
role of the phase ϕ in selecting the final state of the system. From Fig. 4(a) we can
see that we have a periodic behavior for the parameter value at ϕ = π/2,ε = 0.03.
Thus, we fix these values and search for the system behavior, thus we have plotted
the bifurcation diagram Fig. 5 by fixing ϕ = π/2,ε = 0.03,α = 0.1. Numerically it
is observed that by a proper choice of the frequency of the controlling signal and a
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suitable phase difference ϕ it is possible to avoid chaos in the bouncing ball system.

Fig. 5 The figure shows the bifurcation diagram of the bouncing ball system when the phase
control is applied. On the y-axis we have the velocity of the bouncing ball. We see that a new
periodic window arises under perturbation when β = 4, at the same time the periodic window
centered at β = 10.3 disappears. Here the perturbation parameters are taken as α = 0.1, r = 0.5,
ε = 0.03 and ϕ = π/2.

We can observe other interesting phenomena like the appearance as well as the
disappearance of periodic windows in the bifurcation diagram. Let us compare the
bifurcation diagram without the pertubation (Fig. 3) with the bifurcation diagram
when the perturbation is applied (Fig. 5). Thus we can observe that, in Fig. 5 a new
periodic window arises around β = 4 and at the same time we can observe that
the periodic window centered at β = 10.3 is vanished. Thus this interesting phe-
nomenon is particularly useful to generate chaos as well as to suppress chaos in a
dynamical system. If we operate our system near the parameter range where new
periodic windows arise when periodic perturbation is applied, we can easily control
chaos. If the system is operating in a periodic window which vanishes on periodic
perturbation, then we can generate chaos in the system under the periodic perturba-
tion. Thus this interesting phenomenon helps us to switch the system behavior from
chaotic to periodic and vice versa.

3.2 Control of chaos in Hénon map

In order to apply our phase control technique in the Hénon map Eq. (21), we add a
harmonic perturbation ε sin(2πrn+ϕ) to the parameter B. Finally the equation used
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Fig. 6 The figure shows the period two attractor in the phase space of the bouncing ball system
when the periodic perturbation is applied. When the periodic perturbation is absent, the bouncing
ball map shows a chaotic attractor which is shown in Fig. 1. Here we take the parameter values
α = 0.1,β = 6.56,ε = 0.03,r = 0.5,ϕ = 1.57.

for the numerical exploration of the technique reads,

xn+1 = A+B(1+ ε sin(2πrn+ϕ))yn − x2
n

yn+1 = xn
(36)

In order to suppress chaos, we have to search for the suitable ε , ϕ values in the
Eq. (36). In order to analyze the effect of phase control on Hénon map, we simply
start with parameter values which give chaotic dynamics in the unperturbed Hénon
map.

In order to evaluate in a detailed way the role of ε and ϕ , we calculate the largest
Lyapunov exponent over every point in a 200 × 200 grid in the rectangle of the
parameter plane 0.003 ≤ ε ≤ 0.006, 0 ≤ ϕ ≤ 2π , fixing r for each computation,
which is shown in Fig. 7. Note that as we explained before, we consider that the
perturbation acting on the system is small, and consequently this requires small
values of ε .

As we are searching for areas in the parameter plane where the transition between
chaotic and regular motion takes place, we take care of transient states by waiting
for a sufficiently long time to fix the corresponding stable regime. We plot the results
of several integer and half integer r values. The black and white color associated to
each point in the (ε,ϕ) plane indicate the sign of the largest Lyapunov exponent. If
it is greater than zero (white region) then the dynamics is chaotic, and if it is less
than zero (black region) then the system shows a regular periodic behavior.
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Fig. 7 The figure shows the sign of the largest Lyapunov exponent λ computed at every point of
a 200× 200 grid of (ε,ϕ) values. The range of variation is 0 ≤ ϕ ≤ 2π,0.003 ≤ ε ≤ 0.006 for
different values of the resonant condition, (a) : r = 0.5,(b) : r = 1.0,(c) : r = 1.5,(d) : r = 2.0. The
Lyapunov exponent is negative in the black regions. These regions have a structure that follows
the expected symmetry around ϕ = π when r is an odd multiple of 0.5 and the trivial symmetry
around ϕ = 2π for an even multiple of 0.5. Here we take A = 1.3, B = 0.285

Figure 7 shows that there exist wide regions of the (ε,ϕ) plane where λ is smaller
than zero, and therefore chaos is suppressed. The control regions, far from having
a trivial or irregular shape, present a symmetry that depends on the parity of the r
parameter. The π symmetry when r is odd multiples of 0.5 and 2π symmetry when
r is an even multiple of 0.5. The most interesting feature is the role of the phase ϕ
in selecting the final state of the system. From Fig. 7(a) we can see that we have
a periodic behavior for the parameter value at ϕ = π/2,ε = 0.00475. Thus, we fix
these values and search for the system behavior, thus we have plotted the phase-
space diagram in Fig. 8 by fixing A = 1.3,B = 0.285,ϕ = π/2,ε = 0.00475. Here
we can see that the chaotic Hénon attractor (shown in Fig. 2) turned into an orbit of
period-14 (shown in Fig. 8). Numerically it is observed that by a proper choice of
the phase difference ϕ it is possible to avoid chaos in Hénon map.
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Fig. 8 The figure shows the period 14 attractor when the external periodic perturbation is applied.
When the external perturbation is absent, the system shows a chaotic attractor which is shown in
Fig. 2. Here we have taken the parameter values A = 1.3, B = 0.285, ε = 0.00475, ϕ = π/2 and
r = 0.5

4 Phase dependent intermittency and crisis

When the control parameter is modified a chaotic attractor can touch an unstable
periodic orbit inside its basin of attraction, then a sudden expansion of the chaotic
attractor is observed. This phenomenon is called interior crisis. Beyond the crisis
the system preserves a memory of the former situation, thus a fraction of the time
is spent in the region corresponding to the pre-crisis attractor, and during the rest
of the time excursions around the formerly unstable periodic orbit take place. This
behavior is known as crisis induced intermittency. Before the crisis, such excursions
cannot take place unless noise or external perturbation induces them. We show that
the intermittency at an interior crisis can be controlled by our phase control method.
We give a numerical evidence that if we choose a proper parameter value it can be
used to enhance the crisis. Experimental and theoretical study of phase control of
intermittency was already tested successfully in a laser system by Zambrano et al
[27].

4.1 Intermittency in bouncing ball map

In order to analyze the effect of phase ϕ and forcing amplitude ε on crisis, we are
scanning over the possible ϕ and ε values to determine the region where the crisis
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Fig. 9 The figure shows the average value of the relative maxima of the velocity, < H >, computed
at every point of a 200×200 grid of (ε,ϕ) values in the region 0 ≤ ϕ ≤ 2π,0.02 ≤ ε ≤ 0.07 for the
perturbed bouncing ball map. The white region shows the sudden expansion in the attractor. Here
we set the parameters α = 0.1, β = 4.05 and r = 0.5.

is induced. A good indicator to discriminate between the different dynamical states
of the system for different values of the parameter is

< H >=< max(yn) >|yn>y0 , (37)

where < H > gives the average value of the maximum of the time series of yn. In
other words < H > is the average value of the relative maximum velocity of the
bouncing ball just after the impact. The value of y0 is chosen in such a way that <
H > enables us to distinguish between the chaos and the intermittent regime. In the
numerical simulations, we have observed that taking y0 = 10−6, that is, neglecting
only extremely small peaks of the signal, is sufficient for this discrimination.

In Fig. 9 the wide symmetrical white regions shows that there is an expansion in
the attractor. But that exist only for some specific values of the parameters. We can
see that there is a range of phase values (white regions) give a sudden expansion
in the attractor, which in turn leads to intermittency. There exist a symmetry in the
phase value of the applied signal which induces the internal crisis in the system.
This can be explained in terms of symmetry of the map under the transformation
ϕ → ϕ + π/2. This symmetry depends on the frequency ratio r. In order to gain a
deeper insight into the role of ϕ in nonlinear systems we study the effect of phase on
the perturbed map close to an interior crisis. From Fig. 10(a) and Fig. 10(b) we can
observe the sudden expansion of the attractor. From Fig. 10(b) the enlarged attractor
consists of the attractor in the pre-crisis regime and the enlarged dotted region gives
the intermittency. Since the dotted region gives the leaking trajectories from one
piece of the attractor to another. Here the phase change enhance crisis in the system
which inturn induce intermittency in the system. One of the interesting aspect to
study is the scaling property of the phase close to the critical point after the occur-
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Fig. 10 (a) Shows the chaotic three piece attractor just before (ϕ = 0.27650) the interior crisis. (b)
Shows the enlarged attractor just after interior crisis (ϕ = 0.27660). Thus the system has an interior
crisis at ϕc ≈ 0.27655. The dense points in the enlarged attractor gives the attractor in the pre-crisis
regime and the enlarged dotted region gives the intermittency. Here we fix α = 0.1, β = 10.4,
ε = 0.03

rence of crisis. In this post-crisis regime the dynamics describing the evolution of
the system is intermittent. A scaling law for the mean time a chaotic orbit spends in
the region of the precrisis attractor (< τ >), as the control parameter (ϕ ) is varied
had been proposed by Grebogi et al [10]. It is found that < τ > decreases according
to the scaling relation < τ > ∼ | ϕ −ϕc |−γ where γ is the scaling exponent describ-
ing the scaling of < τ > with a parameter ϕ . The behavior of lyapunov exponents
near crisis point for the dissipative standard map had been studied B. Pompe and
R. W. Leven [21]. According to them the increase of the largest lyapunov expo-
nent near crisis is a consequence of the rapid growth of the transition probability .
Thus we can say that the mean time of a chaotic orbit spends in the region < τ >
is inversely proportional to the lyapunov exponents. In other words the size of the



18 Sijo K. Joseph and Miguel A. F. Sanjuán

−5.5 −5 −4.5 −4 −3.5
−0.95

−0.9

−0.85

−0.8

−0.75

−0.7

−0.65

−0.6

log(φ−φ
c
)

lo
g(

λ−
λ c)

 

 

Fig. 11 The figure shows the graph of the log(λ −λc) versus log(ϕ −ϕc). The slope of the linear
best fit yields the value of the scaling exponent γ = 0.15 with a norm of residuals 0.07. Here the
phase of the control signal gives the same scaling behaviour like a normal parameter. Here we vary
ϕ from 0.276615 to 0.276800 with an increment of 5×10−6.

attractor is related to the lyapunov exponent via Kaplan-Yorke dimension. Thus the
new scaling equation reads,

λ (ϕ)−λ (ϕc) ∼ | ϕ −ϕc |γ (38)

This type of scaling law of lyapunov exponent makes an analogy with the phase
transition in statistical physics. Till now there isn’t any known connection between
the statistical quantities and the lyapunov exponent. In the last section numerically
we make a connection between the statistical quantity called saturation velocity and
the lyapunov exponent. In our case as we know, the phase can enhance the crisis.
Thus we analyze the validity of the scaling law of averaged lyapunov exponent ver-
sus the phase of the applied signal near the crisis regime. Behaviour of the lyapunov
exponent near crisis regime has studied bye several authors [19, 24] Here we cal-
culate the average lyapunov exponent using 102 initial conditions calculated over
an orbit length of 104 iterations. The slope of the linear best fit gives the value of
scaling exponent γ = 0.15 with the norm of residuals 0.07.
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5 Phase control method and its future

Complex system can be understood in a better way using Nonlinear Dynamics. In-
terestingly most of the complex systems exhibit the chaotic behavior. Many me-
chanical vibrations, irregular oscillations in chemical reactions, and the spread of
epidemics are chaotic in nature. In most of these situations chaos is considered as
an undesirable property. Hence the idea of controlling chaos is important on these
fields.

One of the medical applications of the chaos control is to control the Cardiac
Dysrhythmia (Arrhythmia). Arrhythmia is the irregular or chaotic Heart beat due to
the abnormal electrical conductivity in the Heart. Celebrated chaos control method
called O.G.Y had already been implemented successfully in experimental model
of Arrhythmia [9]. Controlling chaotic or irregular mechanical oscillation or vi-
bration is a challenging task for Mechanical Engineers. Chaos control methods had
already been applied to stabilize the mechanical vibrations of Helicopter wings [16].
Researchers at Oak Ridge National Labs and the University of Tennessee had ap-
plied a two dimensional map based approach to model the cycle variations in spark-
ignited combustion engines [6] . The combustion efficiency of an internal combus-
tion engine can vary significantly from one cycle to the next. This cycle variability
is enhanced under lean (oxygen rich) fueling. The importance of understanding and
controlling cycle variability has increased in recent years, as car manufacturers are
trying to run their engines with leaner fuel mixtures to improve fuel efficiency and
reduce NOx emissions. Hence the chaos control methods are promising tools for the
future combustion engines.

In all the aforementioned fields the phase control method is rarely explored. One
of the greatest advantages of the phase control technique is that, we don’t need
the prior knowledge of the dynamics of the system. Also the simplicity of its im-
plementation makes this method more attractive. Hence this simple and attractive
chaos control technique might be the future of the coming technologies.
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