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Testing for Basins of Wada
Alvar Daza1, Alexandre Wagemakers1, Miguel A.F. Sanjuán1 & James A. Yorke2

Nonlinear systems often give rise to fractal boundaries in phase space, hindering predictability. When 
a single boundary separates three or more different basins of attraction, we say that the set of basins 
has theWada property and initial conditions near that boundary are even more unpredictable. Many 
physical systems of interest with this topological property appear in the literature. However, so far 
the only approach to study Wada basins has been restricted to two-dimensional phase spaces. Here 
we report a simple algorithm whose purpose is to look for the Wada property in a given dynamical 
system. Another benefit of this procedure is the possibility to classify and study intermediate 
situations known as partially Wada boundaries.

Sometimes a physical property can be labeled with different discrete values depending on parameters. 
Suppose a space has ≥N 3A  disjoint regions Sj where each Sj represents a different value or state. For 
example the sets might be basins of attraction in the phase space of a dynamical system. Numerical and 
experimental investigations of the property in question can be intricate when the boundaries between 
the sets are fractal. It may be difficult to predict the state transition of the system as the initial condition 
is disturbed. This unpredictability increases when the boundaries of Sj are not only fractal but also pos-
sess the Wada property; that is, each point on the boundary of any of these regions is in fact on the 
boundary of all of them. In other words, the sets share the same boundary.

This situation emerges for a variety of systems of high interest in physics such as the basins of the 
forced damped pendulum1, escapes in tokamaks2, dyes in open hydrodynamical flows3, the Duffing equa-
tion with a periodic forcing4, the Hénon-Heiles system5, and the use of Newton’s method to find complex 
roots6.

The problem first arose as an investigation of regions in the plane: Can three or more open, disjoint, 
connected regions Sj in the plane have the same boundary? This question was answered in the affirm-
ative by L.E.J. Brouwer in7. In8 K. Yoneyama gave an example that he attributes to Mr. Wada, his Ph.D. 
supervisor, Takeo Wada. Hocking and Young9 used the term lakes of Wada, a pun on water, so it was 
natural to extend the wordplay to dynamical systems by introducing the term basins of Wada10. The 
papers11,12 applied this concept to dynamical systems and devised a method to identify Wada basins. It 
is remarkable how improbable the original topological examples appeared, seeming unrelated to anything 
real, and yet surprisingly appear to be common in dynamical systems including analytic systems like the 
forced damped pendulum.

The Nusse-Yorke (NY) method12 observes that when the unstable manifold of a boundary saddle 
point q crosses three or more different basins, then the point q is a Wada point, as is every point in the 
stable manifold of q and in its closure. It can be difficult to show that the closure of that stable manifold 
is the entire boundary. The procedure for carrying that out is based on a concept called basin cells, which 
requires detailed knowledge of stable and unstable manifolds. The NY method is an adequate approach 
for basins in two dimensional phase spaces. However, the method is not suitable in many cases.

The Wada property appears in diverse situations such as the parameter space of the Hénon map13 or 
the one-dimensional phase space of a competition model in ecology14. We can also find experimental 
and theoretical examples where the Wada property seems very likely to be present but the absence of a 
proper method of characterization prevents its study15,16. We present a special case where the basins of 
the dynamical system share their boundaries, but the different basins are not connected. These discon-
nected Wada basins can be illustrated as follows. Figure 1(a): divide a disk in six sectors and color three 
alternate sectors with different colors; Fig.  1(b): divide each empty sector into three sectors and color 
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the central one with the color that is not at the left nor at the right; Fig.  1(c): repeat the second step 
indefinitely until filling the whole disk. The boundary of the different colors displays the Wada property 
by construction, but the basins are not connected; indeed the set of Wada points on the boundaries 
possesses a Cantor set structure. There is a rich literature documenting systems with disconnected Wada 
sets: the experiment of light scattered by reflecting balls17, the Newton method to find complex roots6, 
chaotic scattering in more than two dimensions18, etc.

A Grid Approach
We propose a simple method, straightforward to implement, to test the Wada property in all kind of 
systems. Furthermore, our method/terminology allows us to classify intermediate situations where only 
some basins and some of the boundary present the Wada property, which receives the name of partially 
Wada basins19,20.

We first need some assumptions. We will discuss the notation for the case of a two dimensional space 
though it is easily adapted to other cases.

1. There is a bounded region Ω  containing ≥N 3A  disjoint regions Sj where j =  1, …, NA.
2. There is a rectangular grid G covering Ω . We typically use a 1000 ×  1000 grid. Hence Ω  is covered 

by a set = , ...,P box box{ }K1  of grid boxes (whose interiors do not intersect each other). Here K 
would be 106 for that usual grid.

3. For each point x in Ω , it is possible to determine to which set Sj it belongs to. In other words, 
there is a function C with C(x) =  j if ∈x S j and C(x) =  0 if x is in none of the sets Sj. If the sets 
are basins, the trajectory for each Ω∈x  leads to an atractor labelled by C(x). Notice that we do 
not impose different labels for each attractor. It is possible to merge several attractors into the 
same category. For any rectangular box denoted as box we define C(box) =  C(x) where x is the 
point at the center of box. If it does not go to an attractor in our collection of numbered attrac-
tors, then C(box) =  0, such events are reported at the end of the run. For convenience we will refer 
to this numerical value C as the color of the grid box. Of course other points in the same box 
might lead to different attractors.

4. We define b(boxj) to be the collection of grid boxes consisting of boxj and all the grid boxes that 
have at least one point in common with boxj, so in dimension two, b(boxj) is a 3 ×  3 collection of 
boxes with boxj being the central box.

5. For each boxj, we determine the number of different (non-zero) colors in b(boxj) and write M(boxj) 
for that number.

6. In each boxj with ( ) ≠ ,M box N1j A, that is, which is not in the interior nor in the Wada bounda-
ry, we accomplish the following procedure. We select the two closest boxes in b(boxj) with 
different colors and trace a line segment between them. We compute the color of the middle point 
of the segment. In case that the color newly computed completes all colors inside b(boxj), then 
M(boxj) =  NA and the algorithm stops. Otherwise, we compute two new points: one in the middle 
of the leftmost and central point, and another in the middle of the rightmost and central point. In 
the second step, four points interspersed with the previous five points would be calculated. In the 
third step, we would compute eight points interspersed with the previous nine. The procedure 
keeps on until M(boxj) =  NA or the number of calculated points in that segment reaches some 
maximum value previously set up. A major computational advantage of this method is that the 
refinement is made in a one dimensional subspace (the segment linking the two points), no matter 
the dimension of Ω .

7. Next we define Gm to be the set of all the original grid boxes boxj for which M(boxj) =  m.

Figure 1. Disconnected Wada set. Three different stages to build a Wada set using three disconnected 
regions. The basins (colors) share the same boundary but each colored set is disconnected.
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For m =  1, all the boxes inside the ball b(boxj) have the same color as they all lead to the same attrac-
tor. In fact G1 represents points that are in the interior of a basin. A grid box boxj is in the set G2 (bound-
ary of two) if there are two different colors inside the ball b(boxj), a grid box is in the set G3 (boundary 
of three) if there are three different colors inside the ball and so forth. To account for the evolution of 
these sets as the algorithm progresses, we call Gn

q the set Gn at step q.
Then, we will say that the system is Wada if ∑ # =

→∞
=
− Glim 0

q
m
N

m
q

2
1 . This simply means that the grid 

boxes are either in the interior G1 or in the Wada boundary GN A
 after a sufficient number of steps q.

The basic idea underlying the whole process is that if three basins are Wada, then it is always possible 
to find a third color between the other two colors (similar reasoning can be done for Wada basins with 
more than three colors). Notice also that if a boundary separates two basins we will only see those two 
basins at all resolutions.

To illustrate the iterative process we represent in Fig. 2 our example of a partial Wada set and compute 
the boundary set for three grid boxes box1, box2, and box3 on a regular rectangular grid forming a par-
tition P0 of the phase space. The first iteration for box1 shows that it belongs to the interior region G1

0, as 
the eight boxes surrounding it have the same color. At this point, we can consider box1 in G1

0 without 
refining the partition. The second, box2, lies in the boundary of two sets because two different colors are 
found in its ball. The successive iterations of the algorithm classify box2 into G2. A different situation 
arises for box3. The first iteration classifies box3 ∈G2

0 because only two colors are found in its ball. But as 
we increase the resolution, box3 turns out to be in a boundary of three basins G3

1.
In order to decide whether a system is Wada, not Wada, or presents an intermediate situation, we 

can count the number of boxes belonging to the boundary of m different basins. For that purpose we 
can define a useful parameter

Figure 2. Sketch of the method. We set up a grid of boxes boxj covering the whole disk. The center point of 
each box defines its color. In the first step, we see that box1 belongs to the interior because its surrounding 
8 boxes have the same color. On the other hand, box2 and box3 are in the boundary of two attractors, i.e., 
they are adjacent to boxes whose color is different. In the next step the algorithm classifies box2 still in G2 
(boundary of two), while box3 is now classified in G3 (boundary of three). Ideally the process would keep 
on forever redefining the sets G1, G2 and G3 at each step, though in practice we can impose some stopping 
condition. This plot constitutes an example of partially Wada basins.
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where ∈ ,m N[2 ]A . This parameter ∈ ,W [0 1]m  takes a value zero if the system has no grid boxes that 
are in the boundary separating m basins and it takes a value one if all the boxes in the boundary separate 
m basins. Thus, if =W 1N A

 the system is said to be Wada. Partial Wada occurs when 0 <  Wm <  1 with 
≥m 3. As we will see, Wm is also useful to test the global numerical convergence.

Results
For all the results presented in this work, we use as initial partition a uniform grid of one million boxes, 
and the verification of the Wada property is subjected to that resolution. In order to illustrate the features 
of the described method, we will present an analysis of the results for the damped forced pendulum 
and the Newton method to find complex roots. They could be considered as paradigmatic examples of 
connected and disconnected Wada sets respectively. Nonetheless, we have also tested our method for the 
Duffing oscillator4, the Hénon-Heiles system5 and the magnetic pendulum21,22. In all of them, we have 
obtained values of W3 =  1 which means they all share the Wada property.

The first system we will analyze is the forced damped pendulum defined by 
+ . + = .̈x x x t0 2 sin 1 66 cos , which constitutes a paradigmatic system with connected Wada basins1. 

After applying our method to the basin of attraction of Fig. 3(a), we find that all the boxes lie either in 
the boundary of the three basins or in the interior within the resolution of the method (see Fig. 3(b)). 
The histogram of Fig.  3(c) reflects the computational effort needed to test the Wada property in this 
system23. It shows that most of the points take less than five iterations to be labeled into the set boundary 
of three. Most importantly, the fractal structure of the boundary allows fast computation: as the number 
of steps q grows the number of remaining points N decreases exponentially (see Fig. 3(d)). At the end 
of the process, we find that W3 =  1 which implies that the system is Wada.

A more challenging case arises when we increase the amplitude of the external forcing: 
+ . + = .̈x x x t0 2 sin 1 73 cos . For these parameters the damped forced pendulum has at least eight 

Figure 3. Forced damped pendulum. (a) Basins of attraction for the damped forced pendulum 
+ . + = .̈x x x t0 2 sin 1 66 cos . (b) All 1000 ×  1000 boxes are labeled either in the interior (white) or in the 

boundary of the three basins (black). (c) Histogram showing the number of points N that take q steps to be 
classified as boundary of three. (d) After a maximum, there is an exponential decay of the computational 
effort related to the fractal structure of the basins. The log-plot reflects this tendency.
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attractors, and its basins are mixed complicatedly as shown in Fig. 4(a). When we apply our algorithm, 
we see that not all the boxes are classified as Wada (Fig. 4(b)). This is an example of partial Wada basins. 
The points in the boundary which are not Wada (points in G2 to G7 in our example) increases the com-
putational effort of the algorithm (Fig. 4(c)). The reason is due to nature of the process, the algorithm 
stops computing when M(boxj) =  NA for each box or reach the maximum of allowed steps.

In order to establish a stopping rule we can use the parameter Wm: the algorithm stops when 
ε( + ) − ( ) <W step W step1m m , being ε a small positive number previously fixed (see Fig.  4(d)). 

Another option to deal with partial Wada is to merge some basins of attraction, considering two colors 
as only one single color for example. Making such a redefinition of the basins, we can say that the system 
is Wada if all the new basins share the same boundary (assuming we have at least three basins).

The second system under study is the Newton method to find complex roots, which provides exam-
ples of disconnected Wada sets. To find the roots of =z 1r , ∈z  and ∈r , the Newton method 
iterates the map = − ( − )/( )+

−z z z rz1n n
r r

1
1 . This map has r different fractalized and disconnected 

Wada basins corresponding to the complex roots of unity. In Fig. 5(a) we depict the basin for r =  7 and 
in Fig. 5(b) we see that the algorithm yields to W7 =  1, that is, all the boxes belong to the interior or to 
the boundary of the seven basins. Thus, our method can verify the Wada property for an arbitrary num-
ber of basins and for disconnected Wada sets too. An analysis of the computational effort for the Newton 
method varying r from 3 to 7 reflects that it grows with the number of basins (the maxima of the histo-
grams in Fig. 5(c) shifts to the right as the number of basins increases).

Discussion
Fractal Wada boundaries seem common in nonlinear systems. However they can be overlooked or mis-
interpreted with a simple fractal boundary. We can also have an intermediate situation such as partial 
Wada. Our algorithm shows that in a computationally affordable time, the Wada basins can be detected 
for a given grid precision. Furthermore it is possible to apply the technique to disconnected Wada sets, 
high-dimensional problems, experimental settings and partially Wada systems.

Figure 4. Forced damped pendulum with eight basins. (a) The damped forced pendulum with parameters 
+ . + = .̈x x x t0 2 sin 1 73 cos  shows eight basins of attraction mixed intricately. (b) Some boxes are 

classified to be in the boundary of eight basins (black dots), but not all of them (red dots), which is a clear 
example of partial Wada. (c) The computational effort presents the usual shape for the Wada boundary, but 
the points which are not Wada keep refining indefinitely (bar at rightmost). Our algorithm works best in 
systems with the Wada property. (d) Evolution of the proportion of boxes in the Wada boundary (W8 in 
black) and proportion of boxes in a boundary which is not Wada (W2−7) as a function of the q-step. The 
convergence of W8 is used to determine the stopping rule.
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A simple key idea drives the search: on the line segment between two points of different basins there is 
always a point belonging to another basin if the boundary is Wada. The indicator Wm quantifies the Wada 
property and allows comparisons between basins. We can imagine for example a study of the measure-
ment Wm as a function of a parameter of the system under study. We can also imagine an optimization 
algorithm to implement a heuristic search for Wada basins. We believe that this algorithm can constitute 
a powerful tool in the study of dynamical systems in general and of the Wada property in particular.
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