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Abstract: The effect of boundary deformation on the classical entan-
glement which appears in the classical electromagnetic field is considered.
A chaotic billiard geometry is used to explore the influence of the me-
chanical modification of the optical fiber cross-sectional geometry on the
production of classical entanglement within the electromagnetic fields.
For the experimental realization of our idea, we propose an optical fiber
with a cross section that belongs to the family of Robnik chaotic billiards.
Our results show that a modification of the fiber geometry from a regular
to a chaotic regime can enhance the transverse mode classical entanglement.
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1. Introduction

Recent research in quantum chaos has uncovered the relationship between chaos and entan-
glement both theoretically and experimentally [1–4]. It is well known that classically chaotic
trajectories exhibit rich topological structures in the classical phase space [5]. Recently, there
has been an increasing interest in relating quantum entanglement and classical geometry. In this
article, we explore how the classical entanglement in an electromagnetic field can be intimately
connected to the geometry of the domain boundary within which the fields are confined. In this
context, we use the analogy between a quantum chaotic billiard in the non-relativistic quantum
regime to the electromagnetic wave propagation in a chaotic optical fiber. The effects of spatial
geometry on classical entanglement and its connection to Hamiltonian chaos to be an as yet
unexplored direction.

Classical chaos has been observed in very simple systems like the Robnik billiard [6] and
the Bunimovich stadium [7]. It is already known that a quantum system in a classically chaotic
regime can generate higher entanglement [1,8–15]. In terms of its implementation, a recent ex-
periment has demonstrated the presence of quantum chaos in light beams [16]. While quantum
entanglement has been practically implemented in sophisticated discrete-variable systems such
as an NMR based system [18], there is a recent interest in the application of continuous variable
entanglement for the purpose of quantum computation [19]. G. Agarwal et. al had analyzed the
entanglement dynamics of coupled single mode waveguides and they have shown that the cou-
pled waveguides can make basic units of quantum circuits [20]. Here, we follow the approach
based on the analogies between quantum physics and optics via the classical electromagnetic
waves [21]. It was Spreeuw who realized the existence of classical entanglement [22, 23]. Fur-
ther research on this area revealed that classical entanglement can indeed be used as a re-
source [24–27]. In Refs. [24–26], it was shown that the Grover and Deutsch algorithms can be
implemented using classical entanglement and the cryptographic application was also pointed
out in Ref. [30]. Very recently, it has been shown that the classically entangled light beam can
also be used for high-speed kinematic sensing [29]. In a recent experiment, researchers also
found a way to quantify the classical entanglement using polarimetric measurements [28].

According to P. Ghose et al., the EPR like correlation can also appear in classical electrody-
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namics [31,32]. It has been shown recently that the classical electrodynamics contains a Hilbert
space structure which makes it similar to quantum mechanics in certain aspects [33]. In addition
to that, in recent experiments, researchers have explored the non-quantum entanglement (clas-
sical entanglement) in the classical optical field [34, 35]. It is well known that the Maxwell’s
equations of the transverse modes of the electric field in an optical fiber can be transformed
into an Optical-Schrödinger equation, where the z-axis of the optical fiber is analogous to time
[36–39]. Hence, the classical electromagnetic wave equation can be used to mimic the quan-
tum features and facilitate a proper experimental implementation. H. J. Stöckmann et al. had
already explored this type of analogy between electromagnetic waves and quantum mechanics
to explore quantum chaos using a two-dimensional microwave cavity [40–43]. Here, we use
geometries inspired from the studies of quantum chaos to explore the geometric dependence of
entanglement. In the recent decade, researchers had analyzed chaotic optical fibers for different
purposes, V. Doya et al. had analyzed the speckle statistics and optical scars respectively in a
D-shaped chaotic fiber [44, 45].

In this article, we introduce the idea of exploiting an optical fiber with a core cross-section
that has the geometry of a chaotic billiard to create highly classically entangled light beams.
More specifically, we analyze in this paper an optical fiber which possesses the cross sectional
geometry of the Robnik billiard. By analyzing the propagation of a classical electromagnetic
wave in these fibers, we can explore the geometric dependence of the classical entanglement in
terms of the lowest-order eigenmodes, as well as using coherent and squeezed coherent states
as the initial wavepackets.

2. Two-dimensional Optical-Schrödinger equation

It is well known that a light beam propagating in an optical fiber can be described by the
following equation,

iλw
∂ψ(x,y,z)

∂ z
= − λ 2

w

2n0(z)
∇xy

2ψ(x,y,z)+
1

2n0(z)
[n0

2(z)−n2(x,y,z)]ψ(x,y,z), (1)

which is a two-dimensional Optical-Schrödinger equation with an optical-wavefunction in the
transverse x and y variables. The longitudinal coordinate z along the fiber axis is similar to
time in the standard Schrödinger equation [36–39]. This type of analogy between quantum
mechanics and wave optics has been also pointed out in many other works [46–48]. Here n0(z)
is the refractive index along the beam axis and λw is the wavelength of the electromagnetic
wave. Hence, the optical Hamiltonian can be written as,

H =
1

n0(z)

(
px

2

2
+

py
2

2

)
+U(x,y,z), (2)

where px and py are the classical momentum variables in the transverse two-dimensional plane
and the optical potential function has the form U(x,y,z) = 1

2n0(z)
[n0

2(z)−n2(x,y,z)]. This type
of two-dimensional Hamiltonian has already been studied in the context of chaotic ray propa-
gation in an optical fiber [49]. In the usual sense, the classical limit corresponds to h̄ → 0, while
in the Optical-Schrodinger equation this limit corresponds to λw → 0 which is just the classical
ray optics approximation. By properly choosing the refractive index profile, we can define our
potential function.

Let D be the domain of the fiber core cross-section in the two-dimensional xy plane. The
optical fiber is a dielectric medium with refractive index n(x,y,z). It is known that for a step-
index fiber, n(x,y,z) = n0 in the core with (x,y) ∈ D∪∂D and n(x,y,z) = n1 in the cladding if
(x,y) ∈ D̄. We assume that the outer region of the cladding is sufficiently large so that it can
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Fig. 1. This figure shows the geometry at the core of a family of the Robnik optical fiber.
When λ = 0, the core of the optical fiber takes the standard circular shape. By increas-
ing the deformation parameter λ , different quantum chaotic optical fibers are obtained. A
schematic of the optical ray propagating in the z-direction is also shown as well as its pro-
jection on the xy plane which contains patterns reminiscent of a quantum chaotic billiard.
Note that the z axis is the analog of time in the standard Schrödinger equation.

be taken to be infinite when considering guided light in the core and near the core-cladding
boundary. Under this situation the components of the monochromatic electric and magnetic
fields obey the Helmholtz equation [50]. In order to study the time evolution of the wavepacket,
we define our two-dimensional potential as a function which is zero inside the domain (fiber
core region) and relatively high outside the domain (cladding region). Hence our problem can
be represented by the Helmholtz equation in a 2D domain which has been employed to describe
diverse quantum chaotic billiards. In other words, our problem of the wavepacket propagation
in an optical fiber has been reduced to a quantum chaotic billiard problem. The two-dimensional
potential is taken as zero inside the domain and a high value of around 1012 outside the domain.
This is enough to make the wavefunction to vanish on the outer boundary. In order to repre-
sent the two-dimensional potential on a grid, the Robnik billiard is represented in cartesian
coordinates, which is given by,

((u+B)2 + v2 −2B(u+B))2 = A2((u+B)2 + v2).

(3)

Using the cartesian form, the region inside and outside the Robnik billiard can be easily deter-
mined. Once the two-dimensional potential is obtained numerically, the wavefunction is prop-
agated via the split operator method. Then, the density matrix is computed to evaluate the von
Neumann entropy of entanglement Svn.

In the classical limit, we study the dynamics of the classical billiard via ray optics while the
wave optics description represents the analogous quantum mechanics in terms of the electro-
magnetic wave and its propagation in the waveguide. The quadrature components x, y, px and
py are the position and momentum coordinate in the plane perpendicular to the fiber axis. This
is clarified in Fig. 1 where we have shown the wave propagation in the optical fiber and its
projection on the (x,y) plane. It is observed that the projection on the (x,y) plane is a chaotic
Robnik billiard. Note that in our case x, y, px and py are exactly the coordinates and momentum
variables of the chaotic Robnik billiard. In the ray optics limit, the path of light rays illustrate
the chaotic properties while in the wave optics regime, the electromagnetic waves can exhibit
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entanglement like features. The ray optics is analogous to classical mechanics and wave optics
is analogous to quantum mechanics. Thus, the quantum-classical correspondence in quantum
chaos is translated into wave optics - ray optics correspondence.

3. Mechanical modification of the classical entanglement

The goal of this article is to elucidate the effect of the domain boundary geometry on the
classical entanglement. Our results would illustrate the possibility of manipulating classical
entanglement via modifying the mechanical design of the core geometry. We shall entirely focus
on the Robnik billiard due to its relative simplicity in terms of numerical computations. Our
idea can be intuitively grasped from the following fact, that the eigenfunctions of a rectangular
billiard are formed by a tensor product of x and y modes, and hence they are not entangled. By
slightly deforming the rectangular geometry to a Bunimovich stadium, the eigenfunction would
be changed entirely. The new eigenfunctions of the Bunimovich stadium then becomes a linear
combination of the eigenfunctions of the rectangular billiard with proper boundary conditions
and it is no longer a product state. The same is true for the Robnik billiard which results from
deforming a circle. The eigenfunctions of the circular billiard [51] can be expressed as a tensor
product state in terms of the r and θ variables as follows:

φm,n(r,θ) = Jm( jmnr)eimθ . (4)

In the radial direction, the eigenmodes are described by the Bessel functions Jm( jmnr), while
the polar coordinates give the wavefunction Θ = e+imθ and jmn describes the nth zero of the
Bessel functions of order m. Hence, there is no entanglement between the polar and the radial
part of the wavefunction for the circular geometry. By deforming the geometry, the classical
entanglement starts to appear. For example, the eigenfunction of the Robnik billiard can be
expanded in terms of the eigenfunctions of the circular billiard as follows:

ψ(r,θ) =
N

∑
m=0

√
CmJm(β r)eimθ . (5)

The value of β can be determined by minimizing the norm of the wavefunction on the bound-
ary, which then gives the complete information about the wavefunction ψ(r,θ). This technique
is often used in the numerical implementation of the method of particular solutions [52, 53].
Equation 5 shows that the wavefunction ψ(r,θ) is in the form of the Schmidt decomposition,
where the Schmidt basis are the eigenfunctions of the circular billiard and the classical entan-
glement can be determined easily from the coefficients Cm. As the deformation increases, we
need more terms to approximate the eigenfunction. Hence, the entanglement entropy would in-
crease. When the beam paths configuration becomes highly chaotic, a larger number of Schmidt
modes are required to approximate the eigenfunction which leads to a higher entanglement.
This results from the fact that the field modes start to interact through the special geometry of
the deformed circular boundary. This simple observation has far reaching consequences since it
implies the possibility of manipulating classical entanglement via mechanical methods which
is technically easy to achieve. In addition, chaos would serve to indicate the critical geometry
that gives a maximum entanglement in the system.

In order to study the continuous variable entanglement of the transverse mode ψ(r,θ) in
chaotic optical fibers, we first obtain the reduced density matrix of the first subsystem ρ1 by
integrating over the field variable θ in terms of the bipartite wavefunction ψ(r,θ) as follows:

ρ1(r,r
′
) =

∫
ψ(r,θ)ψ∗(r

′
,θ)

√
rr′dθ . (6)
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Fig. 2. The von Neumann entropy of entanglement Svn of the four lowest eigenfunctions
vs the deformation parameter λ of the Robnik fiber is shown in (a), while (b) shows the
four lowest state eigenfunctions with λ = 0.499. It can be seen that the von Neumann
entropy of entanglement Svn in the eigenmodes saturates as the geometries of these fibers
approach the completely chaotic regime. The solid black curve in (a) shows the average von
Neumann entropy of entanglement of the ten lowest eigenmodes S̄vn for different boundary
geometries of the Robnik fiber.

To quantify the continuous variable classical entanglement, we compute the von Neumann
entropy of the entanglement by using the numerical methods proposed by Parker et al. [54] and
Bogdanov et al. [55]. The von Neumann entanglement entropy of the reduced density matrix
is given by,

Svn(t) =−∑ηi logηi, (7)

where ηi are the eigenvalues of the Hermitian kernel ρ1(r,r
′
) as shown in Eq. 8 below. The

eigenvalues are computed from the Fredholm type II integral equation of ρ1(r,r
′
), which is

given by ∫
ρ1(r,r

′
)φi(r

′
)dr

′
= ηi φi(r), (8)

with φi(r) being the corresponding Schmidt eigenfunction.

4. Robnik fiber and classical entanglement

The cross section of a Robnik fiber has the shape of the Robnik billiard which is shown in Fig. 1.
As light passes though the Robnik fiber the transverse modes of the fiber get entangled. We are
interested in the optimum geometry which gives a high entanglement in the system. The cross
sectional geometry of the Robnik fiber is a conformal transformation w = AZ(θ) +BZ(θ)2
of the unit circle Z(θ) on the complex plane. According to Robnik [6], the cross-sectional
geometry can be written in the parametric form as follows,

u = Acosθ +Bcos2θ (9)

v = Asinθ +Bsin2θ . (10)

The area of the billiard is given by Area = π(A2 + 2B2) and by means of a reparametrisa-
tion, A and B can be written as follows: A = cos p and B = 1√

2
sin p, where p is given by

p = tan−1 (λ
√

2). This allows us to define a family of closed analytical boundaries of con-
stant area, Area = π , which depends on the values of the deformation parameter λ . Robnik had
shown that the parameter λ can be chosen within the interval 0 ≤ p ≤ psing = tan−1 ( 1√

2
) . For

#251038 Received 29 Sep 2015; revised 6 Nov 2015; accepted 10 Nov 2015; published 4 Dec 2015 
© 2015 OSA 14 Dec 2015 | Vol. 23, No. 25 | DOI:10.1364/OE.23.032191 | OPTICS EXPRESS 32197 



0 0.1 0.2 0.3 0.4 0.5
1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

λ

S
M

 

 

ζ=−0.25
ζ=0.0

λ=0 λ=0.3λ=0.499

(a)

0 10 20 30 40 50
0

0.5

1

1.5

2

z

S
v
n
(z

)

 

 

ζ=−0.25
ζ=0.0

λ=0.499

(b)

Fig. 3. A plot of the classical entanglement of the squeezed coherent state versus the defor-
mation parameter λ of the Robnik fiber is shown in (a). We observe that the classical en-
tanglement is higher when the system is in the chaotic regime and the initial squeezing has
enhanced the classical entanglement in the system. In (b), we have plotted the classical en-
tanglement dynamics as the light propagates along the z-axis. It is important to note that the
light enters the fiber without any classical entanglement. Entanglement increases as it prop-
agates, and as it traverses a distance of 50 units the classical entanglement saturates. Note
that the blue and green curves represent the coherent state and the squeezed coherent state
respectively. We have chosen the initial state at the point (x, px,y, py) = (0.25,0.1,0.0,0.1).

smaller values of λ , the billiard exhibits a regular dynamics since it is closer to the circular
geometry. An increase in the parameter λ shifts the system from regular to chaotic. We analyze
the dependence of the classical entanglement as we vary the deformation parameter λ from the
regular to the chaotic regime.

4.1. Classically entangled Robnik eigenmodes

We have varied the fiber cross section by adjusting the deformation parameter λ . As the bound-
ary geometry changes, we compute the lowest order eigenfunctions, so that the classical en-
tanglement in the radial r and the angular θ modes can be evaluated. Based on our earlier dis-
cussion, the classical entanglement in the circular geometry between the r and θ variable is zero
since the eigenfunction is a product state. As we change λ , the classical entanglement in the
system starts to increase. In Fig. 2(a), we have plotted the classical entanglement of the eigen-
modes against different values of the deformation parameter λ . In the same figure, we have also
displayed the corresponding boundary geometry. We observe from Fig. 2(a) that the classical
entanglement dynamics increases as λ increases. As the boundary geometry leads to chaotic
behavior, the classical entanglement in eigenmodes increases even further and as the system
approaches the highly chaotic regime the entanglement entropy saturates. Thus, the degree of
chaos in the system is directly linked to the level of classical entanglement in the light pulse
albeit there is a maximum attainable level in lieu of the eventual saturation. We have plotted
the eigenmodes corresponding to the saturation level at λ = 0.499 in Fig. 2(b). From Fig. 2(a),
we observe that the lowest energy mode n = 0 has higher classical entanglement compared to
the excited mode n = 1. This can be understood by examining Fig. 2(b), where the ground state
eigenmode is seen to be more severely affected by the deformation of the boundary, while the
first excited mode n = 1 contains a nodal line through its center and has a form that is closer
to the eigenmodes of the circular cross-section. Hence, the deformation in the eigenfunction is
smaller for the n = 1 mode. The number of basis terms to describe this eigenfunction is smaller,
which implies that its classical entanglement is smaller. The same argument applies to the ex-
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Fig. 4. The probability densities |ψ(r,θ)|2 of the entangled coherent states coming out of
the Robnik fiber with length z= 50 units are shown in (a), (b) and (c) with λ = 0.15, λ = 0.2
and λ = 0.499 respectively. The probability densities |ψ(r,θ)|2 are shown in the cross-
sectional u− v plane of the fiber. The blue color shows the regions where the probability
is zero and the red color shows the regions of higher probability. The entangled state is
obtained from a tensor product coherent state centered at (x, px,y, py) = (0.25,0.1,0.0,0.1)
with λw = 0.01. The entangled state occurs after the light beam has propagated a distance of
z = 50 units. Note that we have also indicated the von Neumann entanglement entropy Svn

of the polar coordinates below these figures. In (d), (e) and (f) the corresponding classical
phase space is shown for λ = 0.15,λ = 0.2 and λ = 0.499 respectively. From the figure it
can be observed that the time evolved coherent state has a higher classical entanglement
when the corresponding geometry possesses a larger degree of chaotic behavior.

#251038 Received 29 Sep 2015; revised 6 Nov 2015; accepted 10 Nov 2015; published 4 Dec 2015 
© 2015 OSA 14 Dec 2015 | Vol. 23, No. 25 | DOI:10.1364/OE.23.032191 | OPTICS EXPRESS 32199 



cited modes n = 2 and n = 3, respectively. These results indicate that the eigenfunctions that
are affected more by the boundary deformation would have a higher optical entanglement. It
thus provides insights into how the chaotic geometry can be effectively used to produce highly
classically entangled states.

4.2. Effect of squeezing and classical entanglement in the Robnik fiber

While it is typical to propagate a Gaussian beam in an optical fiber, one may wonder the effect
of initially squeezing such a beam before launching it into the fiber. This question has led us to
investigate the difference in classical entanglement dynamics with respect to the initial coherent
and the squeezed coherent state as the light wave propagates in the horizontal z direction. For
our investigation, we use the Hollenhorst and Caves definition of the squeezing operator [56–
58] and we employ the coordinate representation of the squeezed coherent state [59] for the
numerical computations. The squeezed coherent state is defined as

|αk,ζk〉 = D̂(αk)Ŝ(ζk)|0〉 , (11)

where the displacement operator D̂ and the squeezing operator Ŝ is given by

D̂(αk) = exp(αkâk
† −α∗

k âk) , (12)

Ŝ(ζk) = exp(
1
2

ζkâk
†2 − 1

2
ζk

∗âk
2) , (13)

and αk = |αk|eiφk , ζk = |rk| eiθk are complex numbers and αk are related to the phase space
variables (qk, pk) in the following manner

αk =
1√
2h̄

(qk + ipk), (14)

with k = 1,2, respectively. According to Møller et al. [59], the squeezed coherent state in the
position basis can be written as

ψ(x,αk,ζk) =
(

1
π h̄

)1/4
(coshrk + eiθ sinhrk)

−1/2

exp
{
− 1

2h̄

(
coshrk−eiθ sinhrk
coshrk+eiθ sinhrk

)
(x−q1)

2 + i
h̄ p1(x−q1/2)

}
.

(15)

The tensor product state of this wavefunction is used to study the classical entanglement dy-
namics for different squeezing parameter values.

In Fig. 3(a) the classical entanglement maximum SM is plotted against different fiber ge-
ometries. The classical entanglement maximum SM is taken from the von Neumann entropy of
entanglement Svn(z) which is computed for the propagation of the initial states along the z-axis
with a fixed geometry. The initial tensor product coherent state and the squeezed coherent state
is propagated for a different boundary geometry and we take these initial states to be centered at
(x, px,y, py) = (0.25,0.1,0.0,0.1). We have computed the classical entanglement present in the
radial and polar variables of the optical wavefunction. In Fig. 3(b) the classical entanglement
dynamics of the coherent state and squeezed coherent state is plotted against the z-axis. When
the optical wave with a tensor product coherent state enters the fiber (at z = 0), its classical en-
tanglement is zero. During its propagation along the z-axis the transverse modes get entangled
and after traveling a distance of 50 units along the z-axis, the classical entanglement becomes
saturated. In other words, we observe that a non-entangled light enters at one end of the fiber
and comes out entangled at the other end. In the case of a highly chaotic fiber with λ = 0.5,
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this classical entanglement can yield a higher value. Note that we have chosen the initial condi-
tion (x, px,y, py) = (0.25,0.1,0.0,0.1) because it lies entirely inside the domain for the chosen
parameter range of λ . The wavelength (analog of h̄) given in Eq. 1 is selected as λw = 0.01.
The value of λw is set small enough in order for the wavepacket to be contained entirely inside
the defined two-dimensional cross-sectional domain. We have also used the equally position
squeezed ζ1 = ζ2 = ζ wavepacket at a relatively small value of ζ =−0.25 due to the numerical
considerations. From Figs. 3(a) and 3(b) we can clearly see that as the core boundary deforma-
tion λ increases, the production of classical entanglement is found to increase for both the case
of initial coherent state and initial squeezed coherent state. This is again observed in Figs. 4(a),
4(b) and 4(c) according to the corresponding von Neumann entropy of entanglement. It is well
known that when the deformation parameter approaches λ = 0.5, the dynamical behavior of
the classical system is highly chaotic (see Figs. 4(d), 4(e) and 4(f)) with the higher classical
entanglement maxima observed in the corresponding optical system. Thus, our results clearly
indicate the effect of the geometrical deformation on entanglement dynamics of initial squeezed
coherent states in a chaotic optical fiber. It is to be noted that a judicious choice of a chaotic
core cross-section would lead to the generation of highly entangled transverse modes. These
results are also in accordance with our previous studies [4, 60].

Taking into account the recent experimental progress to quantify the classical entangle-
ment [28], we do believe that an experiment can be performed as follows. After passing light
beams through a chaotic optical fiber, the transverse field modes of light will get classically
entangled. Changing the geometry of the fiber cross-section can affect the transverse mode in-
tensity profile. The intensity measurement of the transverse electric field can be recorded on a
CCD camera and this information can be used to measure the effect of geometry on the classical
entanglement.

5. Conclusions

We have explored the dependence of the classical entanglement with the boundary deformation.
We have seen that as the boundary gets deformed into a chaotic billiard, the entanglement in the
eigenmode increases. This demonstrates that the classical entanglement has a dependence on
the boundary geometry and the associated chaotic dynamics. We have also analyzed the prop-
agation of a coherent state and a squeezed coherent state in a chaotic Robnik optical fiber. We
have found that an initial squeezing can indeed enhance classical entanglement in chaotic op-
tical fibers. More importantly, our results have specifically shown the cross-sectional geometry
dependence of the classical entanglement.
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