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Abstract. The bifurcation and resonance phenomena are investigated in a fractional Mathieu-Duffing os-
cillator which contains a fast parametric excitation and a slow external excitation. We extend the method
of direct partition of motions to evaluate the response for the parametrically excited system. Besides, we
propose a numerical method to simulate different types of local bifurcation of the equilibria. For the non-
linear dynamical behaviors of the considered system, the linear stiffness coefficient is a key factor which
influences the resonance phenomenon directly. Moreover, the fractional-order damping brings some new
results that are different from the corresponding results in the ordinary Mathieu-Duffing oscillator. Espe-
cially, the resonance pattern, the resonance frequency and the resonance magnitude depend on the value
of the fractional-order closely.

1 Introduction

Parametric excitations are used in the mathematical mod-
eling of different phenomena in many scientific and en-
gineering fields [1–6]. If there is resonance phenomenon
in the response, the structure of the system may be de-
stroyed and then might lead to a disaster. Hence, it is im-
portant to investigate the resonance phenomena in para-
metrically excited systems. There are lots of references
focusing on this topic. Furthermore, parametric excita-
tions usually exist in a high-frequency form [7–13]. More-
over, besides the fast parametric excitation, there may be
other slow excitation acting on a physical or mechanical
structure. Although the slow excitation is often in a weak
strength, it usually indicates the characteristic informa-
tion in some occasions. This makes the researchers to be
interested in the response induced by a slow excitation.
In a nonlinear system, if the fast and slow excitations are
both external and act on a nonlinear system simultane-
ously, the response of the system to the weak slow ex-
citation can be enhanced by the fast excitation. This is
precisely what happens with the well-known vibrational
resonance phenomenon [14]. The vibrational resonance
phenomenon exists in many systems [15–20]. However,
if the system is excited by a fast parametric excitation
and a slow external excitation, the response to the low-
frequency excitation is a noteworthy problem. Certainly,
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there is less work done on this topic, and this is one of our
motivations.

In the present work, we consider the Mathieu-Duffing
oscillator which is a typical parametrically excited sys-
tem. The excitations include a slow external excitation
and a fast parametric excitation. Without loss of gen-
erality, we let the damping in the fractional-order form.
The fractional-order damping is widely used in many
disciplines, especially in rheology [21,22], viscoelastic-
ity [23,24], quantum systems [25–27], mechanics [28,29],
electrochemistry [30,31], bioengineering [32], automatic
control [33], etc., just to cite a few. The fractional-order
damping influences the bifurcation and resonance behav-
iors in the nonlinear system that are subjected to both fast
and slow excitations [34–37]. We concentrate our study on
the dynamical behavior of the fractional Mathieu-Duffing
oscillator.

The outline of the paper is organized as follows. In
Section 2, we obtain the magnitude of the constant com-
ponent and the response amplitude to the low-frequency
excitation in the response. In Section 3, we give a nu-
merical method to verify the local bifurcation of the
equilibria. In Section 4, the parameter induced reso-
nance and the resonance frequency is investigated thor-
oughly. The effects of the system parameter and the
fractional-order damping on the resonance are discussed
in detail. In Section 5, we conclude the main results
of this paper.
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2 Theoretical framework

The fractional Mathieu-Duffing oscillator is governed by
the equation

d2x

dt2
+ δ

dαx

dtα
+ [a + F cos (Ωt)] x + bx3 = f cos (ωt) . (1)

In equation (1), δ > 0 is the damping coefficient. The oper-
ator dαx

dtα denotes the fractional-order damping. The value
of the fractional-order α usually lies in the interval (0, 2).
There are three algorithms widely used for the fractional-
order differential operator, i.e., the Caputo algorithm, the
Grünwald-Letnikov algorithm, and the Riemann-Liouville
algorithm [38]. In equation (1), we adopt the Grünwald-
Letnikov algorithm which is given by the formula

dαf(t)
dtα

∣
∣
∣
∣
t=kh

= lim
h→0

1
hα

k∑

j=0

(−1)j

(

α
j

)

f(kh − jh), (2)

where the binominal coefficient is
(

α
j

)

=
Γ (α + 1)

Γ (j + 1)Γ (α − j + 1)
. (3)

In the system, the parameters a and b are the linear and
nonlinear stiffness coefficient, respectively. Ignoring the
parametric excitation, the system is a Duffing oscillator
with a double-well potential when a < 0 and b > 0, while
it has a single-well potential when a > 0 and b > 0, and
it has a double-hump well when a > 0 and b < 0. The fre-
quencies of the harmonic excitations satisfy ω � Ω. The
amplitude F has the same magnitude order as the linear
stiffness a. The amplitude f is small, f � 1.

According to the method of direct partition of slow and
fast motions [39,40], we let the approximated solution of
equation (1) in the form x = X + Ψ , where X and Ψ
are slow and fast motions with period 2π/ω and 2π/Ω,
respectively. Then, equation (1) turns to

d2X

dt2
+

d2Ψ

dt2
+ δ

dαX

dtα
+ δ

dαΨ

dtα

+ aX + aΨ + bX3 + 3bX2Ψ + 3bXΨ2 + bΨ3

= −XF cos (Ωt) − ΨF cos (Ωt) + f cos (ωt) . (4)

We seek the approximate solution of Ψ in the linear
equation

d2Ψ

dt2
+ δ

dαΨ

dtα
+ aΨ = −XF cos (Ωt) . (5)

It is easy to obtain Ψ = AH cos (Ωt − θH), where
⎧

⎨

⎩

AH = XF
√

(a−Ω2+δΩα cos απ
2 )2

+(δΩα sin απ
2 )2 ,

θH = −tan−1 δΩα sin απ
2

a−Ω2+δΩα cos απ
2

.
(6)

Here, the amplitude of the fast variable is related to the
slow variable. It is different from the corresponding results
when the two excitations act as external perturbations.

Substituting the solution of Ψ into equation (4) and aver-
aging all terms in the range [0, 2π/Ω], we obtain that the
equation for the slow variable is:

d2X

dt2
+ δ

dαX

dtα
+

(

a +
F 2 cos θH

2μ

)

X

+ b

(

1 +
3F 2

2μ2

)

X3 = f cos (ωt) , (7)

where

μ =

√
(

a − Ω2 + δΩα cos
απ

2

)2

+
(

δΩα sin
απ

2

)2

.

From equation (7), we find that the fast excitation and
the fractional-order influence both the linear and the non-
linear stiffness. It is very different from the results when
the fast excitation is not a parametric but an exter-
nal excitation. In that case, the fast excitation and the
fractional-order influence the linear stiffness coefficient a
only, as mentioned in the previous articles [34,36,37,41].
The pitchfork bifurcation will occur when the local sta-
bility of the equilibria of the equivalent system described
in equation (7) changes. On the one hand, if the param-
eter b is positive, the term b(1 + 3F 2

2μ2 ) is also positive.

For the case a > 0, we also have a + F 2 cos θH

2μ > 0 and
there is no pitchfork bifurcation. For the case a < 0, the
term a + F 2 cos θH

2μ may change its sign with the change
of the fractional-order α. It may lead to a pitchfork bi-
furcation. If a + F 2 cos θH

2μ ≥ 0, the equivalent system in
equation (7) has one stable equilibrium X∗ = 0 only. Else,
equation (7) has one unstable equilibrium X∗ = 0 and two
stable equilibria

X∗ = ±
√

−2aμ2 + μF 2 cos θH

b (2μ2 + 3F 2)
.

On the other hand, if the parameter b is negative, the
term b(1 + 3F 2

2μ2 ) is also negative. Equation (7) has only one

stable equilibrium X∗ = 0 for the case a+ F 2 cos θH

2μ > 0. Or
else, equation (7) has no stable equilibrium and the system
will diverge to infinity for the case a + F 2 cos θH

2μ ≤ 0.
To obtain the linear response of the system to the slow

excitation, we let X = y + y0. Here, y is a harmonic com-
ponent with frequency ω and y0 is the constant component
in the response. We assume y0 just equals the value of the
stable equilibria X∗. Hence, for the case b > 0,

y0 = X∗ =

⎧

⎨

⎩

0, a + F 2 cos θH

2μ ≥ 0,

±
√

− 2aμ2+μF 2 cos θH

b(2μ2+3F 2) , a + F 2 cos θH

2μ < 0.

(8)

For the case b < 0,

y0 = X∗ =

{

0, a + F 2 cos θH

2μ > 0,

null, a + F 2 cos θH

2μ ≤ 0.
(9)
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This assumption will be verified in the following section.
Then, equation (7) turns to:

d2y

dt2
+ δ

dαy

dtα
+ ωry + 3βX∗y2 + βy3 = f cos (ωt) , (10)

where ωr = a + F 2 cos θH

2μ + 3βX∗2 and β = b(1 + 3F 2

2μ2 ).
Seeking the approximate solution of y in the linear
equation

d2y

dt2
+ δ

dαy

dtα
+ ωry = f cos (ωt) . (11)

One gets y = AL cos (ωt − θL), where
⎧

⎪⎨

⎪⎩

AL = f
√

(ωr−ω2+δωα cos απ
2 )2

+(δωα sin απ
2 )2 ,

θL = tan−1 δωα sin απ
2

ωr−ω2+δωα cos απ
2

.
(12)

To quantify the resonance character of the system, a target
named response amplitude and labeled by Q will be used,
Q = AL/f . From equation (12), we have

Q =
1

√
(

ωr − ω2 + δωα cos απ
2

)2 +
(

δωα sin απ
2

)2
. (13)

The resonance behavior can be predicted by the result in
equation (13).

3 The local bifurcation of the equilibria

In last section, we assume that the constant component in
the response equals the value of the stable equilibrium of
the equivalent system. Certainly, this assumption needs
to be verified. In the previous literatures, this assump-
tion usually has been verified by some phase diagrams for
some control parameters [42–44]. Through the phase di-
agrams, it can be found that the phase portraits revolve
around the stable equilibrium of the equivalent system.
However, this is an imperfect method. On the one hand,
the constant component in the response cannot be read
directly. On the other hand, the phase diagram is given
only for some special parameters. However, we need to
know the change tendency of the constant component in
the response when the control parameter changes contin-
uously. Hence, we need to extract the constant component
directly from the time series of equation (1).

There are some method to discretize the factional-
order operator [45–50]. In the following numerical calcu-
lation, we adopt the definition of the Grünwald-Letnikov
algorithm to discretize the equation for its simplic-
ity [34,38,50]. For numerically computing the constant
component from the time series, the Fourier series is a use-
ful tool. If we have one absolutely integrable function f(x)
in the interval [0, 2π], its Fourier expansion is in the form

f(x) =
a0

2
+

∞∑

n=1

(an cosnx + bn sin nx), (14)

where the cosine and sine Fourier coefficients are
{

an = 1
π

∫ 2π

0 f(x) cos(nx)dx (n = 0, 1, 2, . . .)
bn = 1

π

∫ 2π

0
f(x) sin(nx)dx (n = 1, 2, . . .) .

(15)

From equation (15), we have that the coefficient a0 is

a0 =
1
π

∫ 2π

0

f(x)dx. (16)

To obtain more accurate results, for the numerical simula-
tion of a0 from the time series x(t), it should be calculated
by the following equation, i.e.,

a0 =
2

rT

∫ rT

0

x(t)dt, (17)

where T = 2π/ω and r is a large integer number. From
the Fourier expansion in equation (14), we know that the
constant component in the time series should be a0

2 but
not a0. Hence, for the numerical simulation, the constant
component in the response should be computed by

y0 = X∗ =
1

rT

∫ rT

0

x(t)dt. (18)

In Figure 1, for different values of the fractional-order α,
the constant component in the response are plotted ac-
cording to the analytical prediction in equation (8) and
the numerical simulation formula in equation (18), respec-
tively. It is found that the numerical results are in good
agreement with the analytical predictions. An important
fact is that the bifurcation behavior occurs in the diagram.
Approaching to the value a = 0, the pitchfork bifurcation
occurs. This type of bifurcation also appears when the two
excitations are both external. From Figure 1, we find that
this local bifurcation also occurs when the excitations act
in a parametric and external way. Through Figure 1, we
verify the assumption that the constant component in the
response just equals to the value of the stable equilibrium
of the equivalent system. Hence, this method can be used
to verify the local bifurcation of the equilibria. Certainly,
besides the pitchfork bifurcation, this numerical method
can also be used to verify other types of local bifurcation,
such as the saddle-node bifurcation and the transcritical
bifurcation.

4 Resonance analysis

For the numerical simulation, Q can be obtained directly
from the time series of x(t). According to the definition
of Q and the Fourier coefficient in equation (14) and equa-
tion (15), Q should be computed by the formula

Q(ω) =
√

Q2
sin(ω) + Q2

cos(ω)/f, (19)

where

Qsin(ω) =
2

rT

∫ rT

0

x(t) sin(ωt)dt,

Qcos(ω) =
2

rT

∫ rT

0

x(t) cos(ωt)dt. (20)
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Fig. 1. The pitchfork bifurcation is induced by the system
parameter a for different fractional-order values. The continu-
ous lines are plotted by the analytical method and the discrete
points are plotted by the numerical method. The simulation
parameters are δ = 1.2, b = 1, f = 0.1, ω = 0.5, F = 1,
Ω = 10.

We will analyse the parameter induced resonance and the
resonance frequency in this section.

4.1 The resonance induced by the system parameter a

For the case b > 0, if we make the system parameter a
as the control parameter, the three-dimensional curve of
the response amplitude Q versus the linear stiffness coef-
ficient a and the fractional-order α are plotted in Figure 2
according to the analytical prediction in equation (13). On
the one hand, for a fixed fractional-order α, the response
amplitude Q versus the linear stiffness a presents a reso-
nance phenomenon. On the other hand, with the increase
of α, the curve of Q − a turns from a single-resonance
pattern to a double-resonance pattern. Furthermore, for
a fixed a, the magnitude of the resonance peak will turn
larger by increasing the fractional-order α. In a word, the
linear stiffness coefficient a can induce the resonance phe-
nomenon in the fractional Mathieu-Duffing oscillator.

To reveal the effect of the linear stiffness coefficient a
on the resonance phenomenon much more clearly, we
plot Figure 3 which shows the Q − a curve on the two-
dimensional plane. In this figure, for the case α = 0.4 and
α = 0.7, the curve Q − a is in a single-resonance mode.
The resonance occurs near a = 0. For the case α = 1.0
and α = 1.4, the curve Q − a is in the double-resonance
mode. Actually, the value a = 0 is not the resonance peak
location. At the resonance peak, the critical value of a is
a little larger or smaller than the zero value. For a larger
value of α, the magnitude of the resonance peak of Q
is larger too. Especially in Figure 3c, α = 1, the orig-
inal system degenerate to the ordinary Mathieu-Duffing
oscillator. Comparing Figure 3c with Figures 3a and 3b,

Fig. 2. The analytical result of the response amplitude Q ver-
sus the fractional-order α and the linear stiffness coefficient a.
The simulation parameters are δ = 1.2, b = 1, f = 0.1, ω = 0.5,
F = 1, Ω = 10.
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Fig. 3. The resonance is induced by the linear stiffness coef-
ficient a. The continuous lines are the analytical results and
the discrete points are the numerical results. The simulation
parameters are δ = 1.2, b = 1, f = 0.1, ω = 0.5, F = 1,
Ω = 10.

we know that the resonance pattern turns to single reso-
nance when the fractional-order α < 1. It indicates that
the fractional-order may induce different resonance pat-
tern. Comparing Figure 3c with Figure 3d, we know that
the double resonance pattern turns much more apparently
when 1 < α < 2. In this figure, the analytical result of the
response amplitude Q is in good agreement with the nu-
merical simulation. It verifies the analytical prediction for
the response amplitude Q.

For the case b < 0, according to the analytical result
in equation (13), the three-dimensional curve of Q versus
the linear stiffness coefficient a and the fractional-order α
is shown in Figure 4. For a fixed parameter a, the magni-
tude of the response amplitude increases by increasing α.
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Fig. 4. The analytical result of the response amplitude Q ver-
sus the fractional-order α and the linear stiffness coefficient a.
The simulation parameters are δ = 1.2, b = −1, f = 0.1,
ω = 0.5, F = 1, Ω = 10.
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Fig. 5. The resonance is induced by the linear stiffness coef-
ficient a. The continuous lines are the analytical results and
the discrete points are the numerical results. The simulation
parameters are δ = 1.2, b = −1, f = 0.1, ω = 0.5, F = 1,
Ω = 10.

The occurrence of the resonance phenomenon depends on
the fractional-order α closely.

In Figure 5, for the case b < 0, the curve Q − a is
plotted according to analytical and numerical results for
different values of α in the two-dimensional plane. In Fig-
ures 5a and 5b, by increasing the linear stiffness a, the
response amplitude Q will decrease. In Figures 5c and 5d,
there is a resonance phenomenon with the variation of a.
When a < 0, the response amplitude Q does not exist.
This is because the response is divergent for this case.
Comparing the response of the ordinary Mathieu-Duffing
oscillator in Figure 5c with the response of the fractional
Mathieu-Duffing oscillator in Figures 5a, 5b and 5d, we
find that the value of α influences the resonance pattern

Fig. 6. The analytical result of the response amplitude Q ver-
sus the fractional-order α and the low-frequency ω. The simu-
lation parameters are δ = 1.2, a = −1, b = 1, f = 0.1, F = 1,
Ω = 30.
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Fig. 7. The resonance frequency is shown for different values of
the fractional-order α. The continuous lines are the analytical
results and the discrete points are the numerical results. The
simulation parameters are δ = 1.2, a = −1, b = 1, f = 0.1,
F = 1, Ω = 30.

and the magnitude of Q too. It is similar to the results for
the case b > 0.

4.2 The resonance frequency

The frequency response is important in the engineering
field. Through the frequency response curve, we can de-
termine the resonance frequency. For the case a < 0
and b > 0, the analytical result of Q versus the low-
frequency ω and the fractional-order α is plotted in Fig-
ure 6. When the fractional-order is far away from the
value α = 1, the resonance may have a large magnitude.

In Figure 7, the frequency response curve is plotted in
the two-dimensional curve. We choose four different values
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Fig. 8. The analytical result of the response amplitude Q ver-
sus the fractional-order α and the low-frequency ω. The simu-
lation parameters are δ = 1.2, a = 1, b = 1, f = 0.1, F = 1,
Ω = 30.

for the fractional-order α and other simulation parame-
ters are the same with that in Figure 6. In Figure 7, we
find that both the resonance frequency and the resonance
value depend on the fractional-order α. By increasing the
fractional-order α, the resonance frequency turns small.
Compared with the frequency response curve of the ordi-
nary Mathieu-Duffing oscillator as shown in Figure 7c, the
resonance phenomenon is much stronger in the frequency
response curve of the fractional Mathieu-Duffing oscillator
as shown in Figures 7a, 7b and 7d.

For the case a > 0 and b > 0, the frequency response
curve versus the fractional-order α is plotted according to
the analytical result in Figure 8. The resonance is shown
clearly in the fractional-order case. In other words, the
fractional-order damping can induce a much stronger res-
onance than the ordinary linear damping. The correspond-
ing two-dimensional plot is plotted in Figure 9. It also in-
dicates the dependence of the resonance frequency and the
magnitude of the resonance peak on the fractional-order α.

In Figures 10 and 11, the frequency response curve is
given for the case a > 0 and b < 0. For this case, the
original system has a double-hump potential. The reso-
nance frequency and the resonance peak also depends on
the fractional-order α.

From Figures 6−11, no matter the original system
has the potential with different shapes, the resonance
frequency and the resonance magnitude depends on the
fractional-order α. The resonance frequency turns small
with the increase of the value of α. The resonance mag-
nitude turns large when the fractional-order moves away
from α = 1 gradually.

5 Conclusions

We investigate the dynamical behavior of a fractional
Mathieu-Duffing oscillator which includes a fast paramet-
ric excitation and a slow external excitation. The linear
stiffness coefficient in the system can induce a bifurcation
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Fig. 9. The resonance frequency is shown for different values of
the fractional-order α. The continuous lines are the analytical
results and the discrete points are the numerical results. The
simulation parameters are δ = 1.2, a = 1, b = 1, f = 0.1,
F = 1, Ω = 30.

Fig. 10. The analytical result of the response amplitude Q
versus the fractional-order α and the low-frequency ω. The
simulation parameters are δ = 1.2, a = 1, b = −1, f = 0.1,
F = 1, Ω = 30.

behavior. This type of bifurcation has been reported in
some previous works. However, they did not give any nu-
merical method to verify it. In this paper, a numerical
method is given to verify the local bifurcation that is in-
duced by the system parameter. Certainly, this method
can also verify other types of local bifurcation that is
induced by other parameters. Through this verification,
we find that the constant components in the response
just equals the equilibria of the equivalent system. Be-
sides the constant component in the response, the res-
onance phenomenon is another focus in this paper. Ac-
cording to the nonlinear stiffness coefficient of the original
system, the linear stiffness coefficient induced resonance
appear with different patterns. If the nonlinear stiffness
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Fig. 11. The resonance frequency is shown for different values
of the fractional-order α. The continuous lines are the analyt-
ical results and the discrete points are the numerical results.
The simulation parameters are δ = 1.2, a = 1, b = −1, f = 0.1,
F = 1, Ω = 30.

coefficient is positive, then the linear stiffness coefficient
induced resonance may appear as a single-resonance or
a double-resonance pattern. It depends on the value of
the fractional-order. If the nonlinear stiffness coefficient is
negative, the linear stiffness coefficient either cannot in-
duce a resonance or it induces a single-resonance. It also
depends on the value of the fractional-order closely. As
to the resonance frequency, it decreases with the increase
of the value of the fractional-order. Moreover, the reso-
nance magnitude is larger when the damping is far away
from the ordinary linear damping. In other words, the res-
onance is much stronger when the value of the fractional-
order is far away from one. In a word, there are many more
different dynamical properties in the fractional Mathieu-
Duffing oscillator than that in the ordinary one. By in-
vestigating these new results, we might control a system
effectively by choosing an appropriate system parameter
or a fractional-order damping.
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