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a b s t r a c t 

We investigate the stochastic response of a noisy bistable fractional-order system when the 

fractional-order lies in the interval (0, 2]. We focus mainly on the stochastic P-bifurcation 

and the phenomenon of the stochastic resonance. We compare the generalized Euler al- 

gorithm and the predictor-corrector approach which are commonly used for numerical 

calculations of fractional-order nonlinear equations. Based on the predictor-corrector ap- 

proach, the stochastic P-bifurcation and the stochastic resonance are investigated. Both the 

fractional-order value and the noise intensity can induce an stochastic P-bifurcation. The 

fractional-order may lead the stationary probability density function to turn from a single- 

peak mode to a double-peak mode. However, the noise intensity may transform the sta- 

tionary probability density function from a double-peak mode to a single-peak mode. The 

stochastic resonance is investigated thoroughly, according to the linear and the nonlinear 

response theory. In the linear response theory, the optimal stochastic resonance may occur 

when the value of the fractional-order is larger than one. In previous works, the fractional- 

order is usually limited to the interval (0, 1]. Moreover, the stochastic resonance at the 

subharmonic frequency and the superharmonic frequency are investigated respectively, by 

using the nonlinear response theory. When it occurs at the subharmonic frequency, the 

resonance may be strong and cannot be ignored. When it occurs at the superharmonic 

frequency, the resonance is weak. We believe that the results in this paper might be use- 

ful for the signal processing of nonlinear systems. 

© 2016 Elsevier B.V. All rights reserved. 

 

 

 

1. Introduction 

Fractional-order systems under different excitations usually show various dynamical behaviors. For example, a fractional-

order system under the two-frequency excitation may present various bifurcations, such as the pitchfork bifurcation [1,2] ,

the saddle-node bifurcation [3] , the bifurcation transition from the transcritical type to the saddle-node type [4] , etc. If a
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fractional-order system is excited by a random noise, stochastic resonance [5,6] , stochastic coherence [7] , or an stochastic

jump [8–10] may occur as a response. 

According to the property of the damping materials, the value of the fractional-order of a damping is usually chosen in

the interval (0, 2] [11] . The system presents very different properties for the case in which the fractional-order value lies

in the interval (0, 1] and the case when it lies in the interval (1, 2]. For example, in an overdamped bistable system, the

vibrational resonance phenomenon at the low-frequency presents a single-resonance pattern when the fractional-order lies

in the interval (0, 1]. However, it presents a double-resonance pattern when the fractional-order lies in the interval (1, 2].

In other words, the fractional-order will induce a bifurcation in the vibrational resonance pattern [1] . For multi-degree-of-

freedom nonlinear oscillators with fractional-damping and excited by Gaussian white noises, for a fixed noise strength, the

stochastic stability will enhance with the increase of the fractional-order when the fractional-order lies in the interval (0, 1].

However, the stochastic stability will decrease with an increase of the fractional-order when it lies in the interval (1, 2] [12] .

In some of the references on fractional-order systems, the value of the fractional-order is usually limited to the interval (0,

1]. This is because the fractional-order value in (1, 2] can be changed to the interval (0, 1] through a transformation [13] .

However, if we ignore the fractional-order in the interval (1, 2] and investigate the problem only in the interval (0, 1], many

important results may be lost in the investigation. This is what happens with stochastic resonance, where most authors

simply consider the fractional-order value in the interval (0, 1] [5,6,14] . Although some interesting results are given in these

works, unfortunately we do not know much when the fractional-order value lies in the interval (1, 2]. Hence, in this work,

we have decided to analyze some dynamical properties of a stochastic fractional-order system when the fractional-order

value lies in the interval (0, 2]. 

The present paper is organized as follows. In Section 2 , we compared two numerical algorithms for fractional-order

nonlinear systems. In Section 3 , the stochastic P-bifurcation behaviors induced by the fractional-order and the noise intensity

are investigated respectively. In Section 4 , the stochastic resonance at the driving frequency, the subharmonic frequency and

the superharmonic frequency are studied thoroughly according to the linear and nonlinear response theory. In the last

section, the main conclusions of this work are given. 

2. Numerical algorithms for the fractional-order nonlinear system 

There are several kinds of numerical algorithms to discretize the fractional-order nonlinear equation. For a fractional-

order nonlinear equation 

d αx 

d t α
= f (x ) + N(t) , α ∈ [0 , 2] , (1)

herein, f ( x ) is a nonlinear function and N ( t ) is an excitation, either in a deterministic or random form. There are usually

three definitions for the fractional-order differential operator: the Riemann-Liouville definition, the Caputo definition and the

Grünwald-Letnikov definition [15,16] . The Grünwald-Letnikov is commonly used for its simplicity in numerical discretization.

According to the Grünwald-Letnikov definition, the fractional-order differential operator is specifically given as follows 

d αx (t) 

d t α
| t= kh = lim 

h → 0 

1 

h 

α

k ∑ 

j=0 

(−1) 
j 

(
α
j 

)
f (kh − jh ) , (2)

with the binomial coefficient (
α
j 

)
= 

�(α + 1) 

�( j + 1)�(α − j + 1) 
, (3)

where �( •) is the Gamma function. Letting w 

α
j 

= (−1) j 
(α

j 

)
, according to [16] , we have 

w 

α
0 = 1 , w 

α
k = 

(
1 − α + 1 

k 

)
w 

α
k −1 , k = 1 , 2 , · · · , n. (4)

If α = 1 , Eq. (4) reduces to 

w 

1 
0 = 1 , w 

1 
1 = −1 , w 

1 
k = 0 , k = 2 , · · · , n. (5)

For the special case α = 1 , the fractional-order operator under the Grünwald-Letnikov definition turns to the ordinary dif-

ferential operator 

dx (t) 

dt 
= lim 

h → 0 

x (t) − x (t − h ) 

h 

. (6)

For numerical calculations, we should construct the white noise series at first. If N ( t ) is a white noise with statistical prop-

erties 

〈 N(t) 〉 = 0 , 〈 N (t) N (s ) 〉 = σδ(t − s ) , (7)



106 J.H. Yang et al. / Commun Nonlinear Sci Numer Simulat 41 (2016) 104–117 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

according to [17] , the time series of a white noise can be constructed by the following series 

N(k ) = 

√ 

σ

h 

ξ (k ) , k = 1 , 2 , · · · n, (8)

where ξ ( •) presents the random numbers with the standard normal distribution. ξ ( •) can be produced directly by a software

such as MATLAB. Substituting Eq. (4) into Eq. (2) , under the zero initial conditions, the fractional-order operator is discretized

to 

lim 

h → 0 

1 

h 

α

[ 

x (k ) + 

k −1 ∑ 

j=1 

w 

α
j x (k − j) 

] 

= f [ x (k − 1) ] + N(k − 1) . (9) 

For a small value of h , the limitation symbol can be deleted. Then, we obtain 

x (k ) = −
k −1 ∑ 

j=1 

w 

α
j x (k − j) + h 

α{ f [ x (k − 1) ] + N(k − 1) } . (10) 

As a result, the fractional-order differential equation is discretized by using Eq. (10) in a generalized Euler scheme. For the

special case α = 1 , Eq. (10) reduces to the algorithm in the ordinary Euler scheme, 

x (k ) = x (k − 1) + h { f [ x (k − 1) ] + N(k − 1) } . (11) 

If we substitute Eq. (8) into Eq. (10) , we will obtain the numerical iterative algorithm for the stochastic fractional-order

equation. However, if we substitute Eq. (8) into Eq. (11) , we will obtain the numerical iterative algorithm for the classical

Langevin equation. 

When Eq. (10) is used to solve a fractional-order nonlinear equation, there are some shortcomings. At first, Eq. (10) is ob-

tained by the zero initial conditions. However, the initial conditions are non-zero in some engineering problems. We cannot

use Eq. (10) in this case. Second, the Euler algorithm is not suitable for a nonlinear equation. And the reason is because the

error between the exact and the numerical solution will increase much with the iterations, so that the numerical solution

would be far from the exact one with the increase of n . To avoid these technical problems, the Caputo definition can be

used. The Caputo definition is given as 

d αx 

d t α
= 

1 

�(m − α) 

∫ t 

0 

f (m ) (τ ) 

(t − τ ) 
α−m +1 

dτ, (12) 

where m − 1 < α < m, m ∈ N . Besides the Euler method in Eq. (10) , there are some other numerical algorithms for a

fractional-order equation, such as the Newton-Leipnik-Maruyama algorithm [7,18,19] , the predictor-corrector algorithm [20–

22] , etc. Among them, the predictor-corrector algorithm works well for numerical simulations. Under the arbitrary initial

condition x (0) = x 0 , the following iterative formula is used based on the predictor-corrector algorithm, 

x (k + 1) = x 0 + 

h 

α

�(α + 2) 
[ f ( x p (k + 1)) + N(k + 1) ] + 

h 

α

�(α + 2) 

k ∑ 

i =0 

a i,k +1 [ f (x (k )) + N(k ) ] , (13) 

where a i,k +1 denotes the weight of the corrector in the form 

a i,k +1 = 

{
k α+1 − (k − α) (k + 1) α i = 0 

(k − i + 2) α+1 − (k − i ) α+1 − 2 (k − i + 1) α+1 1 ≤ i ≤ k 
(14) 

The expresion x p (k + 1) denotes the predicted value and is governed by 

x p (k + 1) = x 0 + 

1 

�(α) 

k ∑ 

i =0 

b i,k +1 [ f (x (k )) + N(k )] , (15)

where b i,k +1 denotes the weight of the predictor which is described as 

b i,k +1 = 

h 

α

α
[ (k − i + 1) 

α − (k − i ) 
α

] . (16) 

As an example, we take f (x ) = x − x 3 and N(t) = R cos (ωt) . The time series of Eq. (1) are given by both Euler algorithm

in Eq. (10) and the predictor-corrector algorithm in Eq. (13) . In Figs. 1 (b)–(d), the plots drawn using the two numerical

approaches are in good agreement. It verifies the validity of the numerical algorithm. However, in Fig. 1 (a), the error between

the two curves is large. The result calculated by the predictor-corrector algorithm is an oscillatory motion with a certain

amplitude. From the change tendency of the curve in Fig. 1 (a), the response obtained by the generalized Euler algorithm

may increase to infinity for a long enough time, since the numerical solution would be far from the exact one for long

enough times. Hence, for a fractional-order nonlinear equation, the predictor-corrector algorithm is much better than the

generalized Euler algorithm, especially when the fractional-order α is in a small value case. 
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Fig. 1. The response of a fractional-order system under a periodic excitation for R = 0 . 1 and ω = 0 . 4 . The time step is h = 0 . 01 and the initial condition is 

x (0) = 0 . The thin lines are obtained by the generalized Euler algorithm. The thick lines are obtained by the predictor-corrector algorithm. 

Fig. 2. The response of the fractional-order system under a white noise excitation for σ = 0 . 4 . The time step is h = 0 . 01 and the initial condition is x (0) = 0 . 

The dotted lines in the red color are obtained by the generalized Euler algorithm. The solid lines in the blue color are calculated by the predictor-corrector 

algorithm. 
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Fig. 3. Contour plot of the probability density in the σ − x plane for different values of the fractional-order. A color code plot shows the value of the 

probability density. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As another example, we still take f (x ) = x − x 3 and let N ( t ) in a white noise form with the statistical properties in

Eq. (7) . If the noise intensity is σ = 0 . 4 , the time series of Eq. (1) under the fractional-order value α = 0 . 4 , 0 . 8 , 1 . 2 , 1 . 7 are

respectively given in Fig. 2 by the two kinds of numerical algorithms. In Fig. 2 (a), for a small value of the fractional-order

α, the response obtained by the generalized Euler algorithm increases to infinity rapidly. It indicates that the predictor-

corrector algorithm is much better than the generalized Euler algorithm when the system is subject to random excitation. 

3. The stochastic P-bifurcation 

The stochastic P-bifurcation is a stochastic bifurcation phenomenon that occurs in a random system. The stochastic bi-

furcation contains the D-bifurcation and the P-bifurcation problems. The D-bifurcation focuses on the stochastic bifurcation

point in the probability one sense which is measured by the maximal Lyapunov exponent [23] . The P-bifurcation studies

the mode of the stationary probability density function or the invariant measure of the stochastic process. The stochastic

P-bifurcation takes place when the mode of the stationary probability density function changes in nature. It indicates the

jump of the distribution of the random variable in probability sense. The D-bifurcation and the P-bifurcation are indepen-

dent. There is no direct relation between these two stochastic bifurcation phenomena [24,25] . 

To investigate the stochastic P-bifurcation induced by the fractional-order α and the noise intensity σ , we take a typical

bistable system as f (x ) = x − x 3 and N ( t ) is a white noise with statistical properties shown in Eq. (7) . When α = 1 , it is

a classical Langevin equation and the response is a diffusion process. For this case, the response of the system can be

explained as a particle moving in the potential V (x ) = 

x 2 

2 − x 4 

4 subject to random excitation. As is well known, the potential

has two wells. The valley of the left well locates at x = −1 and the valley of the right well locates at x = 1 . For a general

fractional-order case, the random response is not a diffusion process, but a sub-diffusion process (for the case α < 1) or a

super-diffusion process (for the case α > 1). However, in order to explain the response behavior intuitively, we still interpret

the response of the fractional-order system in the sense of a particle moving in the double-well potential. The effects of the

noisy intensity and the fractional-order on the probability density are illustrated in a two-dimensional plane, as shown in

Fig. 3 , where a color code plot of the value of the probability density appears. 

If we fix the noise intensity σ as a constant and vary the fractional-order α, the probability density function is shown in

Fig. 4 . Apparently, with the increase of the value of the fractional-order, the mode of the stationary probability density func-

tion curve turns from a single-peak to a double-peak. It is a typical stochastic P-bifurcation behavior. Further, the stochastic

P-bifurcation occurs at a critical point α < 1. With the increase of the fractional-order α, it is harder for the particle to

traverse the double-well potential. As a result, the fractional-order α is a key factor to induce the stochastic P-bifurcation

phenomenon. 

To verify the result in Fig. 4 much more clearly, we give Fig. 5 which shows the time series directly for different values

of the fractional-order. When α = 0 . 5 in Fig. 5 (a), the particle traverses between the two wells frequently. When α = 0 . 7 in



J.H. Yang et al. / Commun Nonlinear Sci Numer Simulat 41 (2016) 104–117 109 

Fig. 4. The stochastic P-bifurcation is induced by the fractional-order α for a fixed noise intensity σ = 0 . 4 . 

Fig. 5. The response of the fractional system subject to a Gaussian white noise excitation for σ = 0 . 4 . 

 

 

 

 

Fig. 5 (b), the particle moves between the double-well potential occasionally. Apparently, for a fixed noise intensity σ , the

first passage time depends on the fractional-order α closely. Hence, it is important to investigate the stochastic dynamical

behaviors of the fractional system when the fractional-order value lies in the interval (0, 2]. We cannot ignore the case

where the fractional-order value lies in the interval (1, 2]. Or else, we will lose many important results of a fractional-order

system. 
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Fig. 6. The stochastic P-bifurcation is induced by various noise intensities σ for a fixed fractional-order value α = 0 . 65 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In Fig. 6 , we fix the fractional-order α as a constant, for example α = 0 . 65 , the effect of the noise intensity on the

stationary probability density function is shown clearly. For the case σ = 0 . 2 , the curve of the stationary probability density

function presents a double-peak apparently, as shown in Fig. 6 (a). When we increase the noise intensity to σ = 0 . 35 , the

stationary probability density function still presents a double-peak mode. If we increase the noise intensity further, as shown

in Fig. 6 (c) and Fig. 6 (d), the double-peak mode in the stationary probability density function degenerates to a single-peak.

It is easy to explain this fact. Specifically, with the increase of the noise intensity, the particle is much easier to traverse the

potential wells. The first passage time will turn smaller with the increase of the noise intensity for the case α = 0 . 65 . 

As a conclusion of this section, we find that both values of the fractional-order α and the noise intensity σ are important

factors to induce the stochastic P-bifurcation in a stochastic fractional-order system. The fractional-order α tends to make

the stationary probability function change from a single-peak mode to a double-peak mode. The noise intensity makes a

transition from the double peak mode to the single-peak mode. 

4. The stochastic resonance 

The stochastic resonance in the fractional-order system is not a novel topic. There are some papers on this problem

[5,14,26–28] Although some interesting results are given in these works, the value of the fractional-order is usually limited

to the interval (0, 1] in the former works. Here, we investigate the stochastic resonance when the fractional-order lies in the

interval (0, 2]. Note that, the stochastic resonance is usually studied in the linear response theory. In other words, we focus

on the response at the excitation frequency. However, according to the nonlinear response theory, the stochastic resonance

may also occur at the subharmonic/superharmonic frequencies which are smaller/larger than the excitation frequency [29–

32] . Besides, the nonlinear vibration at the subharmonic or superharmonic frequencies has important consequences in the

context of engineering. For example, it may indicate some fault information [33,34] . Hence, it is also necessary to study the

stochastic resonance according to the nonlinear response theory. 

4.1. The stochastic resonance occurs at the excitation frequency 

In this section, the system for the stochastic resonance to occur is a typical bistable system which is governed by 

d αx 

d t α
= x − x 3 + N(t) + R cos (ωt) , (17) 

where R cos ( ωt ) is the weak low-frequency signal and N ( t ) is a Gaussian white noise with statistical properties as shown in

Eq. (7) . According to the nonlinear dynamical theory, the response should contain many frequency components. When the

time t → ∞ , the asymptotic solution of Eq. (17) is in the form 

〈 x (t) 〉 as = 

∑ 

k 

(kω) cos [ kω − ϕ m 

(kω) ] , (18) 
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Fig. 7. The response amplitude at the excitation frequency ω versus the noise intensity σ under different fractional-order values for R = 0 . 1 and ω = 0 . 09 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where k is a non-negative constant which may be in integer or fractional form. The expression x m 

( k ω) and ϕ m 

( k ω) are the

mean response amplitude and the phase lag respectively at the frequency k ω. They are obtained by averaging the inhomo-

geneous process x ( t ) with arbitrary initial conditions x 0 = x (t 0 ) over the ensemble of different random path realizations. For

an arbitrary random path, the response amplitude at the frequency ω is x̄ which is calculated by 

x̄ = 

√ 

B 

2 
s + B 

2 
c , (19)

and 

ϕ̄ = tan 

−1 ( B s / B c ) , (20)

where B s and B c are the kth sine and the kth cosine components of the Fourier coefficients, 

B s = 

2 

nT 

∫ nT 

0 

x (t) sin (kωt) dt , B c = 

2 

nT 

∫ nT 

0 

x (t) cos (kωt) dt . (21)

In Eq. (21) , T = 2 π/ω and n is a large enough integer. There are many assessment indexes to quantify the stochastic reso-

nance phenomenon, such as the signal-to-noise ratio, the spectral amplification, etc [35] . Here, we use the response ampli-

tude x m 

( k ω) as the target for its convenient in analysis of the nonlinear response of the system. 

In Fig. 7 , the stochastic resonance induced by the noise intensity is shown for different values of the fractional-order

α. Apparently, the value of the fractional-order influences the amount of noise and the magnitude of the response am-

plitude when the optimal stochastic resonance appears. Namely, in Fig. 7 (a) - Fig. 7 (d), the stochastic resonance occurs at

σ = 0 . 1 , 0 . 25 , 0 . 35 , 0 . 15 respectively and the corresponding magnitudes of x m 

( ω) are 0.31, 0.37, 0.42, 0.45 in turn. Another

important fact in this figure is that the optimal stochastic resonance in Fig. 7 (d) is much stronger than that in the other three

subplots. Thus, it can be seen that the optimal stochastic resonance can be achieved via the cooperation of the fractional-

order α and the noise intensity σ . Hence, if we only use the classical Langevin equation to improve the stochastic resonance

as our former work [36] , the optimal stochastic resonance may be lost. Moreover, optimizing the stochastic resonance by

adjusting the fractional-order is different from adjusting the system parameter in the former adaptive stochastic resonance

investigation [37–40] . Optimizing the adaptive stochastic resonance in a fractional-order system may have preferable effi-

ciency. Another thing, if we ignore the fractional-order in the interval (1, 2] and only consider it in (0, 1], we may lose the

optimal stochastic resonance. This is a highlight of our results which is different from previous investigations on stochastic

resonance in fractional-order systems [5,6,14,26–28] . 

To illustrate the stochastic resonance much more clearly, we give the time series under different noise intensity values

in a fixed fractional-order case. In Fig. 8 (a), the response is limited in one potential well. The particle cannot traverse the

two potential wells with the excitations of the signal and the noise. There is no stochastic resonance phenomenon and

the weak signal cannot be enhanced by the noise. In Fig. 8 (b), the particle moves between the two wells occasionally but

not regularly. The stochastic resonance has not achieved the optimal state. In Fig. 8 (c), the input/output synchronization is
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Fig. 8. The output of the fractional-order system under a fixed fractional-order and different noise intensity values for α = 1 . 5 , R = 0 . 1 , ω = 0 . 09 . 

Fig. 9. The response amplitude at the excitation frequency ω versus the fractional-order α for a fixed noise intensity σ = 0 . 2 , R = 0 . 1 and ω = 0 . 09 . 

 

 

 

 

 

 

 

 

 

 

achieved. The system state changes between the two wells with the excitation period approximately. The weak signal is

enhanced in a great degree. It corresponds to the resonance peak in Fig. 7 (d). In Fig. 8 (d), the noise intensity is too strong

and the system state changes between the two wells frequently. The weak periodical signal cannot be improved in Fig. 8 (d)

yet. With varying the noise intensity, we can obtain the stochastic resonance in a fractional-order system. It is the same as

the stochastic resonance in the classical Langevin equation. 

For a fixed noise intensity, the effect of the fractional-order α on the stochastic resonance is given in Fig. 9 . Apparently,

the mean response amplitude at the excitation frequency ω versus the fractional-order α presents the nonlinear correlation.

The value of the fractional-order α can also induce the resonance peak. Specifically, the optimal resonance occurs at the

point α = 1 . 6 and the peak magnitude is x m 

(ω) = 0 . 42 . It indicates how important is to investigate the stochastic resonance

phenomenon in the interval α ∈ (0, 2] once again. 

To investigate the stochastic resonance induced by the fractional-order α thoroughly, we give Fig. 10 which can help

us to understand the stochastic resonance mechanism further through the output time series. In Fig. 10 (a), the particle
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Fig. 10. The output of the fractional-order system under a fixed noise intensity and different values of the fractional-order. The simulation parameters are 

σ = 0 . 5 , R = 0 . 1 and ω = 0 . 1 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

traverses the two wells frequently. There is no stochastic resonance phenomenon in this subplot. The weak signal cannot

be improved in this case. It is submerged in the strong noise. In Fig. 10 (b), the particle traverses the two potential wells

occasionally. In Fig. 10 (c), the optimal stochastic resonance is shown. It corresponds to the resonance peak in Fig. 9 . From

Fig. 10 (a) to Fig. 10 (c), the noise intensity does not change. However, the stochastic resonance appears in Fig. 10 (c). It means

that an appropriate fractional-order value can denoise in a great degree. It is a significant result. We still keep the noise

intensity as a constant but to increase the fractional-order value to α = 1 . 9 , as is shown in Fig. 10 (d). We find that the

optimal stochastic resonance phenomenon disappears in this subplot. From Fig. 10 (a) to Fig. 10 (d), it indicates that we must

choose an appropriate fractional-order value to obtain the optimal denoising effect. Via tuning the noise intensity to induce

the stochastic resonance is different from tuning the fractional-order value to induce the stochastic resonance. Specifically,

we induce the stochastic resonance via increasing the noise intensity, as is shown in Fig. 8 . The energy of the noise transmits

to the signal in this case. However, in Fig. 10 , we induce the stochastic resonance via varying the fractional-order α which

has the denoising effect in the system. 

4.2. The stochastic resonance occurs at the subharmonic frequency 

The stochastic resonance not only occurs at the excitation frequency ω but also occurs at the subharmonic frequency ω/3.

Fig. 11 shows this fact clearly. With the increase of the noise, stochastic resonance at the subharmonic frequency ω/3 appears

in the system. No matter the system is in the fractional order case as shown in Figs. 11 (a), 11 (b), 11 (d) or in the integer

order case as shown in Fig. 11 (c). With the increase of the noise, the novel stochastic resonance occurs at the subharmonic

frequency ω/3 is similar to the classical stochastic resonance that occurs at the excitation frequency ω. Moreover, this kind

of novel stochastic resonance is strong and we cannot ignore it in our investigation. However, there are very few works

to analyze this problem in the literature. This is also another highlight of this paper. Again in Fig. 11 , we find that the

stochastic resonance will turn stronger with the increase of the fractional-order α. Specifically, from Fig. 11 (a) to Fig. 11 (d),

the resonance peaks occur at σ = 0 . 1 , 0.15, 0.15 and 0.1 in turn. The corresponding peak magnitudes are x m 

(ω) = 0 . 11 , 0.24,

0.32 and 0.37. The occurrence of the stochastic resonance at the subharmonic frequency is an interesting new phenomenon.

The output of a fractional-order system under a fixed noise intensity and a fixed signal is given in Fig. 12 . It corresponds

to the resonance peak in Fig. 11 (d). As shown in Fig. 12 , it can be observed a period 3 T where T is the period of the

excitation. In other words, the frequency component ω/3 is contained apparently. This is the reason for the occurrence of the

novel resonance at the subharmonic frequency ω/3. This extends the stochastic resonance from the traditional viewpoint.

In some engineering fields, a subharmonic resonance can be a major cause for a disaster. Hence, we cannot ignore the

subharmonic frequency in engineering problems. 

In Fig. 13 , we fixed the noise intensity σ as a constant but make the fractional-order α as the control parameter. The

response amplitude is also a nonlinear function of the fractional-order. Similar to the x m 

(ω/ 3) − σ curve, the stochastic
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Fig. 11. The response amplitude at the subharmonic frequency ω/3 versus the noise intensity σ under different fractional-order values for R = 0 . 1 and 

ω = 0 . 09 . 

Fig. 12. The output of the fractional-order system shows the period 3 T of the excitation. The thick line of small amplitude in red color is the input signal. 

The thin line in blue color is the output x ( t ). The black lines with arrows have the same length 3 T = 2 π/ (ω/ 3) . The simulation values are α = 1 . 5 , σ = 0 . 1 , 

R = 0 . 1 and ω = 0 . 09 . 

Fig. 13. The response amplitude at the subharmonic frequency ω/3 versus the fractional-order for a fixed noise intensity σ = 0 . 2 , and R = 0 . 1 , ω = 0 . 09 . 



J.H. Yang et al. / Commun Nonlinear Sci Numer Simulat 41 (2016) 104–117 115 

Fig. 14. The response amplitude at the superharmonic frequency 3 ω versus the noise intensity σ under different fractional-order values for R = 0 . 1 and 

ω = 0 . 09 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

resonance at the subharmonic frequency ω/3 in the x m 

(ω/ 3) − α curve appears at α = 1 . 1 . The corresponding peak mag-

nitude is x m 

(ω/ 3) = 0 . 3 . The fractional-order α is a key factor to influence the stochastic resonance at the subharmonic

frequency. 

4.3. The stochastic resonance occurs at the superharmonic frequency 

Due to the term x 3 contained in the original system, it will lead to the component 3 ω in the response. In Fig. 14 , with

the increase of the noise intensity, the stochastic resonance occurs at the superharmonic frequency 3 ω. Compared with the

traditional stochastic resonance and the subharmonic stochastic resonance, the stochastic resonance at the superharmonic

frequency is weaker although the resonance phenomenon is obvious. In other words, the peak magnitude is small. This

indicates that the subharmonic stochastic resonance and the traditional stochastic resonance are the main resonant patterns

in the response. 

In Fig. 15 , for a fixed noise intensity, the fractional-order α induced superharmonic stochastic resonance is shown clearly.

With the increase of α, the resonance in this curve appears at α = 1 . 7 and the corresponding peak magnitude is x m 

(3 ω) =
0 . 12 . For the fractional-order α induced superharmonic stochastic resonance, the resonance is weak too. 

5. Conclusions 

In this work, we have investigated the stochastic resonance in a fractional-order bistbale system excited by a Gaussian

white noise. We have mainly focused on three points in this paper: the algorithm for the fractional nonlinear system, the

P-bifurcation induced by the fractional-order and the noise and the corresponding induced stochastic resonance by using

the linear and nonlinear response theory. In our study, the fractional-order lies in the interval (0, 2]. 

For the first problem, two numerical algorithms are used based on the Grünwald-Letnikov definition and the Caputo

definition. Corresponding to the Grünwald-Letnikov definition, the generalized Euler scheme has been used. Corresponding

to the Caputo definition, the predictor-corrector approach is described in a detailed manner. We have verified the two

algorithms when the excitation is deterministic and when it is random, respectively. The numerical results show that the

predictor-corrector approach is much better than the generalized Euler method for the numerical calculations. 

For the second problem, we have investigates the stochastic P-bifurcation in the bistable system induced by the

fractional-order and the noise intensity, respectively. In a strong noise background, the stationary probability distribution

function is in a single-peak mode. We fix the noise intensity but vary the fractional-order value, the stationary probability

distribution function turns to a double-peak mode. The noise is suppressed in the process when the stationary probability

distribution function turns from a single peak mode to a double-peak mode. 

For the third problem, we have studied the stochastic resonance in the linear and nonlinear response theory, respec-

tively. In the linear response theory, the stochastic resonance occurs at the excitation frequency for any value of the



116 J.H. Yang et al. / Commun Nonlinear Sci Numer Simulat 41 (2016) 104–117 

Fig. 15. The response amplitude at the superharmonic frequency 3 ω versus the fractional-order for a fixed noise intensity σ = 0 . 2 , R = 0 . 1 and ω = 0 . 09 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

fractional-order. For a fixed fractional-order, the stochastic resonance occurs by tuning the noise intensity. For a fixed noise

intensity, the stochastic resonance occurs by tuning the fractional-order. Especially when the background noise is strong,

the stochastic resonance appears by simply tuning the value of the fractional-order. This indicates a denoising effect of the

fractional-order system. In the nonlinear response theory, the stochastic resonance appears at the subharmonic frequency

or at the superharmonic frequency. We take 1/3 and 3 times of the excitation frequency as examples. Especially when the

stochastic resonance occurs at the subharmonic frequency, the response is in a strong resonant state. In the nonlinear re-

sponse theory, the stochastic resonance at the subharmonic or the superharmonic frequencies can be realized by tuning

the noise intensity or the fractional-order value. In many situations, the response at the subharmonic or superharmonic

frequencies cannot be ignored. This is one of highlights of this work. 

By investigating the stochastic P-bifurcation and the stochastic resonance in the fractional-order nonlinear system in a

wide scope of the fractional-order value, some novel results are given in this work. We think our results might be useful for

stochastic dynamics problems, especially for signal processing problems. 

Acknowledgements 

J. H. Yang acknowledges financial supports by the National Natural Science Foundation of China (Grant No 51305441 ),

Top-notch Academic Programs Project of Jiangsu Higher Education Institutions and the Priority Academic Program Develop-

ment of Jiangsu Higher Education Institutions. Miguel A. F. Sanjuán acknowledges financial support by the Spanish Ministry

of Economy and Competitiveness (Grant No FIS2013-40653-P). X. Li acknowledges financial supports by the National Natural

Science Foundation of China (Grant No 11472126 ). 

References 

[1] Yang JH , Zhu H . Vibrational resonance in duffing systems with fractional-order damping. Chaos 2012;22:013112 . 

[2] Yang JH , Zhu H . Bifurcation and resonance induced by fractional-order damping and time delay feedback in a duffing system. Commun Nonlinear Sci

Numer Simulat 2013;18:1316–26 . 
[3] Yang JH , Yang HF , Sanjuán MAF , Tian F . Saddle-node bifurcation and vibrational resonance in a fractional system with an asymmetric bistable potential.

Int J Bifurcat Chaos 2015;25:1550023 . 
[4] Yang JH , Sanjuán MAF , Liu HG , Cheng G . Bifurcation transition and nonlinear response in a fractional-order system. J Comput Nonlin Dyn

2015;10:061017 . 
[5] He GT , Luo MK . Weak signal frequency detection based on a fractional-order bistable system. Chin Phys Lett 2012;29:60204 . 

[6] Gao SL . Generalized stochastic resonance in a linear fractional system with a random delay. J Stat Mech: Theory Exp 2012;2012:P12011 . 

[7] Litak G , Borowiec M . On simulation of a bistable system with fractional damping in the presence of stochastic coherence resonance. Nonlinear Dynam
2014;77:681–6 . 

[8] Chen L , Zhu W . Stochastic jump and bifurcation of duffing oscillator with fractional derivative damping under combined harmonic and white noise
excitations. Int J NonLin Mech 2011;46:1324–9 . 

[9] Hu F , Chen LC , Zhu WQ . Stationary response of strongly non-linear oscillator with fractional derivative damping under bounded noise excitation. Int J
NonLin Mech 2012;47:1081–7 . 

[10] Xu Y , Li Y , Liu D . Response of fractional oscillators with viscoelastic term under random excitation. J Comput Nonlin Dyn 2014;9:1081–9 . 

[11] Caponetto R , Dongola G , Fortuna L , Petráš I . Fractional Order Systems: Modeling and Control. Singapore: World Scientific; 2010 . 
[12] Chen LC , Li HF , Li ZS , Zhu W . Stochastic stability of the harmonically and randomly excited duffing oscillator with damping modeled by a fractional

derivative. Sci China-Phys Mech Astron 2012;55:2284–9 . 
[13] Li C , Zhang F , Kurths J , Zeng F . Equivalent system for a multiple-rational-order fractional differential system. Philos T Roy Soc A 2013;371:20120156 . 

[14] He G , Tian Y , Luo M . Stochastic resonance in an underdamped fractional oscillator with signal-modulated noise. J Stat Mech: Theory Exp
2014;2014:P05018 . 

http://dx.doi.org/10.13039/501100001809
http://dx.doi.org/10.13039/501100001809
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0001
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0001
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0001
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0002
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0002
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0002
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0003
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0003
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0003
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0003
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0003
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0004
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0004
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0004
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0004
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0004
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0005
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0005
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0005
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0006
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0006
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0007
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0007
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0007
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0008
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0008
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0008
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0009
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0009
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0009
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0009
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0010
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0010
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0010
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0010
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0011
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0011
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0011
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0011
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0011
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0012
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0012
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0012
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0012
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0012
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0013
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0013
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0013
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0013
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0013
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0014
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0014
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0014
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0014


J.H. Yang et al. / Commun Nonlinear Sci Numer Simulat 41 (2016) 104–117 117 

 

 

 

 

 

 

 

 

 

 

 

[15] Petráš I . Fractional-order nonlinear systems: modeling, analysis and simulation. Beijing: Higher Education Press; 2011 . 
[16] Monje CA , Chen YQ , Vinagre BM , Xue D , Feliu V . Fractional-order systems and controls: fundamentals and applications. London: Springer-Verlag; 2010 .

[17] Zhu WQ . Random vibration. Beijing: Science Press; 1992. p. 371–2 . 
[18] Naess A , Moe V . Efficient path integration methods for nonlinear dynamic systems. Probabilist Eng Mech 20 0 0;15:221–31 . 

[19] Litak G , Borowiec M , Wiercigroch M . Phase locking and rotational motion of a parametric pendulum in noisy and chaotic conditions. Dynam Syst
2008;23:259–65 . 

[20] Deng W . Numerical algorithm for the time fractional Fokker-Planck equation. J Comput Phys 2007;227:1510–22 . 

[21] Kai D , Ford NJ , Freed AD . A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dynam 2002;29:3–22 .
[22] Yang Y , Xu W , Gu X , Sun Y . Stochastic response of a class of self-excited systems with Caputo-type fractional derivative driven by Gaussian white

noise. Chaos Soliton Fract 2015;77:190–204 . 
[23] Arnold L . Random dynamical systems. Berlin: Springer; 1998 . 

[24] Yang J , Cai X , Liu X . The maximal lyapunov exponent for a three-dimensional system driven by white noise. Commun Nonlinear Sci Numer Simulat
2010;15:3498–506 . 

[25] Yang JH , Hu DL , Li SH , Liu X . On stationary probability density and maximal lyapunov exponent of a co-dimension two bifurcation system subjected
to parametric excitation by real noise. Int J Nonlin Mech 2011;46:186–96 . 

[26] Yim MY , Liu KL . Linear response and stochastic resonance of subdiffusive bistable fractional Fokker–Planck, systems. Phys A 2006;369:329–42 . 

[27] He G , Tian Y , Wang Y . Stochastic resonance in a fractional oscillator with random damping strength and random spring stiffness. J Stat Mech: Theory
Exp 2013;2013:1267–79 . 

[28] Goychuk I , Kharchenko V . Fractional brownian motors and stochastic resonance. Phys Rev E 2012;85:051131 . 
[29] Kang YM , Xu JX , Xie Y . A method of moments for calculating dynamic responses beyond linear response theory. Chin Phys 2005;14:1691–7 . 

[30] Kang YM , Jiang YL . Observing bifurcation and resonance in a mean-field coupled periodically driven noisy overdamped oscillators by the method of
moments. Chaos Soliton Fract 2009;41:1987–93 . 

[31] Evstigneev M , Pankov V , Prince RH . Application of the method of moments for calculating the dynamic response of periodically driven nonlinear

stochastic systems. J Phys A: Math Gen 2001;34:2595–605 . 
[32] Dhara AK . Signal amplification factor in stochastic resonance: an analytic non-perturbative approach. Physica D 2015;303:1–17 . 

[33] Wu F , Qu L . Diagnosis of subharmonic faults of large rotating machinery based on EMD. Mech Syst Signal Pr 2009;23:467–75 . 
[34] Yao H , Han Q , Li L , Wen B . Detection of rubbing location in rotor system by super-harmonic responses. J Mech Sci Technol 2012;26:2431–7 . 

[35] Gammaitoni L , Hänggi P , Jung P , Marchesoni F . Stochastic resonance. Rev Mod Phys 1998;70:223–87 . 
[36] Liu XL , Yang JH , Liu HG , Cheng G , Chen XH , Xu D . Optimizing the adaptive stochastic resonance and its application in fault diagnosis. Fluc Noise Lett

2015;14:1550038 . 

[37] Lei Y , Han D , Lin J , He Z . Planetary gearbox fault diagnosis using an adaptive stochastic resonance method. Mech Syst Signal Pr 2013;38:113–24 . 
[38] Li J , Chen X , He Z . Adaptive stochastic resonance method for impact signal detection based on sliding window. Mech Syst Signal Pr 2013;36:240–55 . 

[39] Gao Y , Wang F . Adaptive cascaded-bistable stochastic resonance system research and design. J Comput Theor Nanos 2013;10:318–22 . 
[40] Wu X , Jiang ZP , Repperger DW . Enhancement of stochastic resonance with tuning noise and system parameters. World congress on intelligent control

and automation 2006;1:1823–7 . 

http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0015
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0015
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0016
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0016
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0016
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0016
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0016
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0016
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0017
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0017
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0018
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0018
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0018
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0019
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0019
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0019
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0019
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0020
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0020
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0021
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0021
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0021
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0021
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0022
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0022
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0022
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0022
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0022
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0023
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0023
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0024
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0024
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0024
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0024
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0025
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0025
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0025
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0025
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0025
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0026
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0026
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0026
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0027
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0027
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0027
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0027
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0028
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0028
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0028
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0029
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0029
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0029
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0029
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0030
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0030
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0030
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0031
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0031
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0031
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0031
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0032
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0032
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0033
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0033
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0033
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0034
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0034
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0034
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0034
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0034
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0035
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0035
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0035
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0035
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0035
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0036
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0036
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0036
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0036
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0036
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0036
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0036
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0037
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0037
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0037
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0037
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0037
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0038
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0038
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0038
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0038
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0039
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0039
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0039
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0040
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0040
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0040
http://refhub.elsevier.com/S1007-5704(16)30137-X/sbref0040

	Stochastic P-bifurcation and stochastic resonance in a noisy bistable fractional-order system
	1 Introduction
	2 Numerical algorithms for the fractional-order nonlinear system
	3 The stochastic P-bifurcation
	4 The stochastic resonance
	4.1 The stochastic resonance occurs at the excitation frequency
	4.2 The stochastic resonance occurs at the subharmonic frequency
	4.3 The stochastic resonance occurs at the superharmonic frequency

	5 Conclusions
	 Acknowledgements
	 References


