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Abstract We investigate the resonance behaviour in
a system composed by n coupled Duffing oscillators
where only the first oscillator is driven by a periodic
force, assuming a nearest neighbour coupling.We have
derived the frequency-response equations for a sys-
tem composed of two coupled oscillators by using
a theoretical approach. Interestingly, the frequency-
response curve displays two resonance peaks and one
anti-resonance. A theoretical prediction of the response
amplitudes of two oscillators closely matches with
the numerically computed amplitudes. We analyse the
effect of the coupling strength on the resonance and
anti-resonance frequencies and the response ampli-
tudes at these frequencies. For the n coupled oscil-
lators’ system, in general, there are n-resonant peaks
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and (n − 1) anti-resonant peaks. For large values of n,
except for the first resonance, other resonant peaks are
weak due to linear damping. The resonance behaviours
observed in the n coupled Duffing oscillators are also
realized in an electronic analog circuit simulation of the
equations. Understanding the role of coupling and sys-
tem size has the potential applications in music, struc-
tural engineering, power systems, biological networks,
electrical and electronic systems.

Keywords Coupled Duffing oscillators · Multiple
resonance ·Anti-resonance ·Analog circuit simulation

1 Introduction

The typical frequency-response curve of a linear or
nonlinear oscillator with a single degree of freedom
subjected to an additive periodic driving force with a
single frequency displays a single resonance peak. Fur-
thermore, when the system is linear and undamped, the
response amplitude becomes a maximumwhen the fre-
quency of the driving force matches with the natural
frequency of the system. In other oscillators, a single
resonance peak occurs at a frequency different from
their natural frequencies. For a system of n coupled lin-
ear oscillators where only the first oscillator is driven
by an additive periodic force, for certain types of cou-
pling, the frequency-response curve of each oscillator
exhibits at most n peaks depending upon the values
of the parameters of the oscillators [1]. The peaks are
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the resonances, and the corresponding frequencies are
the resonant frequencies. The valleys in the frequency-
response curve are the anti-resonant frequencies. There
are n − 1 anti-resonant frequencies. In the absence of
damping and for driving frequencies equal to the anti-
resonant frequencies, the response amplitude vanishes.
Themultiple resonance and anti-resonance phenomena
occur in nonlinear systems also as shown in the present
work.

In the recent years, resonance is investigated on
coupled systems also. For example, the coupling can
enhance coherence resonance (CR) in Hodkin–Huxley
neuronal network [2]. The onset and control of stochas-
tic resonance in two mutually coupled driven bistable
systems subjected to independent noises are inves-
tigated [3]. In a coupled bistable system, coupling
improves the reliability of the logic system and thus
enhances the logical stochastic resonance effect. More-
over, enhancement is larger for larger system size,
whereas for large enough size the enhancement seems
to be saturated [4]. System size resonance and coher-
ence resonance are demonstrated using coupled noisy
systems, Isingmodel [5] andFitzHugh–Nagumomodel
[6]. Effect of vibrational resonance of neuronal systems
depends extensively on the network structure and para-
meters, such as the coupling strength between neurons,
network size, and rewiring probability of single small-
world networks, as well as the number of links between
different subnetworks and the number of subnetworks
in themodular networks [7]. The enhanced signal prop-
agation is achieved in the coupled Duffing oscillators
in the realm of ghost vibrational resonance [8]. Mech-
anisms of fano resonances are demonstrated by both
theoretically and experimentally in coupled plasmonic
system [9]. Very recently, the influence of nonlineari-
ties on the collective dynamics of coupled Duffing–van
der Pol oscillators subjected to both parametirc and
external perturbations has been reported [10].

Why is the study of anti-resonance important?What
are its real practical applications? Details of anti-
resonance are useful in the design of chemotherapeutic
protocols [11], dynamic model updating [12–15] and
desynchronizing undesired oscillations [16]. Driving
a piezoelectronic motor at anti-resonant frequencies
has also practical advantages [17]. Anti-resonance is
employed to minimize unwanted vibrations of cer-
tain parts of a system in mechanical engineering and
aerospace industries. In the vibration control of fixture,
controlling anti-resonant frequencies is more impor-

tant than resonant frequencies since the worst case can
occur at anti-resonance [18,19]. In a vibratory struc-
tural system, an addition of mass is found to shift
the resonant frequencies without affecting the anti-
resonant frequencies [20]. It has been pointed out that a
shift of the resonant frequencies beyond anti-resonance
is not feasible. Anti-resonance has been realized also
in quantum systems [21,22].

In the recent past, several studies are reported to
uncover the underlying theory of anti-resonance. Par-
ticularly, stochastic anti-resonance is investigated in a
theoretical model equation proposed for the transmis-
sion of a periodic signal mixed with a noise through
static nonlinearity [23], squid axon model equation
[24], the time evolution of interacting qubits of quan-
tum systems [25] and certain piecewise linear sys-
tems [26]. Coherence anti-resonance is identified in
a model of circadian rhythmicity in Drosophila [27]
and in FitzHugh–Nagumoneuronmodel [28] subjected
to both additive and multiplicative noise. The anti-
resonance is demonstrated in a parametrically driven
van der Pol oscillator and illustrated a two- state switch
by using two coupled oscillators [29]. A single or two
coupled systems are investigated in these studies with
theoretical and numerical treatment. It is vital to study
n coupled, nonlinear systems in the vicinity of multiple
and anti-resonances.

Further, it is of great significance to investigate the
response of coupled systems with the first unit alone
subjected to external periodic force. Such a set-up finds
applications in digital sonar arrays, network of sen-
sory neurons, vibrational resonance, stochastic reso-
nance and signal propagation in coupled systems [30–
34]. We report our investigation on the resonant and
anti-resonant dynamics in a system of two coupled and
n coupled Duffing oscillators. The occurrence of mul-
tiple and anti-resonance is presented using theoretical,
numerical and experimental methods. The connection
between the coupling strength and occurrence of mul-
tiple and anti-resonance, and the role of system size on
the n coupled systems are the important significances
of the present work. In this system, the oscillators are
allowed to interact with their nearest neighbour with a
linear coupling. Furthermore, we consider that only the
first oscillator is subjected to a periodic driving force.
For a system of two coupled oscillators and using a
theoretical approach, we obtain coupled equations for
the response amplitudes Q1 = A1/ f and Q2 = A2/ f
where A1 and A2 are the amplitudes of the periodic
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oscillations of the oscillator-1 and oscillator-2, respec-
tively, and f is the amplitude of the external periodic
driving force. The theoretically predicted values of Q1

and Q2 are found to match very closely with the val-
ues of Q1 and Q2 computed numerically. When the
frequency of the driving force is varied, two resonant
peaks and one anti-resonance occur for a wide range of
fixed values of the coupling strength δ. We analyse the
dependence of the resonant and anti-resonant frequen-
cies and the values of the response amplitudes of these
two oscillators on the coupling parameter δ. For the n
coupled systems, since theoretical analysis is very dif-
ficult and involves solving of n coupled nonlinear equa-
tions for the amplitudes Ai s, we analyse the occurrence
of resonant and anti-resonant behaviours by numeri-
cally solving the system of equations of motion. The
n coupled oscillators are found to show n resonances
and n − 1 anti-resonances. We study the dependence
of the resonant and anti-resonant frequencies with the
number n of oscillators that are coupled. The resonance
and the anti-resonance behaviours found in theoretical
model equations are also realized in an analog elec-
tronic circuit simulation of the equations. Hardware
experimental analog simulation studies on two coupled
and PSpice simulation of n coupled oscillators shows
good agreement with the theoretical/numerical predici-
tions.

2 Periodically driven two coupled systems

The equation of motion of the n coupled Duffing oscil-
lators of our interest is

ẍ1 + dẋ1 + ω2
0x1 + βx31 + δ (x1 − x2) = f cosωt,

(1a)

ẍi + dẋi + ω2
0xi + βx3i + δ (xi − xi−1)

+ δ(xi − xi+1) = 0, (1b)

ẍn + dẋn + ω2
0xn + βx3n + δ (xn − xn−1) = 0. (1c)

In this system, the first and the last oscillators are not
connected to each other and δ is the strength of the
coupling. We start with the simplest case n = 2 that is
a system of two coupled oscillators.

2.1 Theoretical treatment

By applying a perturbation approach, a frequency-
response equation can be obtained. We assume a peri-
odic solution of the system (1) with n = 2 as

xi (t) = ai (t) cosωt + bi (t) sinωt (2)

with ai and bi to be determined, which are slowly vary-
ing functions of time. We substitute

ẋi (t) = ȧi cosωt + ḃi sinωt − aiω sinωt

+ biω cosωt, (3a)

ẍi (t) = − 2ȧiω sinωt + 2ḃiω cosωt − aiω
2 cosωt

− biω
2 sinωt, (3b)

x3i ≈ 3

4

(
a2i + b2i

)
(ai cosωt + bi sinωt) , (3c)

where in Eq. (3b) äi and b̈i are neglected due to their
smallness, in Eqs. (1), and then neglect dȧi and dḃi
because they are assumed to be small. Next, equating
the coefficients of sinωt and cosωt separately to zero
gives

ȧ1 = b1
2ω

[
ω2
0 − ω2 + δ + 3β

4

(
a21 + b21

)]

− da1
2

− δb2
2ω

, (4a)

ḃ1 = − a1
2ω

[
ω2
0 − ω2 + δ + 3β

4

(
a21 + b21

)]

− db1
2

+ δa2
2ω

+ f

2ω
, (4b)

ȧ2 = b2
2ω

[
ω2
0 − ω2 + δ + 3β

4

(
a22 + b22

)]

− da2
2

− δb1
2ω

, (4c)

ḃ2 = − a2
2ω

[
ω2
0 − ω2 + δ + 3β

4

(
a22 + b22

)]

− db2
2

+ δa1
2ω

. (4d)

Equations (4) under the transformation

ai (t) = Ai (t) cos θi (t), bi (t) = Ai (t) sin θi (t) (5)

take the form (with A2
i = a2i + b2i )

Ȧ1 = −d A1

2
+ δA2

2ω
sin (θ1 − θ2) + f

2ω
sin θ1 = P,

(6a)

A1θ̇1 = − A1

2ω

[
ω2
0 − ω2 + δ + 3β

4
A2
1

]

+ δA2

2ω
cos (θ1 − θ2) + f

2ω
cos θ1 = Q, (6b)

Ȧ2 = −d A2

2
− δA1

2ω
sin (θ1 − θ2) = R, (6c)
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A2θ̇2 = − A2

2ω

[
ω2
0 − ω2 + δ + 3β

4
A2
2

]

+ δA1

2ω
cos (θ1 − θ2) = S. (6d)

For a periodic solution, in the long time limit, Ai (t) →
A∗
i and θi (t) → θ∗

i . (A
∗
i , θ

∗
i ) is an equilibrium point of

Eqs. (6). We set Ȧi = 0, θ̇i = 0, drop ‘∗’ in A∗
i and θ∗

i
and then eliminate θi ’s. We obtain the set of equations

A2
1

[
u21 + d2ω2

]

+
[
2d2ω2 + δ2

]
A2
2 − 2u1u2A

2
2 = f 2, (7a)

A2
2

[
u22 + d2ω2

]
− δ2A2

1 = 0, (7b)

θ1 = tan−1

[
dω(A2

1 + A2
2)

A2
1u1 − A2

2u2

]
, (7c)

θ2 = θ1 − tan−1
[
−dω

u2

]
, (7d)

where

ui = ω2
0 − ω2 + δ + 3β

4
A2
i , i = 1, 2. (7e)

The stability of the equilibrium point (A∗
1, A

∗
2, θ

∗
1 , θ∗

2 )
of Eqs. (6) can be determined by linear stability
analysis. The stability determining eigenvalues can be
obtained from

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂P

∂A1
− λ

∂P

∂θ1

∂P

∂A2

∂P

∂θ2

∂Q

∂A1

∂Q

∂θ1
− λ

∂Q

∂A2

∂Q

∂θ2

∂R

∂A1

∂R

∂θ1

∂R

∂A2
− λ

∂R

∂θ2

∂S

∂A1

∂S

∂θ1

∂S

∂A2

∂S

∂θ2
− λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0, (8)

where the partial derivatives are evaluated at the equi-
librium point. Expanding the determinant, we obtain
the characteristic equation of the form

a4λ
4 + a3λ

3 + a2λ
2 + a1λ + a0 = 0. (9)

The equilibrium point (A∗
1, A

∗
2, θ

∗
1 , θ∗

2 ) is stable if
all the eigenvalues of Eq. (9) has negative real part;
otherwise, it is unstable. For a stable (A∗

1, A
∗
2, θ

∗
1 , θ∗

2 ),
the system-(1) exhibits a stable periodic solution.

2.2 Two coupled linear systems

We consider now the case of two coupled linear and
undamped oscillators [n = 2, β = 0 and d = 0 in
Eqs. (1)] [1] whose amplitudes A1 and A2 which are
obtained from Eqs. (7) are

A1 = f (ω2
0 − ω2 + δ)

(ω2
0 − ω2)(ω2

0 − ω2 + 2δ)
, (10a)

A2 = δA1

(ω2
0 − ω2 + δ)

= δ f

(ω2
0 − ω2)(ω2

0 − ω2 + 2δ)
. (10b)

Both A1 and A2 are a maximum at ω = ω0 and√
ω2
0 + 2δ. The amplitude A1 becomesminimumwhen

the term
(
ω2
0 − ω2 + δ

)
in Eq. (10a) is a minimum.

This happens at ω =
√

ω2
0 + δ. Thus, the frequency at

which anti-resonance occurs in oscillator-1 is ω1,ar =√
ω2
0 + δ. At ω1,ar, A1,ar = 0. From Eq. (10b), it is

reasonable to expect A2 to be aminimumat a frequency
ω at which A1 becomes a minimum. Substitution of
ω2 = ω2

1,ar = ω2
0+δ in Eq. (10b) gives A2,ar = f/δ �=

A1,ar and is nonzero.
For the damped (d �= 0) and linear system, we have

A1 =
(

f 2u+
u2+ + δ4 − 2δ2u−

)1/2

, (11a)

A2 = δA1√
u+

, u± = (ω2
0 − ω2 + δ)2 ± d2ω2. (11b)

It is difficult to obtain explicit expressions for the two
resonant frequencies and the corresponding amplitudes
due to the complexity of the expressions of A1 and
A2. However, the anti-resonant frequency can be deter-
mined by seeking the value of ω at which the quantity
u+ becomes a minimum. This gives

ω1,ar =
√

ω2
0 + δ − d2

2
. (12)

2.3 Two coupled Duffing oscillators

Now, we consider the two coupled Duffing oscillators.
Decoupling of the amplitudes in Eqs. (7) is very diffi-
cult. However, applying the Newton–Raphson method
[35] developed for coupled equations, various possible
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Q2

Q1n = 2

ω

Q
1,

Q
2

3210

5

4

3

2

1

0

Fig. 1 Response amplitudes Q1 (of oscillator-1) and Q2 (of
oscillator-2) versus the frequencyω of the driving force of the two
coupled Duffing oscillators, Eqs. (1) with n = 2. The continuous
and dotted curves are the theoretically predicted Q1 and Q2,
respectively. The solid circles are the numerical ones. Here d =
0.1, ω2

0 = 1, β = 1, δ = 1 and f = 0.1

values of A1 and A2 can be determined, and then, the
frequency-response curve can be drawn.

We choose the values of the parameters as d =
0.1, ω2

0 = 1, β = 1 and δ = 1. Figure 1 presents both
theoretical Qi (=Ai/ f ) and numerically computed Qi ,
i = 1, 2 as a function of the driving frequency ω. The
theoretical prediction matches very closely the numer-
ical results obtained from the simulations. Q1 is a max-
imum at ω = 1.08 and also at ω = 1.75. Q2 becomes
a maximum at ω = 1.08 and at 1.74. Anti-resonance
in Q1 and Q2 occurs at ω1,ar = 1.43 and ω2,ar = 1.42.
However, Q1,ar = 0.1181, while Q2,ar = 0.9804. In
order to show the significant effects of the linear cou-
pling constant δ on the resonant dynamics, we display
thedependenceofQ1 andQ2 versusω on theparameter
δ in Fig. 2. Q1 has a single resonance for 0 < δ < 0.1
and two resonant peaks for δ ≥ 0.1. For the second
oscillator, a double resonance is realized for δ ≥ 0.13.

We denote ω
( j)
i,r as the value of ω at which the

i th resonance occurs in the j th oscillator. And Q( j)
i,r

is the value of the response amplitude at ω
( j)
i,r . For

n = 2, there is only one anti-resonance. Therefore,
we denote ω1,ar and ω2,ar as the values of ω at which
anti-resonance occurs in the oscillators 1 and 2, respec-
tively, and the corresponding values of Q as Q1,ar and

Q2,ar, respectively. These quantities are computed for
a range of values of δ. Figure 3a displays the variation
in ω

(1)
1,r (continuous curve), ω

(1)
2,r (dotted curve), ω

(2)
1,r

(solid circles) and ω
(2)
2,r (open circles) with δ. The first

resonant frequencies of both oscillators are almost the
same and independent of δ, except for δ � 1. In con-
trast to this, the second resonant frequencies of the two
oscillators vary with δ; however, ω(1)

2,r ≈ ω
(2)
2,r for each

fixed value of δ, except for δ � 1. In Fig. 3b Q( j)
1,r ,

j = 1, 2 approach the same constant value where as
Q( j)

2,r , j = 1, 2 decrease for increasing values of δ.
The dependence of anti-resonance frequencies and

the corresponding amplitudes of the oscillations on the
coupling strength δ are plotted in Fig. 4. In this fig-
ure, the numerical results are represented by symbols
and the appropriate curve fits are marked by contin-
uous curves. Furthermore, the frequencies ω1,ar and
ω2,ar are found to depend linearly on δ. We obtain
ω1,ar = 1.0759+ 0.325δ and ω2,ar = 1.079+ 0.325δ.
In the linear system (β = 0), as noted earlier, ω1,ar =√

ω2
0 + δ ≈ 1+0.5δ. Q1,ar and Q2,ar decrease rapidly

following the power-law relations 0.14106δ−1.696 (for
δ > 0.1) and 0.939δ−0.881 (for δ > 0.13), respectively.
That is, by increasing the value of δ, the anti-resonant
frequency is increased, while the response amplitude at
the anti-resonance is reduced. In Fig. 4, ω(1)

1,ar ≈ ω
(2)
2,ar,

but Q1,ar < Q2,ar for a wide range of values of δ.
By increasing the value of the damping coefficient, the
response amplitudes decrease, and for sufficiently large
values, the second resonance in both oscillators is sup-
pressed.

One of the features of the resonance in nonlin-
ear oscillators is the appearance of hysteresis in the
frequency-response curve. This is also realized in the
system (1) near two resonances for certain range of
values of β. An example is presented in Fig. 5 for
β = 20 and δ = 1. In both oscillators, two stable

Fig. 2 Response
amplitudes a Q1 and b Q2
as a function of the
parameters δ and ω for the
system (1) with n = 2,
d = 0.1, ω2

0 = 1, δ = 1 and
f = 0.1
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(a) n =2 , d =0 .1

δ

ω
(j
)

i,
r

210

2.5

2

1.5

1

(b) n =2 , d =0 .1

δ

Q
(j
)

i,
r

210

9

6

3

0

Fig. 3 Dependence of a resonant frequencies and b the response
amplitudes at the resonant frequencies as a function of the cou-
pling constant δ of the two coupled Duffing oscillators. In both
subplots, the continuous and dotted lines are associated with the

first and second resonances of the first oscillator, respectively.
The solid and open circles correspond to the first and second
resonances of the second oscillator, respectively. Here d = 0.1,
ω2
0 = 1, β = 1 and f = 0.1

ω2,ar
ω1,ar

(a) n =2 , d =0 .1

δ
210

1.8

1.6

1.4

1.2

1

Q2,ar
Q1,ar

(b) n =2 , d =0 .1

δ

Q
1 ,
ar

,Q
2 ,
ar

210

6

4

2

0

Fig. 4 Variation in a anti-resonant frequencies ω1,ar and ω2,ar
of the first and second oscillators, respectively, and b response
amplitude of the anti-resonance with the coupling strength δ of

the two coupled Duffing oscillators, Eqs. (1) with n = 2. The
symbols are numerical data, and continuous curves are the best
fit

➤

➤

➤➤

(a) n = 2

ω

Q
1

3210

3

2

1

0

➤ ➤➤

➤

(b) n = 2

ω

Q
2

3210

3

2

1

0

Fig. 5 Frequency-response curves of a oscillator-1 and b
oscillator-2 of the two coupled Duffing oscillators [Eqs. (1)] with
n = 2. The continuous curve and the solid circles are the theo-
retically predicted and numerically computed values of response
amplitudes. The solid circle on the ω axis marks the value of ω

at which anti-resonance occurs. In both subplots, the downward
and upward arrows indicate the jump in the response amplitudes
when the frequency is varied in the forward and backward direc-
tions, respectively. The values of the parameters are d = 0.1,
ω2
0 = 1, β = 20, δ = 1 and f = 0.1
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periodic orbits with different amplitudes coexist for
ω ∈ [1.28, 1.58] and [1.9, 2.04]. In these intervals,
the theoretical response curve has three branches. The
upper branch and lower branch are realized when the
frequency is swept in the forward and backward direc-
tions, respectively. These are stable branches and are
observed in the numerical simulations, as well. For
each ω in the intervals [1.28, 1.58] and [1.9, 2.04],
there exist two periodic orbits with different ampli-
tudes. They are observed for different set of initial con-
ditions. Themiddle branch is not realized in the numeri-

LB

MB

UB

LB

MB

UB
VIVIIIIII

ω

Q
1

3210

3

2

1

0

Fig. 6 Frequency-response curve of oscillator-1. The intervals
I, II and V have only one stable periodic orbit, and the remaining
intervals have three branches inwhich the upper branch (UB) and
lower branch (LB) correspond to stable periodic orbits, while the
middle branch (MB) correspond to a unstable periodic orbit. The
values of the parameters are d = 0.1, ω2

0 = 1, β = 20, δ = 1
and f = 0.1

cal simulations for a large set of initial conditions and is
an unstable branch. When ω is increased from a small
value, a first resonance in both oscillators occurs at
ω = 1.58 but with Q1 = 3.14 and Q2 = 3.11. The
second resonance in the oscillators 1 and 2 takes place
at ω = 2.04 and 1.95, respectively, with Q1 = 2.76
and Q2 = 2.52.

The stability analysis of equilibrium points of Eqs. 6
is performed to determine the stability of the periodic
orbits of the system (1). From Eqs. (7a) and (7b), Ai s
are calculated which are then substituted in Eqs. (7c)
and (7d) to get θi s. These (A∗

1, A
∗
2, θ

∗
1 , θ∗

2 )s calculated
for various values of ω are applied to Eq. (9) to obtain
the eigenvalues of the characteristic equation. The fre-
quency response curve is classified into five segments
as shown in Fig. 6. The odd-numbered segments have
only one (A∗

1, A
∗
2, θ

∗
1 , θ∗

2 ). Complex conjugate eigen-
values with negative real part are obtained in these
regions. This implies that (A∗

1, A
∗
2, θ

∗
1 , θ∗

2 ) is stable in
these region. Hence, the periodic orbit in these regions
is stable. In the even-numbered intervals ofω, there are
three equilibrium points and are classified into three
branches. The upper and lower branches (UB and LB)
have the complex conjugate eigenvalues with negative
real part, while the middle branch (MB) has an eigen-
value with positive real part. Hence, the UB and LB
are stable, while the MB is unstable. Table 1 presents

Table 1 The equilibrium points and their stability determining eigenvalues for certain values of ω corresponding to Fig. 6

Region in ω ω A∗
1 A∗

2 θ∗
1 θ∗

2 Eigenvalues Nature of stability

I 1.0 0.16076 0.12828 0.26899 0.34902 −0.05024 ± i1.31391,
−0.05019 ± i0.27370

Stable

II 1.35 0.25929 0.24097 0.73131 0.85937 −0.05060 ± i1.08736,
−0.05057 ± i0.19524

Stable

1.35 0.18618 0.21345 0.62381 −0.46827 −0.13278 ± i0.70677,
−0.11951, 0.07871

Unstable

1.35 0.03760 0.10497 0.44762 −0.07242 −0.47278 ± i1.81332
−0.01427 ± i0.07318

Stable

III 1.75 0.10911 0.17609 0.75379 0.46881 −0.14187 ± i0.81336,
−0.03768 ± i0.10825

Stable

IV 2.0 0.25589 0.22688 −1.42475 −1.58621 −0.01502 ± i0.17607,
−0.01494 ± i3.77292

Stable

2.015 0.24531 0.20141 −1.08309 −1.22100 0.00065 ± i0.68099,
0.00080 ± i0.08891

Unstable

2.0 0.06951 0.03524 −0.17544 −0.27604 −0.00011 ± i0.24151,
−0.00011 ± i0.74499

Stable

V 2.5 0.02513 0.00633 −0.06684 −0.12560 −0.00092 ± i0.61578,
−0.00068 ± i1.02009

Stable
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Fig. 7 The analog circuit
for the two coupled Duffing
oscillators. ‘OA’s are TL082
op-amps, and ‘M’s are
AD633JN multiplier ICs

stability determining eigenvalues for certain specific
values of ω.

2.4 Analog simulation

Themultiple resonance and anti-resonance found in the
theoretical and numerical studies of the Duffing oscil-
lator system (1) can be realized in the analog electronic
circuit simulation. Figure 7 presents the analog circuit
for Eq. (1) with n = 2. The evolution equations for
the variables V1 and V2 obtained using the Kirchhoff’s
voltage law are

R2C2 d
2V1
dt2

= −
(
R2C

R1

)
dV1
dt

−
(

R

R2

)
V1

−
(

R

100R3

)
V 3
1 +

(
R

RC

)
V2 + f sinωt, (13a)

R2C2 d
2V2
dt2

= −
(
R2C

R1

)
dV2
dt

−
(

R

R2

)
V2

−
(

R

100R3

)
V 3
2 +

(
R

RC

)
V1. (13b)

In order to bringEqs. (13) in dimensionless form,we
introduce the change in variables t/RC = t ′, ω/RC =
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ω′, V1 = x1 and V2 = x2 and then drop the primes in
t ′ and ω′. The result is the following set of equations,

ẍ1 + dẋ1 + (ω2
0 + δ)x1 + βx31 − δx2 = f sinωt,

(14a)

ẍ2 + dẋ2 + (ω2
0 + δ)x2 + βx32 − δx1 = 0, (14b)

where d = R/R1, (ω2
0 + δ) = R/R2, β = R/R3

and δ = R/RC . In Fig. 7, the values of R and C are
fixed as 10 k� and 96.4nF, respectively. The values
of the resistors R1, R2, R3 and RC can be varied to
change the values of d, ω2

0, β and δ, respectively. We
performed the analog circuit simulation of two coupled
Duffing oscillators using the circuits implemented on
bread board. The components in the circuit are care-
fully chosen with less than 1% tolerance in the values.
To obtain the response amplitudes (A1 and A2), fast
Fourier transform (FFT) analysis on the output of each
oscillator is performed usingmixed signal oscilloscope
Agilent MSO6014A. Small fluctuations are noted in
Ai s observed in the FFT displayed in the scope. For the
better accuracy, an average value of Ai s over ten mea-
surements is obtained. The values of Ai s are displayed
in dBV. It is converted into units of volt (V) using the

relation dB = 20log
(

V
V0

)
with V0 = 1.0V. In the ana-

log simulation, we fixed the circuit component values
in equivalence with the values of the parameters used
in the theoretical/numerical study.

Figure 8 shows response amplitudes A1 and A2 (in
units of volts) versus ω of the two coupled Duffing
oscillators circuits. The values of the parameters are as
in Fig. 1. A1 (A2) is maximum at ω = ωr = 1.12,
1.82 krad/s (1.12, 1.815 krad/s). Anti-resonance in
A1 and A2 occurs at ω1,ar = 1.45 krad/s and ω2,ar =
1.45 krad/s. These values agree very closely with

A2
A1

ω(rad/sec)

A
1,

A
2

3k2k1k0

0.4

0.3

0.2

0.1

0

Fig. 8 Experimentally obtained response amplitude A1
(oscillator-1) and A2 (oscillator-2) versus the frequency ω of the
input periodic signal. Here, d = 0.1 (R1 = 100 k�), ω2

0 = 1,
β = 1 (R3 = 10 k�), δ = 1 (R2 = 5 k�, RC = 10 k�) and
f = 0.1 (in V)

the theoretical/numerical predictions. A small devia-
tions observed in the experimental values with the-
ory/numeric are listed in table 2.

The effect of the coupling strength δ on theoscillator-
1 and oscillator-2 of the two coupled Duffing oscilla-
tors is shown in Fig. 9a, b, respectively. In Fig. 9, we
can clearly notice that the second resonance frequency,
and the frequency of anti-resonance of both oscillators
increase with increase in the value of δ, while the first
resonant frequency of the two oscillators settles to a
constant value. The results are in agreement with the
theoretical prediction. It is noted that the multiple and
anti-resonance are observed for small strength of non-
linearity (β). For a large value of β, the corresponding
controlling resistor (R3) in the analog circuit becomes
very small. This creates the impedancemismatch in the
input stage of the first integrator of the each oscillator
in the coupled circuit which eventually brings down
the operation of the circuit. Due to that, it is difficult to
obtain hysteric frequency response curve in the analog
circuit of present configuration.

3 Response of the system of n coupled oscillators

In this section, we report our investigation on system
of n coupled Duffing oscillators. For the case of n(>2)
coupled oscillators and by following the theoretical
procedure employed for the n = 2 case, a set of n cou-
pled nonlinear equations for the amplitudes Ai can be
obtained. Solving them analytically or numerically is
very difficult. Therefore, we analyse the case of n > 2
by numerically integrating Eqs. (1) and computing the
amplitudes Ai s and then the response amplitudes Qi s.

We fix the values of the parameters as d = 0.05,
f = 0.1, ω2

0 = 1, β = 1 and δ = 1. Figure 10 presents
Q1 versus ω for n = 2, 3, . . . , 60. In Fig. 10a, for
the first values of n, the frequency-response curve dis-
plays clearly n distinct resonant peaks and n − 1 anti-
resonances (minimum values of the response ampli-
tude). The response amplitude at successive resonances
in each oscillator generally decreases. For, say, n < 10,
the last resonance peak is visible. For sufficiently large
values of n, the resonance suppression and reduction
in the response amplitude take place.

For the first oscillator, we numerically compute
the values of the n resonant frequencies ω

(1)
i,r , i =

1, 2, . . . , n at which the response amplitude becomes
maximum and the n−1 anti-resonant frequenciesω

(1)
i,ar,
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Table 2 Comparison of theoretically and experimentally computed values of ω
( j)
i,r and ω

( j)
ar for the two coupled Duffing oscillators

ω
(1)
1,r ω

(1)
2,r ω

(2)
1,r ω

(2)
2,r ω

(1)
ar ω

(2)
ar

Theory 1.08 1.75 1.08 1.74 1.43 1.42

Experiment (krad/s) 1.12 1.82 1.12 1.815 1.45 1.45

Fig. 9 Experimentally
obtained response
amplitudes A1 and A2 as a
function of the parameters δ

and ω for the system (1)
with n = 2, d = 0.1,
ω2
0 = 1, β = 1, δ = 1 and
f = 0.1

(b)

n

ω
(1
)

i,
r
, 
ω
(1
)

i,
ar

108642

2

1.5

1

(a)

Fig. 10 a Frequency-response curve of the first oscillator as a
function of n (number of oscillators coupled) in the system (1)
for some selective values of n in the interval [2,60]. b Variation
in the resonance frequenciesω

(1)
i,r , i = 1, 2, . . . , n (solid circles),

and the anti-resonant frequenciesω
(1)
i,ar , i = 1, 2, . . . , n−1 (open

circles) of the first oscillator as a function of the number of oscil-
lator n. The values of the parameters is d = 0.05,ω2

0 = 1, β = 1,
δ = 1 and f = 0.1

i = 1, 2, . . . , n − 1 at which the response amplitude
becomes locally minimum. The result is presented in
Fig. 10b for n ∈ [2, 10]. For n = 2 and n = 10,
there are 2 and 10 resonances, respectively, and 1 and
9 anti-resonances, respectively. These are clearly seen
in Fig 10b. A remarkable result in Fig. 10 is that as
n increases from 2 the values of the first resonant fre-
quencyω

(1)
1,r , the response amplitudeQ(1)

1,r at thefirst res-

onant and first anti-resonant frequency ω
(1)
1,ar decrease

and approach a limiting value. For the chosen para-
metric values, the limiting value of ω

(1)
1,r is 1.04, which

is a value close to the natural frequency ω0 = 1 of
the uncoupled linear oscillators. The limiting value of
Q(1)

1,r is ≈ 3.38. The value of ω at which the last reso-

nance takes place (denoted asω
(1)
n,r ) increaseswith n and

attains a saturation at 2.23. The response amplitude at

the last resonance decreases with n. We denote ω′ and
ω′′ as the limiting values of the resonant frequencies
of the first and the last resonance, respectively. Then,
as n increases, the newer and newer resonant and anti-
resonant frequencies should fall within the frequency
interval [ω′, ω′′] with a decreasing response amplitude
at successive resonances. Essentially, the resonance
profile displays an amplitude modulation. In Fig. 10a,
such modulation is visible for n ∈ [20, 40]. The modu-
lation is weak for sufficiently large values of n as is the
case of n = 60, where the frequency-response curve
shows a single resonant peak.

The response of the system of n coupled Duffing
oscillators with different types of linear coupling is
numerically investigated.Multiple resonances and anti-
resonances are found to occur in a system of small
number of coupled oscillators with a coupling of the
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Fig. 11 Experimental frequency-response curve of the first
oscillator as a function of n in the circuit corresponding to the
system (1) for a few selective values of n

form δ(xi − xi−1) + δ(xi − xi+1). For the coupling
of the form δ(ẋi − ẋi−1) + δ(ẋi − ẋi+1), multiple
resonances and anti-resonances are not found. These
resonances are observed in the case of a coupling of
the form δ(xi−1 + xi+1). When all the oscillators are
driven by periodic forces, then only a single resonance
is obtained for the different kinds of coupling consid-
ered in the present work. It is to be remarked that the
resonant behaviours observed in the system (1) are not
realized in unidirectionally coupled Duffing oscillators
[34].

In Sect. (2), we have presented the hardware exper-
imental analog circuit simulation results for the two
coupled Duffing oscillators. We have also performed
an analog circuit simulation with n = 60 using
Pspice circuit simulator. We preferred the circuit sim-
ulator over hardware experiments due to the diffi-
culty in the implementation of large size circuits on
circuit boards. The various features of the multiple
resonance and anti-resonance observed in the numer-
ical simulation are also realized in the analog cir-
cuit simulation. For example, the emergence of mul-
tiple resonant peaks with increase in the number of
coupled oscillators observed experimentally is shown
in Fig. 11. The n resonant peaks and n − 1 anti-
resonances are clearly visible for smaller values of
n.

4 Conclusion

In this paper, we have reported the occurrence of multi-
ple resonance and anti-resonance in a system of n cou-

pled Duffing oscillators where the only the first oscilla-
tor is driven by an external periodic force with a nearest
neighbour coupling. In the case of unidirectionally cou-
pled Duffing oscillators where also the first oscillator is
the only one driven by the external periodic force, the
coupling is found to give rise to either an enhanced sin-
gle resonance or just suppress the resonance depend-
ing upon the coupling strength [34]. One source for
multi-resonance and anti-resonance is the type of cou-
pling considered in the present work. Parametric anti-
resonance [29,36], stochastic anti-resonance [24,25]
and coherence anti-resonance [37] have been found to
occur in certain oscillators with a single degree of free-
dom. Investigation of resonance and anti-resonance in
n coupled versions of such oscillators with the type of
coupling analysed in the present work may give rise to
new and interesting results. Another kind of systems
where such a study has to be performed is in excitable
systems such as FitzHugh–Nagumo equations [38]. As
network models may represent many physical and bio-
logical systems, it is also very important to identify
the multiple resonance and anti-resonances in various
network topologies.
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