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Enhancing the Weak Signal
With Arbitrary High-Frequency
by Vibrational Resonance
in Fractional-Order
Duffing Oscillators
When the traditional vibrational resonance (VR) occurs in a nonlinear system, a weak
character signal is enhanced by an appropriate high-frequency auxiliary signal. Here,
for the harmonic character signal case, the frequency of the character signal is usually
smaller than 1 rad/s. The frequency of the auxiliary signal is dozens of times of the fre-
quency of the character signal. Moreover, in the real world, the characteristic informa-
tion is usually indicated by a weak signal with a frequency in the range from several to
thousands rad/s. For this case, the weak high-frequency signal cannot be enhanced by
the traditional mechanism of VR, and as such, the application of VR in the engineering
field could be restricted. In this work, by introducing a scale transformation, we trans-
form high-frequency excitations in the original system to low-frequency excitations in a
rescaled system. Then, we make VR to occur at the low frequency in the rescaled system,
as usual. Meanwhile, the VR also occurs at the frequency of the character signal in the
original system. As a result, the weak character signal with arbitrary high-frequency can
be enhanced. To make the rescaled system in a general form, the VR is investigated in
fractional-order Duffing oscillators. The form of the potential function, the fractional
order, and the reduction scale are important factors for the strength of VR.
[DOI: 10.1115/1.4036479]
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1 Introduction

There are many ways to improve a weak signal. Among them,
the stochastic resonance (SR) method is extraordinary. In the SR
theoretical framework, a proper amount of noise has a positive
role on the signal detection. In the last 30 years, many references
have been published on this topic [1]. A typical SR model con-
tains three basic ingredients, i.e., a nonlinear system, a weak input
signal, and an amount of noise. Usually, the weak low-frequency
signal is considered as the coherent input. The signal-to-noise ratio
of the output depends on the frequency of the input. For the low-
frequency case, the signal-to-noise ratio will be improved by the
noise. If the frequency of the input signal is a little higher, the SR
phenomenon vanishes and the weak signal cannot be enhanced in
this case. Hence, the frequency of the weak signal is far lower than
1 rad/s in the former investigations on SR. Moreover, the noise in
the excitations is a weak noise. Otherwise the SR phenomenon will
disappear. However, in many practical situations, the weak charac-
ter signal which indicates the information is a high-frequency sig-
nal. For example, a signal indicating a mechanical fault usually lies
in the scope of several to thousands Hz [2]. Furthermore, the weak
character information is surged into the strong noise background.
This kind of information cannot be detected through the traditional
SR theoretical framework. To solve the problem, some techniques
such as the frequency-shifted and the rescaling method are
used [3].

Another phenomenon similar to the SR is the VR [4]. The VR
studies a nonlinear system that is excited by a weak character sig-
nal and the other auxiliary high-frequency signal. If the weak
character signal is a low-frequency harmonic signal, the response
amplitude of the output at the low-frequency versus the amplitude
or the frequency of the auxiliary signal presents an inverted bell
configuration [4,5]. If the weak character signal is an aperiodic sig-
nal, the correlation coefficient of the output to the character signal
versus the amplitude of the auxiliary signal shows a resonance-like
pattern [6]. Specifically, by adjusting the auxiliary high-frequency
signal, the weak character signal can be enhanced excellently. Up
to present, the VR has been investigated in many kinds of systems
[7–15]. However, to our knowledge, most of works on VR are
focused on improving the weak low-frequency character signal. As
a matter of fact, the frequency of the weak character signal is very
low, usually smaller than 1 rad/s. To our knowledge, there are no
references where the objective has been to enhance the weak high-
frequency signal by the VR method. As we mentioned above, the
weak character information is usually in a high-frequency signal
form in the engineering field. The traditional VR cannot deal with
this technical problem due to the fact that the response will be very
small when the system is excited by high-frequency signals. Fur-
ther, compared with the SR, the VR is much easier for control.
Hence, it is important to propose a method to enhance the weak
high-frequency signal by a new VR method. This is the main moti-
vation of this paper.

Compared with the ordinary differential system, the fractional-
order system has advantages on the response of a system. For
example, via tuning the fractional order, the VR can be optimized
[16–18], and the stability of the system can be enhanced [19]. The
ordinary differential equation can be treated as a special case of
the fractional-order system. By virtue of this reason, we

1Corresponding author.
Contributed by the Design Engineering Division of ASME for publication in the

JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS. Manuscript received June 28,
2016; final manuscript received March 5, 2017; published online May 4, 2017.
Assoc. Editor: Haiyan Hu.

Journal of Computational and Nonlinear Dynamics SEPTEMBER 2017, Vol. 12 / 051011-1
Copyright VC 2017 by ASME

Downloaded From: http://computationalnonlinear.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/journals/jcnddm/936111/ on 05/04/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use



investigate the VR at an arbitrary high frequency in a fractional-
order Duffing oscillator. The outline of the paper is organized as
follows: In Sec. 2, by introducing a scale transformation, the theo-
retical formulation of VR in the original and rescaled systems is
given. The overdamped fractional-order system and the under-
damped fractional-order system are considered, respectively. In
Sec. 3, the numerical simulations are carried out to verify the the-
oretical predictions. The detailed analysis is given in this section.
In Sec. 4, some potential applications of the results are discussed.
In Sec. 5, we describe briefly the main results of this paper.

2 Theoretical Formulation

In this section, we will give the theoretical analysis for VR at
an arbitrary high-frequency in the fractional-order Duffing
oscillator.

2.1 Overdamped Fractional-Order Duffing Oscillator.
First, we consider a fractional-order Duffing oscillator in an over-
damped version. The governing equation is in a general from, i.e.,

dax tð Þ
dta

þ ax tð Þ þ bx3 tð Þ ¼ f cos xtð Þ þ F cos Xtð Þ (1)

There are several kinds of definitions for the fractional-order
derivative, such as the Caputo definition, the Riemann–Liouville
definition, and the Gr€unwald–Letnikov definition [20]. The
Gr€unwald–Letnikov definition is described in the form

dax tð Þ
dta

����
t¼kh

¼ lim
h!0

1

ha

Xk

j¼0

�1ð Þj a
j

� �
x kh� jhð Þ (2)

The binomial coefficient
a
j

� �
is given by

a
j

� �
¼ a!

j! a� jð Þ! ¼
C aþ 1ð Þ

C jþ 1ð ÞC a� jþ 1ð Þ (3)

where Cð•Þ is the gamma function. In Eq. (1), f cosðxtÞ is a weak
high-frequency signal and we call it as character signal for sim-
plicity. It is different from all cases in the previous works
[16–18,21–29], even though, the frequency of the weak signal is
usually low. However, in the engineering background, the charac-
teristic information is a weak high-frequency signal. For example,
in our former study, the vibration characteristic of a fault plane-
tary gear is a signal with the magnitude of the order of 10�3 m=s2

and the frequency of the order of 102 Hz [2]. In this work, some
different values of the high-frequency x on the response will be
discussed. Another harmonic signal F cosðXtÞ is an auxiliary sig-
nal. The frequencies of the two signals satisfy X� x. Consider-
ing the engineering background, the value of the fractional order
usually lies in the interval (0, 2). The coefficients a and b have dif-
ferent physical meaning for different model. For example, for a
mechanical mode, they may represent the stiffness of the linear
spring and the nonlinear spring, respectively. Here, we only con-
sider the fractional-order system as a signal processor. It can be
realized by the circuit device. The potential function of Eq. (1) is
VðxÞ ¼ ða=2Þx2 þ ðb=4Þx4. If a< 0 and b> 0, the potential func-
tion is in the double-well form. Otherwise, if a> 0 and b> 0, the
potential function is in the single-well form.

The excitations in Eq. (1) are both high-frequency excitations.
According to the frequency response characteristic of the vibra-
tion theory, the response amplitude is very small [30]. Hence, we
need to shift the high frequency to the low frequency through a
rescaling transformation. First, let s ¼ bt and xðtÞ ¼ zðsÞ. The
parameter b is the time scale for reduction. Then, according to the
Gr€unwald–Letnikov definition in Eq. (2) and the scale change the-
orem of the fractional-order derivative [31], we have

dax tð Þ
dta

����
t¼kh

¼ ba lim
h!0

1

bhð Þa
Xk

j¼0

�1ð Þj a
j

� �
x b kh� jhð Þ½ �

¼ ba dax sð Þ
dsa

����
s¼bt

(4)

Further, we obtain the equation in the time scale s

daz sð Þ
dsa

þ a

ba z sð Þ þ b

ba z3 sð Þ ¼ f

ba cos x
s
b

� �
þ F

ba cos X
s
b

� �
(5)

Equation (5) has the same dynamical property as Eq. (1). If the
values of the coefficients a=ba and b=ba in Eq. (5) have the same
order with the coefficients a and b in Eq. (1), the response of Eq.
(5) will also have the same magnitude with Eq. (1). Another thing,
we must note that the magnitudes of the high-frequency signals
have been decreased to 1=ba compared with the original excita-
tions. Hence, we need to recover them to the original in the
rescaled system. Hence, Eq. (5) is rewritten to

daz sð Þ
dsa

þ a

ba z sð Þ þ b

ba z3 sð Þ ¼ f cos x
s
b

� �
þ F cos X

s
b

� �
(6)

Let a1 ¼ ða=baÞ; b1 ¼ ðb=baÞ; x1 ¼ ðx=bÞ; X1 ¼ ðX=bÞ, then
Eq. (6) turns to

daz sð Þ
dsa

þ a1z sð Þ þ b1z3 sð Þ ¼ f cos x1sð Þ þ F cos X1sð Þ (7)

Equation (7) has the same dynamical property as Eq. (1). From
our former research [16], we know that the VR will occur in Eq.
(7). As a result, the weak high-frequency character signal will be
detected in the rescaled system. From Eqs. (5)–(7), the system is
rescaled. When the VR occurs in the rescaled system, it also
occurs in the original system simultaneously. This method has
been successfully applied in the investigation of the SR induced
by the weak high-frequency character signal [32–35].

The solution of Eq. (7) can be solved by some approximate
methods, such as the multiscale method, the averaging method,
and the perturbation method. Among them, the method of direct
partition of motions is widely used in lots of models for its sim-
plicity in engineering fields, although it is sensitive to the excita-
tions [16–18,21–25]. In the engineering fields, this method can
satisfy the requirement. Hence, the method of direct partition of
motions is used in the theoretical analysis in the following man-
ner. According to this method, let z ¼ Z þW, where Z and W are
the slow variable and the fast variable with period 2p=x and
2p=X, respectively, then we have

daZ

dsa
þ daW

dsa
þ a1Z þ a1Wþ b1Z3 þ 3b1Z2Wþ 3b1ZW2 þ b1W

3

¼ f cos x1sð Þ þ F cos X1sð Þ (8)

Seeking an approximate solution of the fast variable W in the lin-
ear equation

daW
dsa
þ a1W ¼ F cos X1sð Þ (9)

Letting

W ¼ F

l
cos X1s� hð Þ (10)

then we have

daW
dsa
¼ F

l
Xa cos X1s� hþ ap

2

� �

¼ F

l
Xa cos

ap
2

cos X1s� hð Þ � sin
ap
2

sin X1s� hð Þ
� �

(11)
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at the same time

F cos ðX1sÞ ¼ F cos ðX1s� hþ hÞ
¼ F cos h cosðX1s� hÞ � F sin h sinðX1s� hÞ (12)

substituting Eqs. (11) and (12) into Eq. (9), by using the undeter-
mined coefficient method, i.e., comparing the coefficients of the
terms cosðX1s� hÞ and sinðX1s� hÞ, we get equation groups

a1 þ Xa cos
ap
2
¼ l cos h

Xa sin
ap
2
¼ l sin h

8><
>: (13)

Solving the equation groups above, we obtain

l2 ¼ a1 þ Xa
1 cos

ap
2

� �2

þ Xa
1 sin

ap
2

� �2

(14)

and

h ¼ tan�1
Xa

1 sin
ap
2

a1 þ Xa
1 cos

ap
2

(15)

Substituting Eq. (10) into Eq. (8) and averaging all terms over the
interval ½0; 2p=X1�, we obtain

daZ

dsa
þ cZ þ b1Z3 ¼ f cos x1sð Þ (16)

where

c ¼ a1 þ
3b1F2

2l2
(17)

If f¼ 0, the equilibria of the equivalent system (16) are

Z�o ¼ 0; Z�6 ¼ 6

ffiffiffiffiffiffiffiffiffi
� c

b1

r
(18)

If c < 0, Eq. (16) has two stable equilibria Z�6 ¼ 6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðc=b1Þ

p
and

one unstable equilibrium Z�o ¼ 0. Otherwise, if c � 0, Eq. (16)
only has one stable Z�o ¼ 0. Thus, the equilibria of Eq. (16)
depend on the sign of the parameter c. Further, in Eq. (17), the
sign of c is mainly determined by the system coefficients a, b, the
auxiliary signal amplitude F, the auxiliary signal frequency X, the
fractional-order a, and the reduction scale b.

To get the solution of the slow motion at the frequency x1, we
eliminate the constant component in the response. Let
y ¼ Z � Z�, where Z� is the stable equilibrium defined in Eq. (18),
then we have

daY

dsa
þ x2

r Y þ 3b1Z�Y þ b1Y3 ¼ f cos x1sð Þ (19)

where x2
r ¼ cþ 3b1Z�2. The approximate response at the fre-

quency x1 is solved by the linear equation

daY

dta
þ x2

r Y ¼ f cos x1sð Þ (20)

When t! þ1, the solution of Eq. (20) is

Y ¼ AL cosðx1s� uÞ (21)

where

AL ¼
fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2
r þ xa

1 cos
ap
2

� �2

þ xa
1 sin

ap
2

� �2
s (22)

and

u ¼ tan�1
xa

1 sin
ap
2

x2
r þ xa

1 cos
ap
2

(23)

To quantify the performance of a system to enhance the weak sig-
nal, a quantitative index named response amplitude is usually
used which is defined by

Q ¼ AL

f
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2
r þ xa

1 cos
ap
2

� �2

þ xa
1 sin

ap
2

� �2
s (24)

Through analysis of the response amplitude Q in Eq. (24), the
enhancement of the weak high-frequency signal by the over-
damped fractional-order Duffing oscillator can be discussed.

2.2 Underdamped Fractional-Order Duffing Oscillator.
Now, we consider the underdamped fractional-order Duffing
oscillator

d2x

dt2
þ d

dax tð Þ
dta

þ ax tð Þ þ bx3 tð Þ ¼ f cos xtð Þ þ F cos Xtð Þ (25)

The parameter d is the coefficient of the fractional-order damping.
Other parameters in Eq. (25) are the same as the ones appearing in
Eq. (1). Through the scale transformation s ¼ bt and xðtÞ ¼ zðsÞ,
we obtain

d2z sð Þ
ds2

þdba

b2

daz sð Þ
dta
þ a

b2
z sð Þþ b

b2
z3 sð Þ¼ f

b2
cos xsð Þþ F

b2
cos Xsð Þ

(26)

We need to recover the damped force and the excitations to the
original magnitude. Thus

d2z sð Þ
ds2

þ d
daz sð Þ

dta
þ a1z sð Þ þ b1z3 sð Þ ¼ f cos xsð Þ þ F cos Xsð Þ

(27)

where a1 ¼ a=b2 and b1 ¼ b=b2. Let z ¼ Z þW, then we obtain

d2Z

ds2
þ d2W

ds2
þ d

daZ

dsa
þ d

daW
dsa
þ a1Z þ a1Wþ b1Z3 þ 3b1Z2W

þ 3b1ZW2 þ b1W
3 ¼ f cos x1sð Þ þ F cos X1sð Þ ð28Þ

Searching for the approximate solution of W in the linear equation

d2W
ds2
þ d

daW
dsa
þ a1W ¼ F cos X1sð Þ (29)

we obtain

W ¼ F

l
cos X1s� hð Þ (30)

where

l2 ¼ a1 þ dXa
1 cos

ap
2
� X2

1

� �2

þ dXa
1 sin

ap
2

� �2

(31)

and

h ¼ tan�1
dXa

1 sin
ap
2

a1 þ dXa
1 cos

ap
2
� X2

1

(32)
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Substituting Eq. (30) into Eq. (28) and averaging all terms over
the interval ½0; 2p=X1�, one has

d2Z

ds2
þ d

dZ

ds
þ cZ þ b1Z3 ¼ f cos x1sð Þ (33)

where c ¼ a1 þ ðð3b1F2Þ=2l2Þ. The equilibria X� are still given
in Eq. (18). To eliminate the constant in Eq. (33), we let
Y ¼ Z � Z�. Then, we obtain

d2Y

ds2
þ d

daY

dsa
þ x2

r Y þ 3b1Z�Y2 þ b1Y3 ¼ f cos x1sð Þ (34)

where x2
r ¼ cþ 3b1Z�2. Searching the solution of Y in the linear

equation

d2Y

ds2
þ d

daY

dsa
þ x2

r Y ¼ f cos x1sð Þ (35)

then we obtain Y ¼ AL cosðx1s� uÞ, where

AL ¼
fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2
r � x2

1 � dxa
1 cos

ap
2

� �� �2

þ dxa
1 sin

ap
2

� �2
s (36)

and

u ¼ tan�1
dxa

1 sin
ap
2

x2
r � x2

1 � dxa
1 cos

ap
2

� � (37)

Hence, the response amplitude of the underdamped fractional-
order oscillator is

Q ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

r � x2
1 � dxa

1 cos
ap
2

� �� �2

þ dxa
1 sin

ap
2

� �2
s (38)

3 Numerical Simulations

We use numerical simulations to verify the analytical results.
For the numerical simulation, the response amplitude at the fre-
quency x is computed by

Q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2

s þ B2
c

p
f

(39)

where Bs and Bc are the sine and the cosine components of the
Fourier coefficients

Bs ¼
2

nT

ðnT

0

x tð Þsin xtð Þdt; Bc ¼
2

nT

ðnT

0

x tð Þcos xtð Þdt (40)

In Eq. (40), T ¼ 2p=x and n is an integer number which is large
enough. Further, for the numerical simulations, Eqs. (1) and (25)
have turned to the form

dax tð Þ
dta

þ ax tð Þ þ bx3 tð Þ ¼ baf cos xtð Þ þ baF cos Xtð Þ (41)

and

d2x

dt2
þ b2�ad

dax tð Þ
dta

þ ax tð Þ þ bx3 tð Þ ¼ b2f cos xtð Þ þ b2F cos Xtð Þ

(42)

For the numerical discretization of the fractional-order operator,
the predictor-corrector algorithm will be used [36]. In the follow-
ing, we let X ¼ b1x and b ¼ b2x. Hence, x1 ¼ ðx=bÞ ¼ ð1=b2Þ
and X1 ¼ ðX=bÞ ¼ ðb1=b2Þ.

If the reduction scale b¼ 1, then the rescaled system degener-
ates to the original system. For the overdamped case, the response
amplitude for b¼ 1 is given in Fig. 1. Apparently, there is no VR
phenomenon in this figure. Although there is a resonance phenom-
enon that is induced by the fractional order, the magnitude of the
response amplitude is very small. It shows that the weak high-
frequency signal cannot be enhanced in Eq. (1) directly. In the fol-
lowing analysis described in this section, we will discuss the VR
in the rescaled system.

3.1 Overdamped Fractional-Order Duffing Oscillator. In
Fig. 2, the weak high-frequency signal is enhanced by the auxil-
iary signal for different factional-order values. In Fig. 2(a), the
three-dimensional curve of the response amplitude Q versus the
fractional-order a and the auxiliary signal amplitude F is given by
the analytical prediction. From this subplot, we find that both the
fractional order and the auxiliary signal can induce a strong reso-
nance and lead to the improvement of the weak high-frequency
character signal. To verify the validity of the analytical results,
the numerical simulations are also given in Figs. 2(b)–2(f) for dif-
ferent values of the fractional order. Notice that the analytical
results describe the VR in the rescaled system and the numerical
results describe the VR in the original system. In these subplots,
the analytical results are in good agreement with the numerical
simulations. It explains the equivalence of the rescaled system
and the original system. It also indicates the validity of the analyt-
ical method. In this figure, with the increase of the fractional
order, the magnitudes of both the resonance peak and the corre-
sponding value of F will increase also. It illustrates that the
fractional-order system can improve the weak signal especially for
the case a > 1. Hence, it is important to design a fractional-order
system for enhancing a weak signal. Another thing, with the
increase of the fractional order, the pattern of the curve turns from
the single-peak mode to the double-peak mode. It is the same with
the case in the fractional-order system excited by two low-
frequency signals [16]. Hence, it is not necessary to give further
explanations here.

In Fig. 3, the VR phenomenon is shown for different values of
b2. Because x1 ¼ ð1=b2Þ, the low frequency in the rescaled system
is x1 ¼ 0:5 in Figs. 3(a), 3(c), and 3(e) and x1 ¼ 0:2 in Figs. 3(b),

Fig. 1 The three-dimensional curve of the response amplitude
Q in which there is no VR occurring at the frequency x. The sim-
ulation parameters are x 5 1500, f 5 0.01, b1 5 40, b 5 1,
a1 5 21; b1 5 1.
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3(d), and 3(f). For lower frequency x1, i.e., when b2 is larger, the
response amplitude will achieve a stronger resonant state. It leads
to a satisfactory effect for enhancing the weak high-frequency char-
acter signal.

In Fig. 4, the VR is studied under different values of the ampli-
tude of the weak high-frequency character signal. For smaller val-
ues of f and a, the numerical results and the analytical results are
in good agreement as shown in Figs. 4(a)–4(d). For larger values
of f and a, although the resonance occurs in both the analytical
and the numerical curves, the resonance peak obtained by the
numerical result may be smaller than that obtained by the analyti-
cal result. It is induced by the susceptibility of the approximate
analytical method to the excitation parameters. In this problem,
there are some publications to discuss it [21,22]. As we mentioned
above, when other methods such as the multiscale method, the
averaging method, and the perturbation method are used, the error
between the analytical results and the numerical results may be
smaller. We use the direct partition of motions method since it is
much simpler compared with other approximate methods and it
can satisfy the requirements in the engineering fields.

To understand the resonance much more clearly, the time series
at the resonant state is given in Fig. 5 under different simulation
parameters. When the auxiliary high-frequency signal is absent,
i.e., for the case F¼ 0, the resonance disappears and the response
is very weak. When we choose the simulation parameters that cor-
respond to the resonance peak in Fig. 4, the resonance peak in the
time series is apparently shown.

In Fig. 6, the VR phenomenon is given under different values
of the fractional-order and the high-frequency x. Because b2 is a
fixed value, the low frequency x1 in the rescaled system is a con-
stant. It is independent of the signal frequency x. As a conse-
quence, the results for the case x¼ 200 and x¼ 2000 should be
identical completely. The numerical results demonstrate this

Fig. 2 The VR phenomenon occurs at the frequency x for dif-
ferent fractional-order values. (a) The three-dimensional curve
of the response amplitude Q obtained by the analytical predica-
tion. (b)–(f) The response amplitude versus the signal ampli-
tude F for different factional-order values. The simulation
parameters are x 5 1500, f 5 0.01, b1 5 40; b2 5 4; a1 5 21;
b1 5 1. In (b)–(f), line 1 is the analytical curve and line 2 is the
numerical curve.

Fig. 3 The VR phenomenon occurs at the frequency x for dif-
ferent fractional-order values. The simulation parameters are
x 5 1500, f 5 0.01, b1 5 40; a1 5 21; b1 5 1, and in (a)
a 5 0:6; b2 5 2, in (b) a 5 0:6; b2 5 5, in (c) a 5 1:0; b2 5 2, in (d)
a 5 1:0; b2 5 5, in (e) a 5 1:4; b2 5 2, and in (f) a 5 1:4; b2 5 5. In
each subplot, line 1 is the analytical curve and line 2 is the
numerical curve.

Fig. 4 The VR phenomenon occurs at the frequency x for dif-
ferent fractional-order values. The simulation parameters are
x 5 1500, b1 5 40; b2 5 5; a1 5 21; b1 5 1, and in (a) a 5 0:6,
f 5 0.005, in (b) a 5 0:6, f 5 0.1, in (c) a 5 1:0, f 5 0.005, in (d)
a 5 1:0, f 5 0.1, in (e) a 5 1:4, f 5 0.005, and in (f) a 5 1:4, f 5 0.1. In
each subplot, line 1 is the analytical curve and line 2 is the
numerical curve.
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prediction. Hence, the VR can occur in the nonlinear system when
the weak character signal has an arbitrary high frequency.

In Fig. 7, the VR is given under different values of b1. In other
words, besides the value of the fractional-order a, the frequency X

is different from Figs. 7(a)–7(f). The value of b1 influences the
magnitude of F which induces the resonance. For larger value of
b1, we need larger values of F to make the resonance to occur.
The value of b1 influences the magnitude of the resonance peak
slightly.

In Figs. 1–7, we choose a1 ¼ �1 and b1 ¼ 1, which indicates
that the rescaled system in Eq. (7) is a typical bistable system.
Moreover, from a ¼ a1b

a and b ¼ b1b
a, we know that the original

system is also a bistable system. In Fig. 8, we choose a1 ¼ 1 and
b1 ¼ 1. Then, both the rescaled system and the original system
are also monostable systems. From the analytical and numerical
results, we cannot find the resonance phenomenon. No matter
what value of the fractional order we choose, the response ampli-
tude is decreased with the increase of the value of F. Hence, it is
difficult to enhance the weak high-frequency character signal by
the VR in monostable systems.

3.2 Underdamped Fractional-Order Duffing Oscillator.
The underdamped oscillator is an important model for the SR and
the VR [24,25,37,38]. In this subsection, we study the VR induced
by the weak high-frequency character signal in the fractional-
order Duffing oscillator in the underdamped version.

In Fig. 9, the three-dimensional curves of the response ampli-
tude versus the fractional-order a and the auxiliary signal ampli-
tude F are given by analytical results. With the increase of the
coefficient of the fractional-order damping, the response ampli-
tude will decrease. It illustrates that the fractional-order damping
has the same effect as the ordinary damping. The damping con-
sumes the energy and suppresses the response amplitude.

In Fig. 10, the VR is verified by both the analytical and the
numerical results. For different values of the fractional order and
the damping coefficient, the curve of the response amplitude may
present the single-peak mode or the double-peak mode. Compar-
ing Fig. 10 with Fig. 3, we find that the underdamped fractional-
order system may enhance the weak high-frequency character
signal in a higher level.

Fig. 5 The time series of the system under different fractional-
order values, the simulation parameters are f 5 0.1, x 5 1500,
b1 5 40; b2 5 5; a1 5 21; b1 5 1

Fig. 6 The VR phenomenon occurs at the frequency x for dif-
ferent fractional-order values. The simulation parameters are
f 5 0.01, b1 5 40; b2 5 4; a1 5 21; b1 5 1, and in (a) a 5 0:6,
x 5 200, in (b) a 5 0:6, x 5 2000, in (c) a 5 1:0, x 5 200, in (d)
a 5 1:0, x 5 2000, in (e) a 5 1:4, x 5 200, and in (f) a 5 1:4,
x 5 2000. In each subplot, line 1 is the analytical curve and line
2 is the numerical curve.

Fig. 7 The VR phenomenon occurs at the frequency x for
different fractional-order values. The simulation parameters
are x 5 1500, f 5 0.1, b2 5 4; a1 5 21; b1 5 1, and in (a)
a 5 0:6; b1 5 20, in (b) a 5 0:6; b1 5 50, in (c) a 5 1:0; b1 5 20, in (d)
a 5 1:0; b1 5 50, in (e) a 5 1:4; b1 5 20, and in (f) a 5 1:4; b1 5 50.
In each subplot, line 1 is the analytical curve and line 2 is the
numerical curve.
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In Fig. 11, we choose a> 0 and b> 0. Then, the original system
is a monostable system. In this figure, the response amplitude is a
monotonic decreasing function of the auxiliary signal amplitude
F. As a result, in the underdamped fractional-order system, we
should choose the bistable potential but not the monostable poten-
tial to enhance the weak high-frequency character signal.

4 Some Discussions on the Potential Applications

In order to explain the idea in this work in detail, we give some
discussions on the potential applications of the VR by the rescaled
method.

In Fig. 12, the scheme for the VR in the bistable system by the
rescaled method is illustrated clearly. When the VR is occurring,
the weak character signal is enhanced. At first, we need to amplify
the input. Specifically, we input the character signal and the auxil-
iary signal into the signal amplifier together. The amplification
factor should be chosen based on the result of this paper. If we use

Fig. 9 The three-dimensional curve of the response amplitude
Q. The simulation parameters are f 5 0.01, x 5 1500,
b1 5 40; b2 5 5; a1 5 21; b1 5 1, and (a) d 5 0:4, (b) d 5 0:7, (c)
d 5 1:5, and (d) d 5 2.

Fig. 10 The VR phenomenon occurs at the frequency x for dif-
ferent fractional-order values. The simulation parameters are
f 5 0.01, x 5 1500, b1 5 40; b2 5 5; a1 5 21; b1 5 1, and in (a)
a 5 0:5; d 5 0:8, in (b) a 5 0:5; d 5 1:2, in (c) a 5 1:0; d 5 0:8, in (d)
a 5 1:0; d 5 1:2, in (e) a 5 1:5; d 5 0:8, and in (f) a 5 1:5; d 5 1:2. In
each subplot, line 1 is the analytical curve and line 2 is the
numerical curve.

Fig. 11 The response amplitude versus the signal amplitude
F for different factional-order values and different coefficients.
The simulation parameters are x 5 1500, f 5 0.01, b1 5 40;
b2 5 5; a1 5 1; b1 5 1, and (a) a 5 0:6; d 5 0:7, (b) a 5 0:6; d 5 1:4,
(c) a 5 1:0; d 5 0:7, (d) a 5 1:0; d 5 1:4, (e) a 5 1:5; d 5 0:7, and (f)
a 5 1:5; d 5 1:4. In each subplot, line 1 is the analytical curve
and line 2 is the numerical curve.

Fig. 8 There is no VR phenomenon at the frequency x in
monostable systems. (a) The three-dimensional curve of the
response amplitude Q obtained by the analytical prediction.
(b)–(f) The response amplitude versus the signal amplitude F
for different factional-order values. The simulation parameters
are x 5 1500, f 5 0.01, b1 5 40; b2 5 4; a1 5 1; b1 5 1. In (b)–(f),
line 1 is the analytical curve and line 2 is the numerical curve.
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the system in Eq. (1) as the VR system, the amplification factor is
ba according to Eqs. (5) and (6). Moreover, if we use the system
in Eq. (25) as the VR system, the amplification factor is b2 accord-
ing to Eqs. (26) and (27). The choice of b has been discussed in
Sec. 5. Then, the parameters of the system are also needed to be
determined by the rescaled method. If we use the system in Eq.
(1) as the VR system, the system parameters are a ¼ a1b

a and
b ¼ b1b

a according to Eqs. (5) and (6). Herein, a1 and b1 are the
system parameters when the traditional VR occurs at low fre-
quency. For example, we can choose a1 ¼ �1 and b1 ¼ 1. If we
use the system in Eq. (25) as the VR system, the system parame-
ters are a ¼ a1b

a and b ¼ b1b
a according to Eqs. (26) and (27).

Moreover, we choose the fractional-order system but not the ordi-
nary system. It is because an appropriate fractional order may
enhance the weak character signal in a higher degree. The value
of the fractional order, which induces the strongest resonance at
the character frequency, can be determined by the optimization
algorithm theoretically. Then, it can be realized with the help of
the hardware. After the determination of the amplification factor
and the system parameters, by adjusting the amplitude of the aux-
iliary signal, the VR can occur and the character signal can be
enhanced. Every step cannot be ignored in the rescaled scheme. If
the signals are not amplified before they input to the bistable sys-
tem, the VR cannot occur and the weak character signal cannot be
enhanced. Another thing, if we choose much smaller system
parameters, the response will diverge and the device may be
destroyed. If we choose much larger system parameters, the opti-
mal VR cannot be achieved.

5 Conclusions

In this paper, the VR induced by the weak character signal with
arbitrary high frequency is investigated in a fractional-order sys-
tem. Through a scale transformation, we transform the high-
frequency signal excited system to the low-frequency signal
excited system. When the VR occurs in the rescaled system, it
also occurs in the original system. The dynamics of the rescaled
system and the original system are equivalent. The VR can be
analyzed by both analytical methods and numerical simulations.
The results by the two methods are in good agreement. The VR
can occur in the overdamped and the underdamped fractional-
order system with a bistable potential. If the system has a mono-
stable potential, the VR is difficult to appear. The fractional order
is a key factor in the response amplitude of the system. For larger
values of the fractional order, the response amplitude usually has
a larger value too. Another factor to influence the response ampli-
tude is the reduction scale. The low frequency in the rescaled sys-
tem mainly depends on the reduction scale, but is independent of
the high frequency of the character signal. It indicates that the
method can be used in the nonlinear system excited by an arbitrary
high-frequency signal. It is a remarkable highlight of this paper.
Our method in this paper provides a way to enhance the weak high-
frequency signal. It can be used in the design of an electric equip-
ment. By virtue of the method, we can determine the system param-
eters which can make the VR to appear at high frequency. Hence, it
makes the application of the VR in detecting the weak character
signal at arbitrary high frequency in the real world possible.
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