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Abstract

Delay-coordinate maps have been widely used recently to stly nonlinear dynamical systems,
where there is only access to the time series of one of their vables. Here, we show how the partial
control method can be applied in this kind of framework in order to prevent undesirable situations
for the system or even to reduce the variability of the obserable time series associated with it. The
main advantage of this control method, is that it allows to control delay-coordinate maps even if the
control applied is smaller than the external disturbances pesent in the system. To illustrate how it
works, we have applied it to three well-known models in Nonlear Dynamics with di erent delays
such as the two-dimensional cubic map, the standard map andhe three-dimensional hyperchaotic

Henon map. For the rst time we show here how hyperchaotic systems can be partially controlled.
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I. INTRODUCTION

In Dynamics we usually study physical systems whose present s®ats completely
de ned by a set of m variables Xxi; X;; X3; :::; Xm, Where the law governing its evolution
f (X1;X2; X3; 50 Xm) is known as well. The set of all the possible values that these variable
can take constitute the phase space of the system, which is usualypresented geometrically
as a Cartesian coordinate system. In this way every possible staign be identi ed with a
unique point in the phase space. However, there are several sttaas where this approach
is not possible. We nd one example of these situations in systems withemory [1], where
the future state of the system does not depend only on the presestate, but also on other
previous states. This kind of dynamical systems are usually refed to as systems with
delay in the literature. In other physical systems, however, it is imgssible to have access to
the information of all the variables that constitute its phase spaceln this kind of situation
the delay reconstruction method HZDB] is used to study the dynaos of the underlying
system. To do so, a time series of scalar measurements of one ef\variables is taken in
order to reconstruct the dynamics of the phase space and estimats delay-coordinate map

,B]. This method has been extensively applied to study nonlinear tinseries.

In systems with delay, it is common to nd dynamics with chaotic behawr. This kind
of dynamics allows the system to visit many di erent states in the phse space. But in
some situations some of these states might be dangerous for theufe evolution of the
system or might just enhance the appearance of large extremestle time series. In the
former case, the system behaves chaotically for a while, but eveally escapes to an external
attractor that might be harmful for the system (like for example & extinction E]). In the
latter, the presence of the extremes introduces a high volatility inhie time series that can
have a negative e ect in some situationﬂ[?]. In order to avoid this kindf behaviors, some
control has to be applied. Unlike classical control methods that psue to transform chaotic
trajectories into periodic onesu8], in these other cases the main g@ato avoid unwanted
behaviors in the presence of a chaotic dynamics. To achieve this jaahas been proposed
recently the partial control method B),], which is applied in chaat systems with the
aim of suppressing some undesirable states of the system in thesprece of any kind of
disturbances. Due to the disturbances, and the tiny control usgeit is not possible to guide

the trajectory to an speci c target. We only can keep the trajetory in some region of the
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FIG. 1. Conceptual framework. From left to right. Step 1. data acquisition from a chaotic

system. We assume here that only one variable is observableStep 2: using embedding and
parametric reconstruction techniques, construct a delayeoordinate map. The term , represents
a disturbance term that encloses all possible deviations &m the real dynamics. Step 3: apply the
partial control method introducing and additive control te rm u, acting on the observable variable.

In this work we assume that we already possess the knowledgé the delay-coordinate map.

phase space, and that is why it is called \partial control”. This contol method is minimall
invasive and has been tested in many di erent scenarios. For exalapit was shown in @]
the possibility of suppressing extremes of a variable in an economic aeg reducing the
volatility. 1t has also been shown in several examples the possibility afoiding escapes in
situations where the chaotic behavior is transienU[& 12].

The main goal of this paper is to show how the partial control methibcan be applied to
delay-coordinate maps under very mild assumptions. We considerr@ea delay-coordinate
map under external additive disturbanced (x,;Xn 1;::0) + ,, where the control can also
be applied in an additive wayf (Xn;Xn 1;::)+ n + U,. This kind of framework is the one
that is usually found after using the delay reconstruction methodat study the phase space
dynamics of a chaotic system, but can also be found in others syste with delay. This
method is normally employed in order to make short term predictionsfdhe underlying
time series by estimating the associated delay-coordinate map, whican be done by tting
it to some polynomial ] or using other alternative equation-fregpgroaches like empirical
dynamic modeling ]. However, the delay-coordinate maps can alsodmployed to control
chaotic time series. This makes us believe that the partial control ethod might be used in

all these situations in order to avoid certain undesired behaviors.
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The structure of the paper is as follows. In Section 2, we describevinthe partial control
method is applied to delay-coordinate maps. In Section 3 we presesgveral examples of
how to apply this control method to three paradigmatic delay-coalinate maps found in
the literature, including one hamiltonian map and one hyperchaotic sfem. Finally, some

conclusions are drawn.

II.  APPLICATION OF THE PARTIAL CONTROL METHOD TO DELAY-COORDINA
MAPS

The partial control method has been successfully applied in sevestuations BB]
where the control was applied on the variables of the system, anl$@awhere the control was
applied on some parameter of the system [15]. The method was oridiypae ned on maps,
however it also applies well in the case of ows [12], taking a suitable distization of the
dynamics.

In this work we pursue the application of the method to delay-coomdate maps. These
maps are usually expressed in the following way:

Xn = F(Xn 1% 207 % m): (1)

We consider here the problem of controlling this kind of maps possegsa chaotic be-
haviour. It may seem that the implementation of the partial contré method on time delay
systems do not di er much from the previous worksﬁ 2], howev there is a critical
di erence since the control can only be applied in the present state,, (is not physically
possible to control the past statesX, 1;Xn 2:::)), and therefore the control of the system
involves the introduction of a new approach.

Following the scheme of the partial control method we consider théhe system can be
modelled as:

Xn = f(Xn 1;%n 2:7:Xn m)+ n+ Up; (2)
where , is the disturbance a ecting the statex,, and u, is the respective control applied.

These values are constrained
J nl 0 junj  Uo:
We will show here that it is possible to control the systems with contd values O< ug < o,

which is one of the most remarkable results of this method.

4

TE



3 Q
(men—l) 0 o0

L3
o () LU

(xn—l ’xn—2)

(Xn-l ;Xn-2)
€

Xn-1 *n-1
Dynamics in Dynamics in
the region Q, the region Q.

(the safe set)

FIG. 2. Dynamics in Qg and Qj . The left side shows an example of a2 region Qg (in blue)
in which we want to keep the dynamics described byx, = f (Xn 1;Xn 2)+ n + up. We say that
j ni o0 is a bounded disturbance a ecting the map, andu, is the control chosen so thatg,+1 is
again in Qq. Notice that disturbance and control arrows are drawn paralel to current state of the
variable since only the present state is a ected by them. To aply the control, the controller only
needs to measure the state of the disturbed system, that isf[x, 1;Xn 2)+ n]. The knowledge
of f (Xn 1;Xn 2) or q individually is not required. The right side of the gure, sh ows the region
Q1 Qo (in blue), called the safe sef where each kn 1;Xn 2) 2 Q1 has Xn;Xn 1) 2 Qp for
some controlju,j  ug, which is chosen depending on,,. Notice that the removed region does not

satisfy junj  Uo.

We recall here that in the experimental case, this delay-coordiratnap would be obtained
from the collected data, after the application of some embedding anodel reconstruction
techniques. However this task is not the main goal of this work. Whave show here is the
application of the partial control method to this kind of maps, so weassume here that the
delay-coordinate map is already known. To illustrate this point, a sniescheme (Fig[1) was
added.

Once we know the delay-coordinate-map, all we have to do to applize partial control
method is to de ne the regionQq of the phase spacex{ 1;X, 2:::) where we want to keep

the trajectories. Then we have to x the upper value of the disturance o, and the upper
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value of the controluy. Next the safe set is computed. This set is formed by the points
(Xn 1;Xn 2:::) belonging to the regionQq, where the imagex, = f (Xn 1;Xn 2::)+ n+ Uy
can be put back again on the safe set by using a contjol,j uo. In Fig. Elwe illustrate the
controlled dynamics in the regionQq and the safe sefQ; . Notice that, due to the fact that
the control and disturbance a ects the present state of the véable, then they are applied
in the current axis direction.

To compute the safe set, it has been developed a recursive alganthalled the Sculpting
Algorithm B], which evaluates the points fronQ, and remove them if they do not satisfy
the safe condition. We have modi ed it here to apply it to delay-coorthate maps. The new
algorithm converges, after some steps, when all the points remiaig are safe considering
that we only apply control in the present state of the variable. Thath step of this algorithm

can be summarized as follows:

1. Morphological dilation of the setQ; by ug along thex, ; direction, obtaining the set
denoted byQ; + up.

2. Morphological erosion of seQ; + ug by ( along thex, ; direction, obtaining the set

denoted byQ; + up .

3. Let Qij+1 be the points &, 1;Xn 2:::) of Q;j, sothatf (X, 1;Xn 2:::) maps inside the

set Qi + Up 0-

4. Return to step 1, unlesNi+; = Qj, in which case we seQ; = Q;. We call this nal
region, the safe set Note that if the chosenug is too small, thenQ; may be the

empty set, so that a bigger value ofiy must be chosen.

Since computational resources are limited, only a nite amount of piats in Qu can be
evaluated. In this work we have used a rectangular or a cubic gridwvasing Q, but other
choices are possible. Certainly higher resolutions give a more actersafe set. However, we
have found that beyond a critical resolution of the grid of) and , the safe set remains the
same. For that reason, we recommend to compute the safe sethwibcreasing resolutions
until the safe set remains practically unchanged.

In order to show that the method can be applied on di erent chaotiecnaps, we have chosen

three examples of well-known chaotic maps to illustrate it. We do noteproduce here the
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Time series of variablex, with no disturbance a ecting it. b) Time series with | pj 0 =0:02
a ecting the map. c) Time series with | pj o = 0:20 aecting the map. After some iterations

the trajectory escapes towards 1

embedding and reconstruction model step, since is not the goaltbfs paper. Instead of
that, we have deduced by simple calculation, the expression of theldy-coordinate maps.
Next, we apply the control scheme with the aim of keeping the orbits a desirable region

of the phase space.

A. The two-dimensional cubic map

We consider here the system given by:

Xn=Yn 1

. (3)
Yn= bX 1+ayn 1 Y5 g

which represents the two-dimensional cubic ma16].

This two-dimensional cubic map depends on two parameters and déxits chaos for dif-
ferent values of them. We have selected here the values 2:75 andb= 0:2. For this choice
of parameters, we have represented in Figl 3a an example of the @irseries of the variable

Xn Without the in uence of noise. Here, we can see that the trajecti@s oscillate between
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FIG. 4. Safe set and controlled dynamics in the two-dimensional delayed cubic map

(Xn=axn 1 bx, 2 x3 ;). a)ln blue the initial region Qo where we want to keep the trajec-
tories. b) The safe set obtained with the values of disturbarce ¢ = 0:020 and controlug = 0:015.
A grid of 1000 1000 points has been used. The red dots represent 1000 iteimts of a partially
controlled trajectory. c) In the top it is represented an uncontrolled time series a ected with
n o = 0:020. In the bottom the controlled time series correspondingo the red dots shown in

case b.

two well di erentiated regions (top and bottom), where the trangtions between them occurs
after some typical time. However, when we introduce additive distbances, the frequency
of the transitions increases (Figld3b). And for large disturbancase trajectory eventually

escapes toward an external attractor due to the extra energpplied (Fig.[3c).

As an example, we assume now that due to experimental restrict®nve only see the
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dynamics of the variablex,, and, with that information, we are interested in keeping the
trajectory in the bottom region ( 2 < x,, < 0) forever, even in presence of large disturbances.
The form of the reconstructed delay-coordinate map can be demhd by substituting

Yo 1= bX, 2+ ay, » VY2 ,into Eq. Band taking into account thatx, 1 =y, ».

Xp=aXn 1 bX 2 x3 (4)

We call this map the two-dimensional delayed cubic mapln addition, we add to the
model a disturbance term ,, in order to consider the potential noise present in the data
acquisition or also mismatches in the reconstruction model technigu

Taking into account the disturbance and the control termu, in the system, the controlled
scheme is given by:

Xn = aXy, 1 bX 2 X3 [+ o+ Up; (5)
with | ] oandju,j Up.

To apply the partial control method, the rst thing that we have to do is to de ne the
initial Qg region (Fig.[4a) where we want to keep the trajectory. Notice that is enough to
take ( 2<x, 1< 0)to ensure that all successiv&, values remain in this interval. Then,
we select two di erent values of o in order to show how the safe set changes. The rst safe
set (Fig.[4db) was computed with the valuesy = 0:020 andup = 0:015. In the second one
(Fig. Bb) the values o = 0:20 andug = 0:15 were used. In both situations, we have used
approximately the smallest possible value afy. For smaller values, no safe sets exist.

How to use the safe set?. By de nition, we start with a pointX, 1;X, 2) and apply the
mapf (X, 1;Xn 2) + . If the image falls inside the safe set no control is applied, if it falls
outside, a control is applied to the closest point belonging to the saket. In Fig.[4b and
Fig.Bb we also represent a partially controlled trajectory (red daj in the phase space. This
trajectory remains in the region ( 2 < x, < 0) as we intended. In Figl4c and Fig15c it
is represented the corresponding controlled time series, where alg show an uncontrolled

trajectory in order to compare.

B. The standard map

Here we consider the well-known standard map. This map repressrhe discrete dy-

namics corresponding to the Poincae section of the kicked rotat system. The system is
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FIG. 5. Safe set and controlled trajectory in two-dimensional delayed cubic map

(Xn=axn 1 bx, 2 x3 ;). @) In blue the initial region Qo where we want to keep the trajec-
tories. b) The safe set obtained with the values of disturbare ¢ = 0:20 and control ug = 0:15.
A grid of 1000 1000 points has been used. The red dots represent 1000 iteimts of a partially
controlled trajectory. c) In the top it is represented an uncontrolled time series a ected with

n 0 =0:20. In the bottom the controlled time series corresponding ¢ the red dots shown in b)

given by:
Yo = Yn 1+ Ksinx, 4

(6)

Xn = Xn 1t Yn;

where x, and y, are takenmodulo 2 . The standard map shows hamiltonian chaos for
di erent values of the parameterK > 0. Depending on the initial conditions, it is possible

to observe the coexistence of periodic orbits, quasiperiodic orhied chaotic orbits.
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a) £0,=0.000 b)  £=0.002 ¢)  £=0.150

FIG. 6. Delayed standard map (X = 2Xn 1 Xn 2+ Ksinx, 1) aected by dierent

disturbances . The points represent di erent trajectories in the standard map. Several initial
conditions were taken to show the di erent dynamical behaviaurs (chaotic, periodic and quasiperi-
odic orbits). The gures represent three dierent cases whee the trajectories are aected by

random disturbances with upper bound o = 0:000, ¢ =0:002 and o = 0:150 respectively.

We consider here the caské =4:8176. In absence of any disturbance = 0), this map
exhibits chaotic regions and quasiperiodic orbits depending on the it conditions (Fig. 6a),
however when some amount of disturbance is preseng € 0:002), some quasiperiodic orbits
vanish, and chaotic behaviour arises (Fig. 6b). For a large enouglstlirbance (o = 0:15),
no periodic or quasiperiodic orbits exist and chaotic behaviour is thely behaviour present
in the system (Fig. 6¢).

Imagine now that we want to avoid the KAM islands region in order to awid the potential
qguasiperiodic behaviour of the trajectories. To do that we have aped the partial control
method. In this case, the dynamics of the variable, can be reconstructed after some

arrangements, obtaining the following time delay map:
Xn =2Xp 1 Xp 2+ Ksinx, ; (7)

where X, is taken modulo 2 . We call this map the delayed standard map Considering

again the disturbance and control terms, the resulting dynamics &s follows:
Xn=2Xn 1 Xpn 2t Ksinx, 1+ ,+ Up; (8)

with | ] oandju,j Up.
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FIG. 7. Safe set and controlled trajectory in the delayed standard map
Xn=2Xn 1 Xpn 2+ Ksinx, 1) a) In blue the initial region Qg that we select to keep the
trajectory. b) The safe set computed with the values o = 0:15 andup = 0:08. The grid used here

is 1000 1000 points. c) Partially trajectory with 5000 iterations on the safe set.

In this case we consider the largest value of the disturbance € 0:15). The next step is
to de ne the region Qo where we will keep the trajectories. This region is shown in Fig. 7a
where the two holes correspond to the KAM islands present in the @eministic case. Then,
we apply the modi ed Sculpting Algorithm to obtain the safe set showin Fig. 7b. For this
value of the disturbance, it was possible to control the system witbontrols smaller than
Uo = 0:08. We also represent in Fig. 7c a partially controlled trajectory (& dots). Notice
that in this case the controlled trajectory covers all the safe setue to the non dissipative

dynamics of the standard map.

C. The 3-dimensional hyperchaotic Henon map

The partial control method in previous works, has been applied in ¢hpast to several
chaotic systems, some of them very well-known like the Lorenz sgst or the Du ng oscil-
lator. However, the method has never before been implemented irhgperchaotic system
which involves two or more positive Lyapunov exponents. For this ason we propose here

the application of the method to the three-dimensional Henon majpl7].
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FIG. 8. Safe set of the 3D delayed Hnon map (z n=1 azﬁ 1+ bz, 2 cbz, 3) with
a=11,b=0:3,c=1. Agridof 1000 1000 1000 was takeninthebox|[ 2;2] [ 2;2] [ 2 2]
that represents the initial region Qq. Taking the upper bound of the disturbance ¢ = 0:12 and

the control ug = 0:08, the safe set converges after 15 iterations.

This system is given by:
Xn = bz 1
Yn = CXn 1+ bz 4 9)
z,=1+vy, 1 az
This map shows transient chaos for a wide range of the parametersand c. To compute
an example, we have chosen the parameter values 1:1, b= 0:3 andc = 1. For these
values, the trajectories with initial conditions in the box &,;Vyn;z,) 2 [ 0:5;0:5] [ 1;1]
[ 2;2] have a chaotic transient, before eventually escaping from thisgion towards in nity.
In this case, the e ect of the disturbances in the dynamics does hohange dramatically
the behaviour of the trajectories. It just increases or reduceake escape time in comparison
with the deterministic trajectory.
Suppose now that we have collected data from the variablg so that we were able to

reconstruct a delay-coordinate map. In this case, taking threesthys is su cient to describe
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FIG. 9. Safe set and a partially controlled trajectory in the 3D delayed Hnon map
(zn =1 azﬁ 1+ bz, 2 cbz, 3) . The safe set is represented in transparent blue to see the
controlled trajectory inside (red dots). The variable z, is a ected by a random disturbance with

upper bound ¢ =0:12 and control ug = 0:08.

correctly the dynamics of the system, that isz, = f (z, 1;z, 2,2, 3).

The form of this delay coordinate map can be obtained by simple calctitan:

z,=1 azZ ;+bz , cbz i (10)

From now on we will call this map thethree-dimensional delayed Henon map

In theses coordinates, values ¢f,j > 2 involve the escape tol of the trajectories. In
order to avoid the escape, the goal is to apply control in the variédz, to keep it in the
box (zn 1;Z0 2;20 3) 2[ 22] [ 22] [ 22].

Introducing the disturbance term |, and the control term u,, the partial control scheme

z,=1 azZ ;+bz , cbz 3+ .+ Uy (11)
with | ] o and jupj  Up. In order to show how the safe set changes depending on

14



partially
uncontrolled controlled

(escape) v

FIG. 10. Comparison between an uncontrolled trajectory and a controlled one in the

3D delayed Henon.  In black, the uncontrolled trajectory which after some iterations escapes to
1 . Inred, the controlled trajectory under the partial contro | scheme with o =0:12, up = 0:08.
For a fair comparison, both trajectories start with the same initial condition and are a ected by

the same sequence of random disturbances.

the disturbance value, we have computed the safe set taking= 0:12 andug = 0:08. We
have used a grid of 1000 1000 1000 points coveringQg, and then applied the modi ed
Sculpting Algorithm to the safe set shown in obtained Fig. 8. We also peesent in Fig. 9,
10000 iterations of a partially controlled trajectory (red dots). Mtice that the trajectory
remains in the box [ 2,2] [ 2,2] [ 2 2] forever. In absence of control, the trajectory
abandons this box after some iterations as it is illustrated in the timeesies represented in
Fig. 10.
Although the variable z, was taken here as an example, in the case that the reconstructed

delayed map was built with other variablex,, ory,, the methodology would be the same as
the one presented here. The only di erence would be the shape betsafe set obtained and

possibly the minimum ratio up= ¢ achieved, since this depends on the embedded variable.

. FUTURE WORK

The main goal of this work is to show that partial control can also bapplied in the case
of delay-coordinate maps. The chaotic maps considered here ame and three-dimensional,
in order to obtain two and three-dimensional delayed maps. The gosi to show clearly
the control scheme proposed, but there is no restriction to applthis scheme to higher

dimensional maps. We observe in general that the higher the maxiimayapunov exponent
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is, the smaller the ratioup= ( necessary to control the trajectories.

The connection between time series and delay-coordinates mapgaated from an ap-
propriate embedding, allows many di erent combinations regardinghie constraints of the
experiment. For example, the evolution of the state of the systemwan be taken from the
measure of one variable, everl iterations and the analytical expression of this evolution in
terms of the delays is not always possible. Another scenario couldsarif the disturbance
present in the map appears in a non additive way or mixed among thenables and the
parameters. In this sense, there is still much room to continue imgving the control method
and develop new approaches to deal with more general problemsenehchaos and noise are

present.

IV. CONCLUSIONS

In this work, we have shown how to apply the partial control methd to di erent delay-
coordinate nonlinear maps with chaotic behaviour and a ected by redom disturbances. The
aim of the control scheme presented here was to keep the chadtajectories in a desirable
region of the phase space, applying small corrections in the obsdnes of the system. The
novelty introduced here is that, it is possible to apply the partial cotmol method with the
only knowledge and control of one variable. To achieve this goal weave modied the
Sculpting Algorithm in order to nd safe sets for this kind of models

The three examples presented here, the two-dimensional cubic pnahe standard map
and the three-dimensional hyperchaotic Henon map, were consigkd in the chaotic regime
and with some disturbances a ecting them. By applying a smaller cortl u, < o, we
have shown that it is possible to keep the trajectories within a desioée region of the phase
space. In this sense we want to recall that the desirable regiondested here to maintain
the trajectories were only examples, and many other choices aresgible depending on our
control convenience. We have also applied for the rst time the paal control method to
a hyperchaotic map. Another interesting result of this work is the yhamics of a partially
controlled Hamiltonian system. As we have shown it covers the wholafs set. This is a
fundamental di erence with the dissipative case.

Finally, although we consider here mathematical models to expredsetmaps, we believe

that the method can be applied in the same way to delay-coordinateaps built from ex-
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perimental time series. That would be the next step in the developme of this control

method.
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