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Transient chaos is a characteristic behaviour in
nonlinear dynamics where trajectories in a certain
region of phase space behave chaotically for a while,
before escaping to an external attractor. In some
situations, the escapes are highly undesirable, so that
it would be necessary to avoid such a situation. In
this paper, we apply a control method known as
partial control that allows one to prevent the escapes
of the trajectories to the external attractors, keeping
the trajectories in the chaotic region forever. We also
show, for the first time, the application of this method
in three dimensions, which is the major step forward
in this work. To illustrate how the method works,
we have chosen the Lorenz system for a choice
of parameters where transient chaos appears, as a
paradigmatic example in nonlinear dynamics. We
analyse three quite different ways to implement the
method. First, we apply this method by building an
one-dimensional map using the successive maxima
of one of the variables. Next, we implement it by
building a two-dimensional map through a Poincaré
section. Finally, we built a three-dimensional map,
which has the advantage of using a fixed time interval
between application of the control, which can be
useful for practical applications.

This article is part of the themed issue ‘Horizons of
cybernetical physics’.

1. Introduction
Traditionally, the aim of classical control methods
in chaotic systems has been to lock the dynamics
into a specific steady state or periodic orbit (for

2017 The Author(s) Published by the Royal Society. All rights reserved.
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instance [1–3]). But there has arisen a need for other approaches because there have appeared
many situations where chaos could be a powerful attribute. In mechanics, for example, chaos
helps prevent undesirable resonances [4]. In engineering, the thermal pulse combustor is more
efficient in the chaotic regime [5]. In living organisms, chaotic dynamics in vital functions can
make the difference between health and disease [6]. In biology, it has been suggested that the
disappearance of chaos may be the signal of pathological behaviour [7]. In all these cases, chaos
is a desirable property that is worth preserving.

However, sometimes the chaotic behaviour is only transient in nature, and it is necessary to
apply external perturbations to keep trajectories in the transient chaotic regime. Transient chaos is
a characteristic dynamical behaviour that occurs in a certain region of phase space, where chaotic
orbits exist for a while, before escaping to an external attractor. This kind of behaviour can be
found in a broad variety of systems like the periodically driven CO2 laser [8], voltage collapse in
electrical power systems [9], or the Mcann–Yodzis ecological model [10], among many others.

From a topological point of view, transient chaos is caused by the presence of a chaotic saddle
in phase space. A chaotic saddle can arise as a parameter is varied, when a chaotic attractor
collides with the boundary of its own basin of attraction, causing a boundary crisis. Then the
chaotic attractor disappears, allowing the trajectories to escape to an external attractor. In many
situations, the external attractor may be an undesirable dynamical state. For example, in the
context of ecology [11], the escape may result in the extinction of some species, while in the cancer
model described in [12], the dynamics evolves towards a state where an undesirable growth of
tumour cells occurs.

With the aim of avoiding the undesirable escapes, different control methods have been
proposed in the literature [9,13–15]. These methods have been mainly designed to be applied
in deterministic systems. However, when we are implementing some control method in a real
system, the presence of disturbances may be unavoidable and must be considered, especially
when it is necessary to keep the control as small as possible. Methods that perform well in systems
in the absence of disturbances can fail dramatically when disturbances appear. For this reason, it is
reasonable to consider a term, which we call disturbance, that encloses all the uncertainty affecting
the dynamics of the system, like modelling mismatches, finite precision in the measure of initial
conditions or even systematic or random external disturbances.

To reduce the amount of control necessary to avoid escapes in a transient chaotic system in
the presence of disturbances, a control method called partial control has been proposed in [16–18].
After having developed our method, we have found that the same term ‘partial control’ has also
been used in the literature with a different meaning [19,20]. In these cases, the goal is to stabilize
a part or the whole of certain system’s states to their equilibria. One of the goals of our partial
control method is to avoid a particular dynamical situation in the presence of a disturbance by
using a smaller amount of control. Owing to the presence of the disturbance, it is not possible
to guide the trajectory to an specific target. We can only keep the trajectory in some region of
phase space, and that is why we call it partial control. This method is based on finding certain set
in the phase space, which allows the escape of the trajectories to be avoided. Indeed the control
idea, based on controlled set invariance, is pretty standard [9,21–24]. This method considers that
the trajectories are affected by a bounded disturbance, and then a bounded control is applied.
Both ideas, the control constraint and the application after a perturbation, are not new in the
literature (e.g. [25–29]). Nevertheless, the use of sets to control transient chaotic systems affected
by disturbances remains unexplored until now. The shape of the invariant sets play an important
role in the dynamics of the controlled system [21,30]. This situation is even stronger in the case
of partial control, where the invariant set can be rather complex, and it is only possible to find it
using a numerical algorithm [17]. In figure 1, an example of a set computed for the Lorenz system
is shown. The remarkable features of this method is that is able to use a control smaller than the
disturbances affecting the system. In addition, the partially controlled dynamics remains chaotic,
preserving the natural dynamics of the system. The method was successfully applied to several
paradigmatic systems like the Hénon map and the Duffing oscillator [17], as well as other models
in the context of ecology, cancer dynamics or economy [11,12,31].
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Figure 1. Example of the set needed to partially control the Lorenz system. The figure shows an example of a set in the
phase space computed for the partially controlled Lorenz system in the transient chaotic regime. The blue set represents
the points of the phase space that satisfy the control condition defined by the partial control method. The red set is a
subset of the blue set, and represents the asymptotic region where the controlled dynamics converges. (Online version in
colour.)

The partial control method is applied to maps, so that when we want to apply it to
ordinary differential equations, a suitable time discretization of the continuous dynamics is
needed to obtain a discrete time map. There exists a wide literature in nonlinear dynamics
where the control is applied in a discrete way to continuous systems to suppress a chaotic
behaviour. For example, Spano and co-workers [32,33] describe two different experimental
set-ups, where a continuous system is controlled using a discrete-time controller. Different
discretization techniques are possible, as, for example, cutting the flow with a Poincaré section,
or taking successive maxima (or minima) of the time series of a certain variable. Alternatively,
it could also be useful in applying the control at certain predefined values of time, as in the
case of medical treatments based on periodic interventions. In this sense, we propose a way
to build this kind of map using a time-discretization technique. With this approach, it will be
possible to control the system with a fixed time interval, which can be an advantage in many
real applications.

With the aim of showing how this method works in a flow affected by some disturbance, we
have chosen the paradigmatic Lorenz system for a choice of parameters where transient chaos
appears and escapes occur. To apply the control method, we consider three different ways to
discretize the dynamics of the flow taking into account how the disturbance in the flow appears
in the map. First, a one-dimensional (1D) map is built taking successive maxima of one of the
variables. Next, a two-dimensional (2D) map is obtained from a Poincaré section. Finally, we
present the novel three-dimensional (3D) map built from a time-discretization of the flow, which is
the most important result of this work. In all these cases, we show how the partial control method
is implemented (the codes are available at http://www.fisica.urjc.es/physics/partialcontrol for
the software for partial control). The procedure considered here can be applied in a similar way to
a wide variety of systems found in the literature, where the goal is to avoid the escapes associated
with a transient chaotic dynamics.

The structure of the paper is as follows. Section 2 is devoted to a general description of the
partial control method. In §3, we apply the method to the Lorenz system, demonstrating the
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application of partial control in dimensions 1, 2 and 3 (paying special attention to the novel 3D
case) and highlighting the pros and cons of the extra dimensions. Finally, some conclusions are
drawn in §4.

2. A general description of the partial control method
The partial control method is a recently developed control strategy for preventing escapes
associated with a transient chaotic region in systems affected by disturbances. It is particulary
appropriate when it is desirable to keep the magnitude of the control small.

The method is based on the existence of certain sets, known as safe sets, which are used for
steering the trajectory with small controls so that escapes can be avoided. In addition, the chaotic
behaviour of the dynamics is preserved. This control method is applied on maps, so, in the case of
flows affected by disturbances, it is necessary to previously discretize the dynamics. We consider
here that the discrete dynamics can be modelled as qn+1 = f (qn) + ξn, where ξn is an additive term
representing the disturbance, which we assume to be bounded by some ξ0. For the controller, the
observable is [f (qn) + ξn]. The controller cannot measure f (qn) or ξn separately in the real-time
application of the control.

In the partial control method, the control variables are the same variables of the system. But
we do not have a full control of what happens with those variables. We assume that we only
apply a discrete control every �t. To relate the control in the map with the control in the physical
continuous time model, we assume that the control is applied almost instantly in the flow, that
is, we assume that the time spent to perturb the trajectory is much lower than the typical time
variation of the dynamics.

The control scheme is qn+1 = f (qn) + ξn + un, where un represents the applied control that we
also consider to be bounded by some u0. One of the main achievements of this method is the
relationship between the value of disturbance ξ0 and the value of control u0. If we have u0 > ξ0,
it would be trivial to have the control overpower the disturbance. However, our goal is not to
determine the trajectory, but only to prevent the escapes, and, surprisingly, it is possible by using
u0 < ξ0, which is rather counterintuitive.

To apply the method, we initially have to identify a region Q in phase space with transient
chaos. Trajectories in Q follow the chaotic dynamics and eventually escape from Q to an external
attractor. The goal is to keep the dynamics qn+1 = f (qn) + ξn within the region Q, and the partially
controlled trajectories must satisfy the condition ξ0 > u0 ≥ |u| > 0. On the left side of figure 2, we
display an example of the dynamics in the region Q0 = Q. Some points may need a big control to
return to Q0, and therefore we remove them to preserve only the set of points that need only a
small control bigger than some selected u0. Following this idea, it is possible to numerically find
a limiting set Q∞ ⊂ Q, where all the qn can be kept. In a formal way, we will say that Q∞ is a
safe set for the specified ξ0 and u0, if for every q ∈ Q∞ and any ξ where |ξ | ≤ ξ0, there is a u with
|u| ≤ u0 such that f (q) + ξ + u ∈ Q∞. The control un is chosen with the knowledge of f (qn) + ξn,
and applied to place the trajectory again in the set Q∞. We say that trajectories found under
these conditions are admissible trajectories. Sometimes, the set Q∞ can consist of many components,
while others is a connected set like the right side of figure 2, where we also have shown a partially
controlled trajectory.

One of the advantages of this method is that the set Q∞ can be determined computationally
following an iterative process. The set Q is represented by a grid stored in a computer. Beginning
with the region Q0 = Q, in the first iteration we remove the grid points q ∈ Q0 for which there are
ξ with |ξ | ≤ ξ0 such that f (q) + ξ cannot be moved back inside Q0 using a u for which |u| ≤ u0.
As a result of this first pruning, a new region Q1 ⊂ Q0 is obtained. Applying the same process
to Q1, we obtain a smaller set Q2 ⊂ Q1 ⊂ Q0. Repeating this process until it converges, the final
set denoted Q∞ is found. This set is known as the safe set. Based on this idea, we create an
algorithm that we called the sculpting algorithm [17], for computing the successive regions Qn

until the safe set is finally found. We illustrate the procedure of finding the safe set in figure 3.
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Figure 2. Dynamics in Q0 and Q∞. The left side shows an example of a region Q0 (in blue) in which we want to keep the
dynamics described by qn+1 = f (qn) + ξn + un. We say that |ξn| ≤ ξ0 is a bounded disturbance affecting themap, and un is
the control chosen so that qn+1 is again inQ0. To apply the control, the controller only needs tomeasure the state of the disturbed
system, that is [f (qn) + ξn]. The knowledge of f (qn) or ξn individually is not required. The right side of the figure shows the
region Q∞ ⊂ Q0 (in blue), called a safe set, where each xn ∈ Q∞ has xn+1 ∈ Q∞ for some control |un| ≤ u0, which is chosen
depending on ξn. Note that the removed region does not satisfy |un| ≤ u0. (Online version in colour.)
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f (q) Œ(Qi + u0 – x0)

Qi +1Qi + u0 – x0Qi + u0Qi

Figure3. Graphical process usedby the sculptingalgorithmtoobtain the safe set. Thedenoted setQi is fattenedby the thickness
u0. The fattened set is displayed in red. Then, the new set is shrunk or contracted by a distance ξ0, obtaining the set denoted
Qi + u0 − ξ0 (in green). Finally, we remove the grid points q ∈ Qi whose image f (q) falls outside Qi + u0 − ξ0. Note that
Qi+1 ⊂ Qi . (Online version in colour.)

We are given the bound u0 and ξ0 and the region Q0 = Q. The ith step can be summarized as
follows:

(1) Fatten the set Qi by u0, obtaining the set denoted Qi + u0.
(2) Shrink the set Qi + u0 by ξ0, obtaining the set denoted Qi + u0 − ξ0.
(3) Let Qi+1 be the points q of Qi, for which f (q) is inside the set denoted Qi + u0 − ξ0.
(4) Return to step 1, unless Qi+1 = Qi, in which case we set Q∞ = Qi. We call this final region,

the safe set. Note that if the chosen u0 is too small, then Q∞ may be the empty set and a
bigger value of u0 must be selected.

To implement the algorithm, we need to choose a grid of points in which we represent the set
Qi. As we remove points from the grid representation of Qi, the process eventually stops when
Qi+1 = Qi for some i, and we write Q∞ = Qi for that i. Owing to the complex shape of the chaotic
saddle underlying the chaotic dynamics, the derivation of a rigorous proof of the convergence of
the algorithm would be extremely difficult. However, we can show in a very intuitive way that the
algorithm converges in a finite number of steps to a safe set. To find the safe set, we begin with a
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grid of points covering Q which contains a finite number of points. Then, the sculpting algorithm
removes in each iteration the points that do not satisfy the control condition. As a result, subsets
Qn ⊂ · · · Q2 ⊂ Q1 ⊂ Q are obtained. We iterate this process until Qn+1 = Qn, being Qn the safe set.
Therefore, the finite number of initial points of Q ensures that the iterative process converges to a
safe set, if it exists, in a finite number of steps.

Finally, it is important to mention the influence of the grid resolution. The finite resolution of
the grid implies a certain imprecision in obtaining the safe set. If we call rj the grid resolution
spacing in each dimension, the total error (the maximum distance to the nearest grid point) will

be
√∑

(rj/2)2. For example, if we have a 2D grid with resolution rx = ry = 0.001, the error in

the representation of a point qn will be 0.001/
√

2. For a good precision in the computation, we
recommend here to take a grid resolution 10 times smaller than the magnitude of the control u0.
With this resolution, the shape of the safe set usually remains practically unchanged with respect
to the safe sets obtained with higher resolution. This practical recommendation gives a relative
error in the control of 5%, that is, when we are applying control we will have to put only a 5%
more of control in the worst cases. The increase of the resolution grid improves the precision, but
the computational time has a polynomial growth with the dimension of the map, so there is a
trade-off between the precision and the computational cost.

3. Avoiding escapes in the Lorenz system
To describe how the method can be applied to a flow affected by disturbances, we have chosen the
Lorenz system [34], which is one of the best-known models in nonlinear dynamics. This system is
a flow that describes a simplified model of atmospheric convection. The model consists of three
ordinary differential equations:

ẋ = −σx + σy,

ẏ = −xz + rx − y,

and ż = xy − bz.

⎫⎪⎪⎬
⎪⎪⎭

(3.1)

Depending on the parameter values r, σ and b, the system can exhibit different dynamical
behaviours, either periodic solutions, chaotic attractors or even transient chaos. Fixing σ = 10,
b = 8/3, transient chaos can be found in the interval r ∈ [13.93, 24.06] as described in [35,36]. For
our simulations, we have chosen the value r = 20.0. In this regime, as we show in figure 4a, there
are transient chaotic orbits that eventually decay towards one of the two point attractors

C+ = (
√

b(r − 1),
√

b(r − 1), r − 1) ≈ (7.12, 7.12, 19)

and
C− = (−

√
b(r − 1), −

√
b(r − 1), r − 1) ≈ (−7.12, −7.12, 19),

which physically represent a steady rotation of a fluid flow: one clockwise and the other
counterclockwise. Without intervention, transient chaotic trajectories will escape towards these
point attractors.

To make this system more realistic, we have added disturbances. The source of the
disturbances in a chaotic flow may be diverse, as for example continuous or discrete noise
affecting the dynamics, mismatches of the model equations from reality, or the finite precision
in the measurement of the state of the system. This last possibility is especially relevant in chaotic
systems since uncertainty grows exponentially with time. In figure 4b, we show an example of
the Lorenz flow affected by some disturbances, where the trajectory eventually spirals to the C+
attractor. Our goal here is to apply the partial control method to avoid having trajectories falling
to the attractors C+ or C− and sustaining them in the transient chaotic regime.

Since the Lorenz system is a flow, different maps can be built, depending on our goals. One
important consideration about the application of the method, is how we want to apply the control.
One way is to perturb only certain variables of the system. Another possibility is to apply the
control only in certain regions of phase space. Alternatively, we can also apply the control at
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Figure 4. Dynamics of the Lorenz system. We select the transient chaotic regime with σ = 10, b= 8/3 and r = 20. (a) The
trajectory is deterministic and (b) the trajectory is affected by some disturbances. The disturbances here were enlarged in order
to help the eye. Almost all trajectories eventually spiral to one of the two attractors (C+ or C−). Here both trajectories spiral
to C+. (Online version in colour.)
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Figure 5. Possible trajectories. This is the same situation as in figure 4. A map constructed taking successive maxima of z, with
the notation Zn. In red, several trajectories are affected by some small disturbances along the trajectory, all of them starting
in the same initial condition. The different trajectories spread out until they reach the next maximum Zn+1. Considering the
dispersion width in the values of Zn+1 as 2ξ0, the bound of the effective disturbance affecting the map is±ξ0. (Online version
in colour.)

regular times, independently of the state of the system. In all cases, it is important to analyse how
the disturbances arise in the map constructed from the flow.

The upper bound of the disturbances in the discrete map could be estimated in an experimental
set-up, measuring the maximum dispersion of an ensemble of trajectories with the same initial
condition for a particular Poincaré section (2D case) or stroboscopic section (in the 3D case).
This procedure could be repeated for several initial conditions taking as upper bound of the
disturbances the maximum value of the dispersion found for all the initial conditions tested. This
upper bound is the only requirement needed to apply the sculpting algorithm to compute the
safe set.

For example, in figure 5, we follow Lorenz and discretize the flow by taking the consecutive
maxima of the variable z, then we obtain a 1D map. We write Zn for the successive maximum z
value. In red, we represent different trajectories affected by different disturbances starting from
Zn. As a consequence, the trajectories spread out to yield a dispersion width in Zn+1. We can
estimate the upper bound of the disturbance ξ0 in the map, as half of the dispersion width. The
dynamics in the map will be Zn+1 = f (Zn) + ξn with |ξn| ≤ ξ0. For systems of higher dimensions,
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Figure 6. The 1D safe set. The black curve is the 1D map built with the successive maxima of z. We take as initial set Q0 (upper
segment in blue) the regionwhere transient chaos occurs. Themap is affectedbydisturbanceswith anupper boundξ0 = 0.080,
while we choose the upper bound of the control as u0 = 0.055 (the bounds are the width of the bars displayed in the upper left
side). The figure shows the successive steps computed by the sculpting algorithm, from an initial region Q0 until it converges to
the subset Q4 = Q∞ ⊂ Q0. We use a grid of 4000 points in the interval zn ∈ [26.8, 30.8], which corresponds to a resolution of
0.001. (Online version in colour.)

the disturbance in the map can be estimated in the same way. To do that, we have to take every
point of the grid and analyse how is the dispersion of the possible trajectories when they return
to the map. After that, we take ξ0 as the maximum dispersion observed, recalling that we are
assuming bounded disturbances in the dynamics.

However, we have found some difficulties with the Lorenz system. If the noise is added in a
continuous way, the noisy trajectories can spread out too much for certain initial conditions, even
in cases of a tiny noise. In this sense, we are working on upgrading our controlled scheme to deal
with continuous noise. Here, we only consider the discrete noise case where the disturbance is
added at discrete times. For example, in the 2D map case discussed in §3b, the map is built with
a Poincaré surface and the disturbance term is added every time that the trajectory crosses the
surface. This situation can be found experimentally, for example, when the measurement of the
state of the system imply a perturbation of it, so we have an inherent disturbance in the process,
or for example when the continuous dynamics is affected by an abrupt discrete perturbation.

Owing to the several possibilities for implementing the method in a flow, we describe in the
next section three different ways by using a 1D, 2D and 3D map, and discussing the main pros
and cons of each choice. We assume in all of them that the upper bound of the disturbances in the
map have been previously measured, by using the method described above.

(a) One-dimensional map
As shown by Lorenz [34], a 1D map for the Lorenz system, can be created by taking the
consecutive maxima of the variable z. When plotting the pairs (zn, zn+1), one gets (approximately)
a function f where zn+1 ≈ f (zn) (figure 6). This is only possible because the sets are very thin.
Knowing a local maximum of z is Z, allows one to estimate |x| and |y| with considerable precision.
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Figure 7. Time series of the variable z for the Lorenz system with r = 20. The figure shows a comparison between an
uncontrolled trajectory that escapes from chaos (red line) and a partially controlled trajectory (black line). Starting with the
same initial condition, the uncontrolled trajectory eventually decays to C+ or C−, which physically means a steady rotation of
the fluid flow. On the other hand, the partially controlled trajectory is maintained in the chaotic transient regime, that is the
rotation of the fluid flow remains chaotic forever. (Online version in colour.)

For this map, transient chaos can be observed in the interval zn ∈ [27.3, 30.7], so we have chosen
this interval as the set Q0. We have taken ξ0 = 0.080. If the control bound u0 is chosen too small,
there will be no safe set, and it will be impossible to prevent escapes. In this case, we have taken
as the control bound u0 = 0.055 (u0 < ξ0), which is approximately the minimum value for which
a safe set exists. Then, we have obtained the safe set by using the recursive sculpting algorithm.
In figure 6, we can see how the algorithm sculpts the initial region Q0 until it finds Q4 where it
converges, so Q4 = Q∞ is the safe set. For this computation, we have used a grid of 4000 points in
the interval zn ∈ [26.8, 30.8], so the grid resolution is 0.001.

The safe set computed ensures for any starting point qn in the safe set and any allowable ξn,
there is a un that puts f (qn) + ξn + un back in the safe set. This is true for the map; however, the
control is applied in the phase space so we must take into account of the fact that as each local
maximum of z is described by three coordinates (xm, ym, zm), the total distance to the safe set

is d =
√

(xm − xmsafe)2 + (ym − ymsafe)2 + (zm − zmsafe)2, where (xmsafe, ymsafe, zmsafe) is the closest
point belonging to the safe set. In figure 7, we show a controlled time series of the z variable in
contrast with an uncontrolled trajectory. We can see that chaos is sustained by applying small
perturbations in the maxima of the variable z.

The main advantage of this 1D approach is that the computation of the safe set is easy and fast.
This kind of map is useful when the disturbed trajectories mainly spread out along the expanding
direction of the chaotic saddle, as occurs in the case of stochastic noise or uncertainties in the
application of the controls. See, for example, in [11], where an ecological model of three species
was studied. In that case, it was possible to construct a map of the form (xi, yi, zi), where y and z
kept constant, and only x changed after one iteration of the map. That kind of situations allows
the control of system while perturbing only one of the variables.

(b) Two-dimensional map
In the case of 3D flows, one can build a discrete 2D map taking a Poincaré or surface section that
intersects the flow. For our purpose, we have chosen the plane z = 19 with the ranges x ∈ [−3, 3]
and y ∈ [−3, 3], as shown in figure 8. The trajectories that cross this plane are in the transient
chaotic regime, while the attractors C+ = (7.12, 7.12, 19) and C− = (−7.12, −7.12, 19) that we want
to avoid are situated outside this plane (see the location in figure 8). For this reason, we have
taken as Q = Q0, the square x ∈ [−3, 3] and y ∈ [−3, 3] in the plane z = 19. Then we have used
the sculpting algorithm to find the safe set Q∞ ⊂ Q, designed to avoid the eventually decay to
the attractors.
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Figure 8. The Lorenz systemwith r = 20 (transient chaos). The figure shows an uncontrolled trajectory in phase space crossing
a square with x ∈ [−3, 3] and y ∈ [−3, 3] in the plane z = 19. To built the map, we use a grid of initial conditions in the
plane, and evaluate the images of the trajectories when they cross again the plane. The goal of the control will be to keep the
trajectories in this plane, avoiding the escape to one of the attractors C+ or C−, placed outside. (Online version in colour.)
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Figure 9. The 2D safe set. The safe set obtained using the map built with the plane displayed in figure 8. We show in blue the
computed safe set Q∞ for ξ0 = 0.09 and u0 = 0.06 (u0 < ξ0). The grid size used is 1201 × 1201 points. The radius of the balls
in the lower left side indicates the bounds of the disturbance, ξ0 = 0.09 (green) and the control u0 = 0.06 (yellow). (Online
version in colour.)

As an example, we have assumed that the map is affected by some disturbances with upper
bound ξ0 = 0.09. Applying the sculpting algorithm, we have found the safe set for the minimum
possible value of the control, that is u0 = 0.06 (u0 < ξ0). In figure 9, the resultant safe set is
displayed. A partially controlled trajectory is represented in figure 10, where we have also shown
the safe set in phase space in order to see how it is used to control the system. Note that, we are
able to avoid the attractors, applying only small perturbations in the plane. A zoom of this region
is shown in figure 11. The computation was carried out taking a grid size of 1201 × 1201 points,
(grid resolution is 0.005 in both variables x and y).
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Figure 10. A partially controlled trajectory. Here,we see a partially controlled trajectory in phase space for case in figure 9. Each
time that the trajectory crosses the safe set plane (placed in z = 19), the control is applied pushing the trajectory onto the set
in figure 9 avoiding the escape from chaos. In addition, the partially controlled trajectory remains chaotic. (Online version in
colour.)

z = 19

Figure 11. Detailed viewed of a partially controlled trajectory. Here, the situation is the same as in figures 9 and 10. The
figure shows a zoom of the figure 10, centred in the safe set where the control is applied. Small controls un are applied
when crossing the plane z = 19 to force the trajectories (in black) to pass through the safe set (in blue). (Online version in
colour.)

When a map comes from a Poincaré cross section, one can deal with systems where all the
variables are affected by some bounded disturbance. In addition, as opposed to the 1D map,
where we have to act on the x, y and z variables to control the system, the control in the 2D map
is only applied in the variables x and y, since z is constant. This can be an advantage in systems
where it is difficult or expensive to apply the control in each variable.

(c) Three-dimensional map
The 1D approach as well as the 2D approach, have the disadvantage of having to track the
trajectory to know when it passes through the control region, where we apply the control
corrections. Another strategy is to put the focus on the time instead of the variables. In this
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Figure 12. A choice of 3D setQ. The 3D setQ is the cube x ∈ [−20, 20], y ∈ [−20, 20], z ∈ [0, 40] except that the balls of radius
4, centred in C+ = (7.12, 7.12, 19) and C− = (−7.12,−7.12, 19) are removed from Q. We want trajectories to stay in Q and not
fall to these attractors. A trajectory is plotted to show the chaotic transient behaviour in this region. (Online version in colour.)

way, it is possible to apply the partial control method using a time discretization of the Lorenz
system, which allows us to obtain a 3D discrete map. With this kind of map, it is possible to
avoid the escapes from chaos by applying the control with a fixed time interval, which can be
a useful practice in many situations. The 3D map is obtained from the 3D flow by taking a
suitable time interval �t between the current state of the system and the future state, that is,
x(t0), y(t0), z(t0) → x(t0 + �t), y(t0 + �t), z(t0 + �t). By computing the time-�t image of each point
of a 3D grid that cover the phase space, we can obtain the 3D map.

The choice of �t is important, since it is related with the topology of the map obtained. If �t is
too small no safe sets exist (given u0 < ξ0), while for a sufficiently large time interval, the safe set
appears. The topological explanation for this is that the flow is acting like a pastry transformation
which takes some time to be completed. Once this time is reached, the safe set appears. For our
Lorenz system, there are safe sets for values of �t ≥ 1.2.

For a 3D example, we take the domain with x ∈ [−20, 20], y ∈ [−20, 20], z ∈ [0, 40], with a grid
size of 401 × 401 × 401, so the grid resolution is 0.1 for each variable. In this region, there are
transient chaotic trajectories, which eventually decay to the attractors C+ = (7.12, 7.12, 19) and
C− = (−7.12, −7.12, 19). As we want to avoid C+ and C−, balls centred in these attractors are
removed. See the region Q and a transient chaotic trajectory in figure 12. To obtain the map, we
have computed the image of each point of Q with �t = 1.2. Then, as an example, we take the value
ξ0 = 1.5 and u0 = 1.0 (note u0 < ξ0). Using the sculpting algorithm, we obtain the safe set shown
in figure 13.

To describe the controlled dynamics in the 3D map, we write qn for the controlled trajectory
at time n�t. To obtain a particular trajectory, we choose ξn at random with |ξn| ≤ ξ0. Then we
choose some un, which place qn+1 = qn + ξn + un in the safe set. In each case, ξn represents the
disturbance accumulated by the trajectory in the time interval �t, while the control is always
applied at a discrete time. Note that the requirement |un| ≤ u0 allows for a flexible control, since
for most iterations there is more than one point belonging to the safe set which can be reached
without exceeding the upper control bound u0. In this case, we apply the minimum control, which
is almost always unique.

One interesting feature of the partial control method is that the controlled trajectories converge
towards a certain region of the safe set, which is called the asymptotic safe set (figures 13 and 14).
Controlled trajectories do not leave the asymptotic safe set once they reach it (unless the control
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Figure 13. The 3D safe set. We show in blue the 3D safe set Q∞ for figure 12, obtained after applying the sculpting algorithm.
We set �t = 1.2, ξ0 = 1.5 (ξ0 = radius of the green ball) and u0 = 1.0 (u0 = radius of yellow ball). We show in red the
asymptotic safe set which is a subset of the safe set. This is the region in which the controlled trajectories eventually lie. (Online
version in colour.)
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Figure 14. The asymptotic safe set. The situation as in figure 13. We show only the asymptotic safe set. Partially controlled
trajectories converge rapidly to this region. (Online version in colour.)

is turned off). Once the dynamics converges, it is sufficient to use the asymptotic safe set to
control the trajectories. In figure 15, a partially controlled trajectory is displayed. The controls,
represented as yellow segments distributed along the trajectory, are applied every �t = 1.2. We
show this fact with a zoom in figure 16. As a result, the trajectories never fall into the attractors
C+ or C−, keeping the dynamics in the chaotic region forever.

As we have mentioned, the safe set appears for values of �t ≥ 1.2, so it is possible to adapt
the control frequency to our specific requirements, taking other �t values. Figure 17 shows the
asymptotic safe set for �t = 1.8, and with ξ0 and u0 unchanged. With this set, we could control
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Figure 15. Asymptotic safe set with a partially controlled trajectory. The situation is the same as in figures 13 and 14. Here, we
display a cut-away section of the asymptotic safe set in order to see a partially controlled trajectory (with�t = 1.2) displayed
in black. The controls (yellow segments inserted in the trajectory) are applied every�t = 1.2. As a result, the trajectory is kept
in the chaotic region and the attractors C+ and C− are avoided. (Online version in colour.)

Figure 16. A detailed view of figure 15. The figure is a zoom in on the small cube displayed in figure 15. Only few lines are
displayed for a better visualization. The controls (yellow segments) are applied to move the trajectories (in black) into the
asymptotic safe set (in red). (Online version in colour.)

the system applying a control every �t = 1.8 (figure 18) instead of �t = 1.2 as in the previous case.
Which choice of �t, 1.2 or 1.8 is better to minimize the control? It depends on how the disturbances
affect the trajectories. For example, it is common in most scenarios that the cumulative effect of
disturbances grows exponentially with time due to chaos, and therefore the needed u0 increases
as well [37], so it is a question of balance between the suitable time interval and the disturbance
arising in the map.
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Figure 17. The asymptotic safe set computed for�t = 1.8. To compute this set,wehave takenξ0 = 1.5 (greenball) andu0 =
1.0 (yellow ball). (Online version in colour.)
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Figure 18. Partially controlled trajectories in the asymptotic safe set for�t = 1.8. Same situation as in figure 17. The figure
displays a half section of the asymptotic safe set in order to visualize a partially controlled trajectory (in black). In this case,
the controls (yellow segments inserted in the trajectory) are applied every�t = 1.8 instead of�t = 1.2 as in the previous
example. The zoom of the small cube in the centre has a similar appearance as the zoom displayed in figure 15. The resulting
partially controlled trajectory is kept in the chaotic region and the attractors C+ and C− are avoided. (Online version in colour.)

Using a discretization with fixed �t time intervals can be advantageous. This strategy can
provide a possibly useful way to control real situations. For example, in the context of medicine,
a medical treatment based on the partial control method could be applied a fixed day of the
week, which supposes an easy and convenient control relationship between the physician and the
patient. To highlight this feature, we compare in figure 19 three controlled trajectories obtained
with the respective map (3D, 2D and 1D). We have marked on the figure, the points where the
control is applied. Notice that, unlike the other maps, in the 3D map it is possible to apply the
control with a fixed time interval.
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Figure 19. Comparison of the three controlled trajectories of the z variable obtained with the 3D, 2D and 1D map, respectively.
The marks indicate the points where the control is applied. Only in the 3D case are the controls time periodic. (Online version in
colour.)

4. Conclusion
For the application of the partial control method, very few ingredients are required. We only need
a transient chaotic system with escapes, the knowledge of the upper bound of the disturbances
and an upper bound control high enough to find a safe set with the sculpting algorithm. We
believe that these conditions are rather general. In the real-time application of the control, the
controller only needs to know which is the state of the system and which is the safe set. If the
state of the system is in the safe set no control is applied, whereas if the state of the system is not
in the safe set, a small amount of control is needed to put the system inside the safe set again.

We have applied the partial control method to the Lorenz system in the presence of
disturbances, for a particular choice of parameters where it shows transient chaos. Typical
uncontrolled trajectories in this system follow a chaotic motion until they escape to one of its
two stable non-chaotic attractors. With the goal of avoiding these escapes, we have applied the
partial control method in three different ways. We have built 1D, 2D and 3D maps, and obtained
the respective safe sets with the sculpting algorithm.

Using the respective safe sets in each case, we have shown that is possible to control the
trajectories, using a small amount of control in comparison with the disturbances affecting the
system. Another remarkable feature is that the partially controlled trajectories keep the chaotic
behaviour of the original system. Since u0 < ξ0, it is impossible for the controller to completely
determine the oscillatory behaviour.

The possibility of using different kinds of maps to control the dynamics allows us flexibility.
However, in some situations, it can be convenient to apply the control in periodic time intervals.
This strategy is shown in the 3D case with a fixed time discretization �t. This novel approach,
allows us to focus the attention only in the time instead of the control region. In addition, the
frequency of these controls can be adapted depending on the specific experimental requirements,
which can suppose an easy and flexible way to control the system.

As future areas of research, we highlight the need of adapting the partial control method to
systems in the presence of continuous noise. In the current version of the method, the disturbances
are considered equally bounded and uniform for all the points of the Poincaré section or the
stroboscopic map. But that would not be the case if the noise were introduced in the system in a
continuous way. This makes us believe that there is still plenty of room to optimize this control
method in this kind of situations. Another line of research that we consider very interesting would
be the application of the partial control method to other non-autonomous systems. So far the
partial control method has been applied to the Duffing oscillator, but it would be interesting to
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test its performance in other paradigmatic non-autonomous systems. Finally, we would like to
remark that even though the partial control has already been applied to a wide variety of chaotic
systems, it is still not well understood in which kind of situations it can be applied. For that
reason, we believe that the search for the necessary conditions to apply this new control method
would be another interesting line of research.

Finally, we want to highlight the potential of this control approach. The Lorenz system was
considered here, because is a very well known and paradigmatic system in nonlinear dynamics,
and it shows in a clear way how the partial control method works. Many other dynamical systems
that show transient chaos with undesirable escapes can be controlled using a similar procedure.
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