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A new method to reduce the 
number of time delays in a network
Alexandre Wagemakers1 & Miguel A. F. Sanjuán  1,2,3

Time delays may cause dramatic changes to the dynamics of interacting oscillators. Coupled networks 
of interacting dynamical systems can have unexpected behaviours when the signal between the 
vertices are time delayed. It has been shown for a very general class of systems that the time delays can 
be rearranged as long as the total time delay over the constitutive loops of the network is conserved. 
This fact allows to reduce the number of time delays of the problem without loss of information. There 
is a theoretical lower bound for this number that can be numerically improved if the time delays are 
commensurable. Here we propose a formulation of the problem and a numerical method to even further 
reduce the number of time delays in a network.

Transmission delays are intrinsic to any process that exchanges information. While in many applications these 
time delays are small enough to be neglected, in other cases they have a critical influence on the dynamics. 
Examples of connected dynamical systems appear frequently in physics, engineering and natural sciences1–3. 
A problem of interest in the dynamical systems community is the synchronization of coupled oscillators. Some 
progress has been made to understand the synchronization of oscillators when an identical time delay is present 
on every connection of a coupled system4, 5. Otherwise, the problem of synchronization with nonidentical time 
delays spreaded accross a network is still difficult to address, yet there are succesfull attempts of analysis using a 
mean field approach of the dynamical system6, 7.

In an effort to simplify the study of such networks, a new method called componentwise time-shift transfor-
mation8 has been developed in order to transform the time delays of the network. This transformation allows to 
change the time delays on the network following some precise rules without affecting the dynamics of the system8, 9.  
The purpose of the transformation is to set n − 1 time delays to zero, being n the number of vertices of the net-
work. A brief summary is described in the next section.

Here we take on this idea and propose a new formulation of this transformation that allows to use common 
optimization algorithms to reduce the number of time delays on a network. Our results show that on networks 
with different topologies, the number of time delays that can be reduced to zero is larger that n − 1. We claim that 
the number nz of zero time delays can be larger than the lower bound nz = n − 1 in the case of a set of commensu-
rable time delays. Moreover, within our framework we can devise other optimization strategies to find a suitable 
configuration of time delays given a specific need.

The technique described in ref. 9 hinges on the observation that we can change the time delays in a network 
with a single cycle of length n without altering the dynamics as long as the sum of the time delays around the 
cycle is conserved. The authors extended the reasoning over arbitrary networks by establishing the constitutive 
constraints between the time delays in a network. In this article, we reformulate the fundamental property of con-
servation of the time delays over a loop using algebraic graph theory. The problem of finding minimal time delays 
on the network is next transformed into a linear optimization problem. We show that the simplex optimization 
algorithm10 provides a solution for the transformed time delays where at least n − 1 time delays are set to zero.

Componentwise time-shift transformation
We consider a graph G with a collection of l oriented edges ei and n vertices vi. At each vertex we have a very gen-
eral dynamical system in the form of a system of n delay differential equations
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f x x t( , ( ) ), (1)
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with = …i n1, ,  and Si is the set of indices k such that the edges ek connect the vertex j to the vertex i. We assume 
a discrete time delay τk on the edge ek.

The previous system in Eq. (1) can be transformed with a redefinition of the time delays τk without changing 
the dynamical properties of the system. We set

τ= − ∈

dy
dt

f y y t( , ( ) ), (2)
i

i i j k k Si

with the following change of variables

η= −y t x t( ) ( ) (3)i i i

τ τ η η= + −


, (4)k k s k t k( ) ( )

being ηi constants and s(k) is the source vertex of the edge k and t(k) the target vertex of the same edge. The 
authors in ref. 9 noticed that the algebraic sum of the time delay around any cycle of the network is constant for 
every choice of the time-shifts ηi. The term algebraic sum means here that, given an oriented cycle in the graph, 
the time delay associated to the edges on the cycle with the same orientation should be summed up and the time 
delays on edges with opposite direction subtracted.

Now the problem is to find the time-shifts ηi associated to each vertex for a desired configuration of time 
delays τ

k.

Graph characteristics
The topology of the graph can be described in terms of algebraic structures associated to the topology11. We first 
give some definitions to set the context of the work. We define G(V, E, A) as a directed and connected graph, 
where V is a set of n vertices and E a set of l directed edges. Before going into the details, we need to number the 
edges from 1 to l and we note τk as the time delay of the edge el.

To represent the connectivity, we define the incidence matrix ∈ ×A n l that relates the vertices to the edges. 
The elements ajk of the matrix A are expressed in the following way: ajk = 1 if the edge ek points towards the vertex 
j and ajk = −1 if the edge points outwards. All other entries are zero. All the information about the connections of 
the network is contained in this matrix. It is also possible to develop the method for multiple edges connecting 
two vertices. We restrain here the case to a maximum of two edges to represent a bidirectional connection.

If the graph is connected, or weakly connected, we can define an acyclic subgraph called spanning tree that 
connects all the vertices and have exactly n − 1 edges. This structure is important for the decomposition of the 
graph G into elementary cycles. Given a spanning tree T and an edge e not in T, there is a unique cycle in G con-
taining only edges of T and e. As a consequence, we can decompose the network into c = l − (n − 1) independent 
cycles. This decomposition can be expressed as a matrix ∈ − − ×B l n l( ( 1))  that expresses the cycle space associated 
to the tree T. First, we set the orientation of the cycle as the direction of the edge not in T. Being bjk an element of 
B, we set bjk = 1 if the edge k is in the cycle j with the same direction, and bjk = −1 if the orientations are opposite. 
All other numbers are zero. This matrix B is of special interest for our study since the sum of time delays around 
each cycle is given by a simple matrix multiplication

τ σ=B , (5)

where τ τ τ= … Τ( )l1  is the column vector of the time delay k associated to the edge ek and vT denotes the transpose 
of the vector v. The vector σ is what matters for the dynamics of the coupled system of delay differential equations. 
The time delays can be shuffled and changed into a new vector τ, but the vector σ should be constant, so that

τ τ= .


B B (6)

This is the key property of the graph that we need to explore the space of possible solutions of τ.
The last necessary step to obtain the full characterization of the system is to derive the time-shifts ηi in Eq. (3) 

that can lead us back to the time series of the original configuration of Eq. (1). These time-shifts ηj associated to 
the vertex j in the network is computed from a recursive relation on the spanning tree T 9,

τ τ η η− = −


, (7)k k s k t k( ) ( )

with s(k) the source vertex of the edge k and t(k) the target vertex of the same edge. Since the time-shifts are 
defined up to a constant, we can choose the value η1 = 0 as a reference for all the other vertices. The rest of the 
time-shifts can be obtained from the incidence matrix A restricted to the edges of the spanning tree. The columns 
of the incidence matrix contain exactly the values s(k) and t(k) for any edge k. If we partition the edges into two 
subsets of edges in and out of the spanning tree, we can rearrange the incidence matrix in two blocks:

= .A A A[ ] (8)in out
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The first matrix ∈ × −Ain
n n( 1) contains the information on the edges in the spanning tree. We also split the time 

delays in two similar sets τin and τout and we define a column vector with the time-shifts η η η= … Τ( )n1 . From the 
recursive relation given in Eq. (7), we can infer that

τ τ η− = .Τ


A (9)in in in

However, we are looking for the time-shifts η as a function of the time delays of the tree T. Notice that the matrix 
Ain has a rank n − 1 and that the vector η has n − 1 unknowns since η1 = 0. Consequently, we can construct a full 
rank square matrix ΤAr  by removing the first column of ΤAin . We define the vector η η η= …− Τ( )n2  and transform 
the last equation into:

τ τ η− = .Τ −


A (10)in in r

Now we have a linear system with a single solution:

η τ τ= − .− Τ −


A( ) ( ) (11)r in in
1

The matrices A and B in Eqs (6) and (8) are straightforward to derive and have a strong dependence to each 
other12. Notice also that the matrices Ain, Aout and B depend on the initial chosen spanning tree. We can demon-
strate that this choice does not affect the space of possible solutions that can be reached with Eq. (6). Any span-
ning tree can give us a valid basis to reconfigure the time delays in the network.

Optimization of network time delays
The main problem is stated in Eq. (6) where all the possible vectors τ are contained. We have to restrain however 
the problem to positive time delays τk to avoid complications with negative time delays. This consists of finding a 
vector τ that will minimize the sum of the time delays over the network. This problem takes naturally the form of 
a standard linear program, that is,

∑τ
τ σ

τ
=

≥







B
Minimize:

Constrained to:
0 (12)

k

k

This standard linear program can be solved with conventional techniques such as the simplex optimization algo-
rithm10. We show that the simplex method reduces the time delays of the network with at least n − 1 zero time 
delays.

Proposition 1. Using the simplex algorithm, we can guarantee that there is a feasible solution τ to the problem in 
Eq. (12) such that at least n − 1 time delays in the vector τ are set to zero.

Proof. In the simplex algorithm, there is a first search for a basic feasible solution to the problem in a 
l-dimensional space. For such a solution, the columns of the matrix B are rearranged into [D|Z] where D is an 
invertible c × c matrix and Z is a c × (n − 1) matrix. The vector τ τ τ=


( )D Z  solution to the equation τ σ=


B  can be 

decomposed into τD = D−1σ and τZ = 0 a vector with all zeros. Being n − 1 the size of the vector τZ, we have a valid 
reduction of the network with n − 1 time delays set to zero. The other part τD contains only positive time delays.□

The existence of one basic feasible solution gives us a valid reduction, however the algorithm looks further for 
an optimal solution minimizing the sum of the time delays. The solver will find a solution with nz ≥ n − 1 and a 
total sum of the time delays below or equal than the initial sum of the time delays τ∑ k. There are plenty of efficient 
implementations of the simplex algorithm to solve linear programs10, and we can obtain the reduction of the 
network in a polynomial time.

We now have all the ingredients to construct a optimized network. All we need is any spanning tree T, the 
incidence matrix A and a fundamental loop matrix B of the graph G.

Numerical experiments
The results of the optimization method may vary with the topology of the network and the statistical distribution 
of the time delays. Initially, we will focus on the effects of the topology of the network on the optimization output 
by setting identical time delays on every edge. To quantify the results of the algorithm, we have selected two rep-
resentative parameters: the ratio rz = nz/(n − 1) that represents the ratio of the number of zero time delays over 
the lower bound n − 1, and the ratio

τ
τ

= − ∑

∑
=

=

r 1 ,
(13)

s
k
l

k

k
l

k

1

1

which measures the reduction of the sum of the time delays after the optimization process. A number rs = 0 means 
that the algorithm was unable to find a lower sum of time delays, while rs = 1 happens when all the time delays 
have been reduced to zero.

To understand the role of the topology we have centered our attention on two markers: the density ρ of the 
graph and the second moment of the degree distribution 〈k2〉 as a measure of degree heterogeneity13, 14. The den-
sity of the graph is the ratio between the actual and the maximum number of edges possible for a given number 
of vertices. In average, it is equal to ρ = 〈k〉/(n − 1) where 〈k〉 is the mean vertex degree.

The influence of the degree heterogeneity of the network can be studied by interpolating a network between 
an Erdös-Rényi random network and a scale-free network15. The shape of the degree distribution can be changed 
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continuously between the two limiting cases with a single parameter α. For α = 0 we obtain a scale-free network 
with an exponent 2.8 of the power law degree distribution. When α = 1 we get a Erdös-Rényi random network with 
a probability p = 〈k〉/n to have an edge between two vertices. The second moment of the degree distribution 〈k2〉 
diverges for the scale-free network in the thermodynamic limit n → ∞. For the Erdös-Rényi random network the 
degree distribution is binomial and the variance tends to np(1 − p). So we can expect that 〈k2〉 decreases when α takes 
values from 0 to 1. The results in Fig. 1 show a clear correlation between the ratios rz, rs and the variance 〈k2〉 of the 
vertex degree. For this simulation, the network is sparse with a constant low density ρ = 0.01. The average path length 
is almost constant for all the simulation and, as we will explain later, we have ruled out the influence of the clustering 
coefficient. It seems that the heterogeneity in the degree of the vertex has an important role in the possible outcome of 
the reduction process, although the exact relationship between the three measures 〈k2〉, rz and rs is elusive.

The density ρ of the graph has also a significant influence on the measures rz and rs. To illustrate this assertion 
we will build a network with an adjustable density. Nevertheless it would be good to eliminate the influence of the 
variance 〈k2〉. Noticing that the Watts-Strogatz random graph model with a rewiring probability p and mean degree 
〈k〉 has a variance degree roughly equal to − k k p p k p(1 )2  for a small p, we can construct a network 
with an arbitrary density and almost a constant degree variance 〈k2〉. We start with a regular regular ring network 
where n vertices are coupled to the k nearest neighbors. In this case the network is symmetric and all the vertices 
have the same degree. We break this symmetry by rewiring each edge with a probability p = ε/〈k〉 leading to a var-
iance of the vertex degree approximately ε=k k p2 . This is very similar to the small-world model construc-
tion but we focus on tuning the density while keeping the variance of the vertex degree constant 〈k2〉 and very low. 
We can also assure with this construction that the graph is weakly connected. The results summarized in Fig. 2 
clearly uncover the dependence between the density and the ratios rz. On the one hand, rz is directly proportional 
to ρ and on the other hand rs and ρ seem to follow a power law functional as the log-log plot in Fig. 2(c) suggests. 
This depedence means that ρ, and consequently the mean degree 〈k〉, has relevant influence on the optimization.

Other factors such as the clustering coefficient or the average path length do not seem to have a significant 
effect on the ratios rz and rs. The clustering coefficient of a scale-free network has been tuned using a technique 
that adds triangles in the network without changing the degree distribution of the network16. While the clustering 
coefficient of the network evolves from 0 to 0.3, the ratios rz and rs remain almost unchanged. This is a counter-
intuitive result since it would have been reasonable to think that the presence of more triangles in the network 
would have brought an enhancement of the results.

The topology of the network has certainly a strong effect on the outcome of the optimization. However, the 
distribution of the time delays τk is also critical as shown in Fig. 3(a,b) where the measures rz and rs are repre-
sented as a function of the variance of the time delay distribution. The time delays have been chosen randomly in 
the discrete interval [1; Nmax] in order to control the variance στ

2 of the distribution. As this variance increases, the 
algorithm has more difficulty to find a solution with rz ≥ 1. The ratio rs also tends to diminish but it remains above 
0. In Fig. 3(c) we can see that the ratio between the variance of the time delays στ



2 after and στ
2 before the optimi-

zation is larger than 1. In general the variance of the time delay distribution will increase after optimization but it 
seems that the ratio σ στ τ



/2 2 is bounded.
When the time delays are distributed following a continuous real valued distribution, it is almost impossible to 

find a solution with nz > n − 1. The simplex method finds only the basic feasible solution nz = n − 1, which is the 
minimum number of zero time delays achievable9. If there are special relations between time delays, for example 
if they are all identical, it might be possible to reach a better solution. In the case of incommensurable real-valued 

Figure 1. Influence of the second moment of the vertex degree distribution 〈k2〉 on the optimization. The 
variance 〈k2〉 is modulated with a parameter α. The plots represent in (a) the ratio rz = nz/(n − 1), in (b) the ratio 
rs defined in Eq. (13), and in (c) the variance of the vertex degree 〈k2〉. The correlation between the variation of 
〈k2〉 and the two ratios rz and rs is clear. The simulations have been averaged over 30 networks of n = 400 vertices 
with average degree 〈k〉 = 4 for each value of α.
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time delays, such relations vanish. However, the simplex algorithm is still capable of finding a lower total sum of 
time delays, which may be of interest.

While real valued time delays are more general, integer valued time delays are very relevant when it comes to 
the numerical integration of differential equations. For the numerical algorithms involving finite and constant step 
size, the values of the time delays, that may have been issued from a continuous distribution, have to be discretized 
and rounded to the closest integer multiple of the time step. The set of continuous time delays is transformed into a 
new set o commensurable time delays that will give much better results from the point of view of the optimization.

The previous examples focus on the properties of the networks and delay distribution and do not involve any 
specific dynamical system. We present an application where a network of Kuramoto phase oscillators is coupled 
with time delays4. The phase oscillator model is a very simple abstraction of the essential properties of limit cycle 
oscillators. We can use this model to test our optimization method on a complex network of simple dynamical 
systems. The setup consists of a unidirectional Erdös-Rényi random network with average degree d, where the 
vertices represent Kuramoto oscillators with an identical intrinsic frequency ω. The edges of the network repre-
sent a time delayed interaction chosen randomly according to a statistical distribution. The coupled delay differ-
ential equation can be written as

Figure 2. Influence of the density ρ of the graph. The figure shows the effect of the density ρ = 〈k〉/(n − 1) of a 
random graph on the optimized delays results. The panels represent in (a) the ratio rz = nz/(n − 1), in (b) the variance 
of the vertex degree 〈k2〉, and (c) the ratio rs. The ratio rz is directly proportional to ρ and rs is inversely proportional 
to ρ. The simulations have been averaged over 40 realizations of a network with 70 vertices for each value of ρ.

Figure 3. Influence of the variance στ
2 of delay distribution. This plot shows the importance of the distribution 

of the time delay on the results of the algorithm. As the width of the distribution increases, the performance of 
the optimization get worse. The panels represent in (a) the ratio rz = nz/(n − 1), in (b) the ratio rs, and (c) the 
ratio between the variance of the time delays στ



2 after and στ
2 before the optimization. The simulations have 

averaged over 60 realizations of a network with n = 400 vertices with mean degree 〈k〉 = 4 for each value of στ
2.
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∑
θ

ω θ τ θ= + − −
∈

d
dt

K
d

sin t( ( ) ),
(14)

i

k S
j k i

i

where Si is the set of edges going from vertex j to the vertex i and K is the coupling strength. We distribute the time 
delays τk following a uniform distribution in the continous interval [τm, 0.5 + τm]. Notice however that since we 
integrate the equation numerically, we have to discretize this interval, as said earlier, due to the finite time step size 
of the algorithm. In order to test the validity of the reduction in a dynamical system, we use the average frequency 
of the network since this measurement is independent of the initial history of the delay differential equation17.

We let evolve the network in time and we compute the average frequency Ωi of each oscillator over a finite 
interval of time T

∫ θΩ = .

T
dt1

(15)i
T

i
0

Then we compute the average network frequency Ω in this manner

∑Ω = Ω .
n
1

(16)i
i

This last frequency is independent of the chosen initial conditions and should be the same for both the original 
network and the reduced network given by Eq. (12). In Fig. 4(a), we show an example where a network of n = 50 
oscillators has been simulated with a realization of the random time delays. The average frequency of the original 
and reduced network are consistent in both simulations showing that the asymptotic behavior is the same.

Another quantity of interest in the study of coupled oscillators is the synchronization order parameter

∑= .θ

=
r t

n
e( ) 1

(17)j

n
i t

0

( )j

This parameter can be averaged over time to characterize the state of the network with a single number

∫= .r
T

r t dt1 ( ) (18)
T

0

We cannot compare directly the order parameters of the original and reduced network since the time series are 
related through the change of variable in Eq. (3). Being θj the variables of the reduced system, we can compute the 
order parameter introducing the time-shifts ηj in the Eq. (19)

∑= .θ η

=

−


r t
n

e e( ) 1

(19)j

n
i t i

0

( )j j

Figure 4. Average network network frequency Ω and order parameter r of a coupled network of Kuramoto 
phase oscillators coupled with time delays. The curves, that are superposed in (a), represent the average network 
frequency for the original (dot markers) and reduced network (cross markers). For each dot the average 
network frequency has been computed and averaged for several initial histories of the network to avoid 
numerical artifacts caused by the integration method. Both the original and reduced network lead to the same 
asymptotic frequency. In (b), the mean value of the order parameter has been represented for the two sets of 
simulations. Here again both curves agree on the same synchronization value for the two kind of network. 
Parameters are: ω = 1, K = 0.1, τ τ τ∈ + .[ ; 0 5]k m m , n = 50, d = 4.
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Figure 4(b) represents the average order parameter r and r  for the original and reduced network for the same 
parameters as the previous example. Both results overlap almost exactly meaning that the dynamics in the 
reduced system is conserved.

The simulations have been performed with the programming language Julia18 using LightGraphs, JuMP and 
Coin-or Linear Programming (Clp) packages.

Conclusions
Reorganizing the time delays in a network does not seem to be an easy task at first sight. But once the basic mech-
anisms of time delay conservation are understood, it is possible to change the time delays and at the same time 
to conserve the dynamical properties of the network. Our formulation along with the componentwise time-shift 
transformation technique opens a way to reduce even further the time delay space. When the problem is stated in the 
form of a linear program, the simplex algorithm provides a higher number of zero time delays than the theoretical 
lower bound nz, that corresponds to the dimension of the cycle space of the network. It also finds the solution with 
the lowest sum of time delays, which can represent a reduction up to 60% of the initial sum of the time delays.

The numerical integration of coupled dynamical systems with the presence of different time delays among the 
network usually involves a high computational and storage cost. The memory usage can be reduced up to 30% with 
the optimization of the delay of the network. Another possible application is to modify the fitness function of the 
optimization algorithm such that the time delays fit a desired distribution more suitable to the problem at glance.
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