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Abstract The weak high-frequency character signal
(HCS) cannot be detected substantially by the tradi-
tional vibrational resonance (VR) theory. In this paper,
by introducing the scale transformation, the HCS in
the original system can be transformed to the low-
frequency character signal in the rescaled system. As
weknow, the two systems are equivalent and theVRcan
occur at low frequency in the rescaled system. Then,
the VR can also occur at high frequency in the original
system. We take the underdamped bistable system and
the overdamped bistable system of the Duffing oscil-
lator as examples. The method proposed in this paper
is verified by both theoretical analysis and numerical
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simulations. The results obtained by the two ways are
in good agreement. The results in this paper provide a
tool to detect the weak character signal with arbitrary
frequency in the engineering problems.
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1 Introduction

Vibrational resonance (VR) is a phenomenon show-
ing the amplification of a weak low-frequency char-
acter signal (LCS) by a high-frequency auxiliary sig-
nal (HAS) [1]. It shows many similarities to the
well-known phenomenon of stochastic resonance (SR)
[2–4], though the HAS replaces the noise. The noise
is random, but the HAS is deterministic. So that,
compared with the SR, the VR is much easier to be
controlled [5]. For this reason, the VR has attracted
much attention in the past few years. For example,
Chizhevsky andGiacomelli have investigated the effect
of the additive noise on the VR in a bistable, verti-
cal cavity laser [6–8]. They have found that the addi-
tive noise induces a gain degradation. And compared
with the SR, they have found that the VR generates
a higher signal-to-noise ratio (SNR). Deng et al. have
investigated the VR in neuron populations with dif-
ferent forms [9–11]. They have found that the opti-
mal amplitude dependents on the connection among
the neurons. Yang et al. [12–14] have studied the VR
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in a fractional-order system, and they have found that
the fractional-order damping influences the resonance
pattern. It provides another way for us to control the
weak low-frequency periodical signals in nonlinear
systems. Wang et al. made investigations on VR in
some other systems such as bistable gene transcrip-
tional regulatory system [15], excitable system [16]
and discrete neuron system [17]. They all showed good
performance. Jeevarathinam et al. [18] applied the VR
to the groundwater-dependent plant ecosystems. The
study presents a newway for us to enhance the biomass
response. Meanwhile, they have investigated the effect
of multiple time-delay on the VR [19]. Daza et al. [20]
studied the VR phenomenon in a simple time-delayed
genetic toggle switch. And they found that the delay of
the toggle switch affects the resonance strongly since
it can also induce autonomous oscillations. Coccolo
et al. [21] have shown that more energy can be har-
vested by using the VR phenomenon. And the new
way is highly controllable. Yang et al. [22] proposed
the vibrational subharmonic and superharmonic res-
onances. They show that the resonance happens at a
frequency which is not an integer multiple of the low-
frequency of the excitations.

The former researchers have carried out a lot of
investigations on the VR. However, to our knowledge,
almost all works on the VR were focused on the weak
LCS that the frequency of the character information is
usually smaller than 1 rad/s.According to the frequency
response characteristic of the vibration system, we can
know that the system response amplitude will become
very small when the excitation frequency is away from
the natural frequency of the equivalent system [23].
Meanwhile, the natural frequency of the conventional
system is usually low. So, like the classic SR, the tra-
ditional VR can deal with the LCS only. However, in
the engineering background, such as in the mechanical
fault diagnosis field, the weak fault feature frequency
usually lies in several to thousands rad/s or Hz. Based
on the traditional VR theory, this kind of weak high-
frequency character signal (HCS) cannot be detected.
Hence, it is hard to apply the VR in engineering prob-
lems. So, our main motivation lies at solving the prob-
lem of how to extend the engineering applications of
the VR.

In the SR mechanism, we have known that the
techniques such as the frequency-shifted and rescal-
ing method [24], the scale transformation method [25],
the step-varying method [26], among others, can help

us to detect theweakHCS. In this paper, the scale trans-
formation method is introduced in the study of the VR.
The paper is organized as follows. In Sect. 2, by intro-
ducing the scale transformationmethod, we investigate
the VR at high frequency in the underdamped Duffing
oscillator. Similarly, we investigate the case of the over-
damped Duffing oscillator in Sect. 3. Finally, the main
results of this paper are briefly described in the conclu-
sions section.

2 Underdamped Duffing oscillator

2.1 Theoretical formulation

Here, we investigate the VR at high frequency in the
underdamped bistable system. The normal form of the
governing equation is written as

d2x

dt2
+ 2δ

dx

dt
= ax − bx3 + A cos(2π f t) + B cos(2πFt),

(1)

where A cos(2π f t) is the weak HCS which indicates
the character information and B cos(2πFt) is the HAS
which is used to detect the weak character information,
f � 1 Hz, F � f . A and B are the amplitude of the
weak HCS and the HAS, respectively. f and F are the
frequency of the weak HCS and the HAS, respectively.
δ is the damping coefficient, and a and b are positive
real parameters.

In order to overcome the problem that the traditional
VR cannot detect the weak HCS, the scale transforma-
tion method is introduced in the following. By a scale
transformation, making x(t) = z(τ ) and τ = ct , where
c is the rescaling factor, substituting x(t) = z(τ ) and
τ = ct into Eq. (1), one obtains

d2z

dτ 2
+ 2δ

1

c

dz

dτ
= a

c2
z − b

c2
z3 + 1

c2
A cos

(
2π

f

c
τ

)

+ 1

c2
B cos

(
2π

F

c
τ

)
(2)

Through the scale transformation, the system param-
eters and the excited signals in the rescaled system
are transformed compared with the original system. As
described in the previous reference [27], to well realize
the VR, three steps are needed to be carried out. Firstly,
the amplitudes of the two signals have been decreased
to 1

c2
, so we make A and B to be multiplied by c2. Sec-

ondly, δ has been decreased to 1
c , so we make δ to be
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multiplied by c. Thirdly, to normalize Eq. (2), we make
the parameters a = b = c2. Then, one obtains

d2z

dτ 2
+ 2δ

dz

dτ
= z − z3 + A cos

(
2π

f

c
τ

)

+B cos

(
2π

F

c
τ

)
. (3)

According to the method of direct separation of slow
and fast motions [28,29], we know that an approximate
solution of Eq. (3) is written in the form z = M + N ,
where M denotes the slow motion with period c/ f and
N denotes the fast motion with period c/F . Substitut-
ing z = M + N into Eq. (3), one obtains

d2M

dτ 2
+ d2N

dτ 2
+ 2δ

dM

dτ
+ 2δ

dN

dτ
= M + N − M3 − 3M2N − 3MN 2 − N 3

+ A cos

(
2π

f

c
τ

)
+ B cos

(
2π

F

c
τ

)
. (4)

Searching the approximate solution of the fast motion
N in the following linear equation

d2N

dτ 2
= N + 2δ

dN

dτ
+ B cos

(
2π

F

c
τ

)
, (5)

then substituting the approximate solution N = AH

cos(2πFτ/c + ψ) into Eq. (5), one gets

AH = B√(
2π F

c 2π
F
c + 1

)2 + (
2δ2π F

c

)2 . (6)

Further, substituting the approximate solution N =
AH cos(2πFτ/c + ψ) into Eq. (4) and averaging all
terms in the interval [0, c/F], one obtains the slow
motion M that is governed by

d2M

dτ 2
+ 2δ

dM

dτ

=
(
1 − 3

2
AH

2
)
M − M3 + A cos

(
2π

f

c
τ

)
(7)

From Eq. (7), one obtains the stable equilibrium
points M∗. When (1 − 3AH

2/2) > 0, M∗ =
±

√(
1 − 3AH

2
2
)
; when

(
1 − 3AH

2/2
)

< 0, M∗ = 0.

Considering the deviation Y of M from M∗, substitut-
ing Y = M − M∗ into Eq. (7). There are two cases:

Firstly, (1−3AH
2/2) > 0 andM∗ =±

√(
1 − 3AH

2
2
)
,

substituting Y = M − M∗ into Eq. (7). To obtain the

response at the frequency f/c, one should solve the
following linear equation

d2Y

dτ 2
+ 2δ

dY

dτ
=

(
3AH

2 − 2
)
Y + A cos

(
2π

f

c
τ

)

(8)

Substituting the approximate solution Y = AL

cos(2π f τ/c + θ) into Eq. (8), it is easy to obtain

AL = A√(
2π f

c 2π
f
c + 3AH

2 − 2
)2 +

(
2δ2π f

c

)2 .

(9)

To evaluate the effect of theVR, the amplification factor
Q is treated as a measurement in this paper, which is
defined by Q = AL/A. Taking into account Eq. (9),
one obtains

Q= AL

A
= 1√(

2π f
c 2π

f
c +3AH

2 − 2
)2 +

(
2δ2π f

c

)2 .

(10)

Secondly, (1−3AH
2/2) < 0 and M∗ = 0. The ampli-

fication factor Q is described by

Q= AL

A
= 1√(

2π f
c 2π

f
c +

(
1−3 AH

2
2
))2+ (

2δ2π f
c

)2
(11)

The VR at a high frequency can be discussed by the
theoretical prediction in Eqs. (10) and (11).

2.2 Numerical simulations

In order to verify the accuracy of the theoretical formu-
lation, numerical simulations are carried out in this sec-
tion. In our numerical simulations, the response ampli-
tude W ( fi ) is defined as follows [22]

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Ws( fi ) = 2
rT

rT∫
0
x(t) sin(2π fi t)dt

Wc( fi ) = 2
rT

rT∫
0
x(t) cos(2π fi t)dt

W ( fi ) = √
W 2

s ( fi ) + W 2
c ( fi )

(12)
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(a)

(b)

Fig. 1 a The time series of the weak HCS; b the amplitude
spectrum of the response. The simulation parameters are A =
0.02 and f = 100

where Ws( fi ) and Wc( fi ) are the sine and cosine
Fourier components of the output at the arbitrary fre-
quency fi . Here, fi means all potential frequencies
that may be included in the output. It is because some
other frequency components besides the excitation fre-
quencies are included in the response according to the
nonlinear response theory [28]. Through Eq. (12), we
can obtain the amplitude spectrum of the response. The
period T = 1/ f and r is a large enough integer number.
Then, the amplification factor Q at the excitation low
frequency f can be described by Q = W ( f )/A. The
time series of the weak HCS is shown in Fig. 1. It is
a simple cosine signal with the simulation parameters
f = 100Hz and the A = 0.02.
Then, the weak HCS will be detected by the VR

in the rescaled system. In the rescaled system, the fre-
quency of theHAS is 1500Hz. The damping coefficient
δ is 0.1. The variable B increases from 0 to 140. The
rescaling factor c is set as 1000. Figure 2 shows that the
curve of the amplification factor Q versus the amplitude
of the HAS presents VR. The curve shows an apparent
double-resonance pattern. Meanwhile, the numerical
and the theoretical results are in close agreement. In
the curve of the numerical simulation, the maximum
amplification factor Q is 7.695 and the corresponding
amplitude B is 88. When B is set to 88, the system
output curve is shown in Fig. 3. Figure 3 shows that the
VR phenomenon is visible compared with Fig. 1.

In order to investigate the influence of the amplitude
and the frequency of the weak HCS on the VR, we plot

Fig. 2 Amplification factor Q versus the amplitude of the HAS.
The thick line is the theoretical result, while the thin line with
markers is the numerical result. The simulation parameters are
c = 1000, a = b = 106, A = 0.02, f = 100, F = 1500 and
δ = 0.1

(a)

(b)

Fig. 3 Output of the system when the VR occurs. a The time
series of the output; b the amplitude spectrum of the response.
The simulation parameters are c = 1000, a = b = 106, A =
0.02, B = 88, f = 100, F = 1500 and δ = 0.1

the curves that is the amplification factor Q versus the
amplitude of the HAS for different values of A and f .
The curves including numerical and theoretical results
are shown in Figs. 4 and 5.

Figure 4 shows that the curves of the theoretical
results do not change with the increase of A. This fact
can also be verified from Eqs. (10) and (11) that the
amplification factor Q has nothing to do with A. But
for the numerical results, with the increase of A, the
first resonance peak value decreases. And the curve of
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(a) (b)

(c) (d)

Fig. 4 Amplification factor Q versus the amplitude of the HAS
for a A = 0.02, b A = 0.03, c A = 0.04, d A = 0.05. The
bold lines are the theoretical results, while the light lines with
markers are the numerical results. The simulation parameters
are c = 1000, a = b = 106, f = 100, F = 1500 and δ = 0.1

(a) (b)

(c) (d)

Fig. 5 Amplification factor Q versus the amplitude of the HAS
fora f = 100;b f = 120; c f = 140;d f = 160.The thick lines
are the theoretical results, while the thin lines with markers are
the numerical results. The simulation parameters are c = 1000,
a = b = 106, A = 0.02, F = 1500 and δ = 0.1

the numerical simulation is away from the curve of the
theoretical formulation. This is because the method of
the direct partition of slow and fast motions is sensitive
to the excitations [30].

Figure 5 shows that with the increase of f , the
amplification factor Q decreases in the numerical and
theoretical curves. This fact can also be verified from
Eq. (10) or Eq. (11). Because the amplification factor
Q is a decreasing function of the variable f . In this fig-
ure, the numerical and theoretical results are in close
agreement, independently of the value of f .

FromFigs. 1, 2, 3, 4 and 5,we conclude that by intro-
ducing the scale transformation, the VR in the under-
damped Duffing oscillator is excellent in detecting the
weak HCS.

3 Overdamped Duffing oscillator

3.1 Theoretical formulation

In this section, we investigate the VR at high fre-
quency in the overdamped bistable system. The gov-
erning equation of the overdamped Duffing oscillator
excited by two high-frequency signals is described by

dx

dt
= ax − bx3 + A cos(2π f t) + B cos(2πFt). (13)

As in Sect. 2.1, the scale transformation is still used in
this section. Here, making x(t) = z(τ ) and τ = ct .
Substituting x(t) = z(τ ) and τ = ct into Eq. (13), one
obtains

dz

dτ
= a

c
z − b

c
z3 + 1

c
A cos

(
2π

f

c
τ

)

+1

c
B cos

(
2π

F

c
τ

)
. (14)

Through the scale transformation, a, b, A and B are
changed compared with the original. However, differ-
ent from Sect. 2.1, only two steps are needed to be
carried out. Firstly, making A and B multiplied by c.
Secondly, making a = b = c. Then, one obtains

dz

dτ
= z − z3 + A cos

(
2π

f

c
τ

)
+ B cos

(
2π

F

c
τ

)
.

(15)

Then, substituting z = M+N intoEq. (15), one obtains

dM

dτ
+ dN

dτ
= M + N − M3 − 3M2N − 3MN 2 − N 3

+ A cos

(
2π

f

c
τ

)
+ B cos

(
2π

F

c
τ

)
. (16)

Searching the approximate of the fast motion N in the
following linear equation

dN

dτ
= N + B cos

(
2π

F

c
τ

)
(17)
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and substituting the approximate solution N = AH cos(2πFτ/c+
ψ) into Eq. (17), one obtains

AH = B√
1 + (

2π F
c

)2 . (18)

Then, substituting the approximate solution N =
AH cos(2πFτ/c + ψ) into Eq. (16) and averaging all
terms in the interval [0, c/F], one obtains the slow
motion M that is governed by

dM

dτ
=

(
1 − 3

2
AH

2
)
M − M3 + A cos

(
2π

f

c
τ

)
.

(19)

From Eq. (19), one can obtain the stable equilib-
rium points M∗. When (1 − 3AH

2/2) > 0, M∗ =
±

√(
1 − 3AH

2
2
)
; when

(
1 − 3AH

2/2
)

< 0, M∗ = 0.

Considering the deviation Y of M from M∗, substitut-
ing Y = M − M∗ into Eq. (19).

Firstly,
(
1 − 3AH

2/2
)

> 0 andM∗=±
√(

1− 3AH
2

2
)
,

substituting Y = M − M∗ into Eq. (19). Just consid-
ering the response at the frequency f/c, one obtains

dY

dτ
=

(
3AH

2 − 2
)
Y + A cos

(
2π

f

c
τ

)
. (20)

Now, substituting the approximate solution Y =
AL cos (2π f τ/c + θ) into Eq. (20), we get

AL = A√(
3AH

2 − 2
)2 +

(
2π f

c

)2 . (21)

From Eq. (21), one obtains the amplification factor Q

Q = AL

A
= 1√(

3AH
2 − 2

)2 +
(
2π f

c

)2 . (22)

Secondly,
(
1 − 3AH

2/2
)

< 0 andM∗ = 0. The ampli-
fication factor Q is

Q = AL

A
= 1√(

1 − 3 AH
2

2
)2 +

(
2π f

c

)2 (23)

(a)

(b)

Fig. 6 a The time series of the weak HCS; b the amplitude
spectrum of the response. The simulation parameters are A =
0.01 and f = 100.

3.2 Numerical simulations

Similarly to the Sect. 2.2, the weak HCS in this section
is shown in Fig. 6. It is a simple cosine signal with the
simulation parameters f = 100Hz and A = 0.01.

Then, the weak HCS is an input to the rescaled sys-
tem. In the rescaled system, the frequency of the HAS
is 4000Hz. The control parameter B varies from 0 to
4. The rescaling factor c is set as 10,000. In Fig. 7,
the amplification factor Q versus the amplitude of the
HAS presents a single-resonance pattern. It is different
from the underdamped system.Meanwhile, the numer-
ical and theoretical results are in good agreement. In
the curve of the numerical simulation, the maximum
amplification factor Q is 15.45 and the corresponding
amplitude B is 2.1. When B is set to 2.1, the system
output curve is shown in Fig. 8. Similarly as in Fig. 3,
the VR phenomenon in Fig. 8 apparently occurs.

InFig. 9, the amplification factorQ versus the ampli-
tude of the high-frequency auxiliary signal is given
for different values of A. In this figure, the theoreti-
cal result does not change with the increase of A. This
fact can also be verified from Eq. (22) or Eq. (23) that
the amplification factor Q is independent of A. But for
the numerical result, with the increase of A, the max-
imum amplification factor Q decreases. The curve of
the numerical simulation is away from the curve of the
theoretical formulation which is similar to the under-
damped system.
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Fig. 7 Amplification factor Q versus the amplitude of the HAS.
The thick line is the theoretical result, while the thin line with
markers is the numerical result. The simulation parameters are
a = b = c = 10,000, A = 0.01, f = 100 and F = 4000

(a)

(b)

Fig. 8 Output of the system when the VR occurs. a The time
series of the output; b the amplitude spectrum of the response.
The simulation parameters are a = b = c = 10,000, A = 0.01,
B = 2.1, f = 100 and F = 4000

In Fig. 10, the amplification factor Q versus the
amplitude of the high-frequency auxiliary signal B is
given for different value of f . With the increase of f ,
the amplification factor Q decreases. In this figure, it
shows that the numerical and theoretical results are in
close agreement, although the parameter f changes.

From Figs. 7, 8, 9 and 10, the VR is shown in the
overdamped Duffing oscillator under different simula-
tion parameters. When the VR occurs, the weak HCS
can be detected.

(a) (b)

(c) (d)

Fig. 9 Amplification factor Q versus the amplitude of the HAS
for a A = 0.01, b A = 0.03, c A = 0.09, d A = 0.12. The
thick lines are the theoretical results, while the thin lines with
markers are the numerical results. The simulation parameters
are a = b = c = 10,000, f = 100 and F = 4000

(a) (b)

(c) (d)

Fig. 10 Amplification factor Q versus the amplitude of the HAS
for a f = 100; b f = 150; c f = 200; d f = 250. The
thick lines are the theoretical results, while the thin lines with
markers are the numerical results. The simulation parameters
are a = b = c = 10,000, A = 0.01 and F = 4000

4 Conclusions

In order to detect the weak HCS, the scale transforma-
tion method which is used in SR is introduced in the
investigation of the VR. We take the underdamped and
the overdamped Duffing oscillators as examples, we
carry out both the theoretical analysis and the numeri-
cal simulations. The theoretical results and the numer-
ical results are in close agreement. Compared with the
underdamped and overdamped Duffing oscillators, it

123



H. G. Liu et al.

can be seen that the resonance pattern is different, but
they also have some characteristics in common. Firstly,
the curves of the theoretical results do not change with
the increase in the amplitude of the weak HCS. Sec-
ondly, for the numerical results, with the increase in
the amplitude of the weak HCS, the maximum amplifi-
cation factor decreases. Finally, with the increase in the
frequency of the weak HCS, the maximum amplifica-
tion factor decreases in the numerical and the theoreti-
cal curves. It verifies that by introducing the scale trans-
formation to the traditional VR theory, the weak HCS
can be detected in an excellent manner. The method
proposed in this paper can be applied to the detection
of the weak high-frequency character signal. Accord-
ing to the method, we can determine the optimal design
parameters of a detecting system. So, themethodmakes
it possible to apply the theory of VR to deal with the
engineering problems.
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