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The decay of a planar compact surface that is reduced through its boundary is considered.
The interest of this problem lies in the fact that it can represent the destruction of a solid
tumor by a population of immune cells. The theory of curves is utilized to derive the rate at
which the area of the set decreases. Firstly, the process is represented as a discrete dynamical
system. A recurrence equation describing the shrinkage of the area at any step is deduced.
Then, a continuum limit is attained to derive an ordinary differential equation that governs the
decay of the set. The solutions to the differential equation and its implications are discussed, and
numerical simulations are carried out to test the accuracy of the decay law. Finally, the dynamics
of a tumor-immune aggregate is inspected using this law and the theory of bifurcations. As the
ratio of immune destruction to tumor growth increases, a saddle-node bifurcation stabilizes the
tumor-free fixed point.

Keywords : Bifurcation analysis; nonlinear systems; mathematical modeling; cancer dynamics;
geometry of curves.

1. Introduction

Competition models are widely used to study
the growth dynamics of cancer cell populations
[Panetta & Adam, 1995; Gatenby & Gawlinsky,
1996; Pinho et al., 2002; de Pillis & Radunskaya,
2003; Itik & Banks, 2010]. Cancer cells interact
with other cells and substances in their tissue
microenvironment, leading to complex and unpre-
dictable behavior. In particular, Lotka–Volterra
models have been used to study the cellular immune
response to tumor growth [Bellomo & Preziosi,
2000; Kuznetsov et al., 1994; de Pillis et al., 2005;
López et al., 2014]. Using these models, a variant of
the Michaelis–Menten kinetics has been proposed to

describe the rate at which a tumor is destroyed by a
population of cytotoxic immune cells [López et al.,
2017, 2016].

In this context, it has been recently suggested
that the rate at which the area of a two-dimensional
tumor is reduced by a population of cytotoxic lym-
phocytes obeys a linear function of time [López
et al., 2016]. The problem is posed in two dimen-
sions for simplicity and the parabolic decay of the
area holds when there is no tumor infiltration, the
immune cells lyse at a constant rate and surround
the tumor completely. If the tumor is spherical and
the radius decreases linearly with time at speed c,
the nonlinear differential equation governing the
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decay is

T ′(t) = −dT 1/2(t), (1)

where T (t) is the size of the tumor cell population
at time t and d = 2π1/2cσ1/2, σ being the surface
density of cells, which was missing in previous works
[López et al., 2016].

However, when the shape of the tumor devi-
ates from a disk, this equation constitutes a reason-
able approximation, but it is inexact after all. Using
mathematical arguments, a new alternative equa-
tion is here proposed to describe the decay of the
area A(t) of an arbitrary planar convex and com-
pact set

A′(t) = −cL0 + 2πc2t, (2)

where L0 is the length of the boundary of the initial
set.

In the present work we rigorously demonstrate
this equation. To this end, we describe the process
as follows. We consider that at each time step n,
the tumor can be represented by a simply connected
and compact set, whose boundary corresponds to a
closed curve Cn (see Fig. 1). Moreover, we assume
that the set is convex. Otherwise, the topology of
this set might change during its evolution, becom-
ing disconnected. Using a parametric representa-
tion, these curves can be written as xn(λ), with
λ ∈ [0, 2π) and n ∈ N. If the surface is reduced
from the outside and in the normal direction to its
boundary, we can relate the boundaries at the nth
and at (n + 1)th steps, by

xn+1(λ) = xn(λ) + ∆Rpn(λ), (3)

where pn(λ) is the normal unit vector at the point
xn(λ) of the nth boundary curve Cn. As shown in
Fig. 1, the value ∆R represents the thickness of the
erased layer. Note that the plus sign assumes that
the planar set is convex, as previously stated. Thus,
we regard the progressive shrinkage of the set as a
sequence of curves (C0, C1, . . .). These curves are
related via Eq. (3), and the sequence converges to
the empty set, which can be regarded as the attrac-
tor of the dynamical system. The following notation
is adopted from the literature [Kreyszig, 1991] to
carry out the analysis. The modulus of a vector y
is represented as |y|. The derivative of any vector y
defined on the curve with respect to the arclength s
is represented as ẏ, while the derivative with respect
to the parameter λ is denoted as y′. The tangent,

Fig. 1. The shrinkage of a planar surface. An initial planar
convex set whose boundary C0 is iteratively reduced in the
direction given by its unit normal vector by an amount ∆R.

normal and binormal vectors are written as t(λ),
p(λ) and b(λ), respectively.

Finally, the nonlinear decay law that we derived
in the previous sections is used to study the dynam-
ics of a tumor-immune aggregate, as a function of
the tumor growth rate, its carrying in the absence
of immune response and the rate of tumor destruc-
tion by the immune cytotoxic cells. A bifurcation
analysis reveals how the malignant tumor attractor
decreases as the immune response strengthens, until
a threshold value is reached, by which it suddenly
disappears.

2. Preliminary Results

In the present section we demonstrate two proposi-
tions, which are used later on, to derive the contin-
uous equations.

Lemma 1. Let x0(λ) be a parametric represen-
tation of class r ≥ 2 of an initial closed curve
C0 ⊂ R

2, which evolves according to the recurrence
relation defined by Eq. (3). Then, if the condition
kn(λ)∆R ≤ 1 holds for all n and λ, the recurrence
functions for the vectors tn(λ), pn(λ) and bn(λ)
are all equal to the identity map. The curvature
kn(λ) and the speed |x′

n(λ)| are determined from
the original set through the recurrence relations
kn+1(λ) = kn(λ)/(1 − kn(λ)∆R) and |x′

n+1(λ)| =
|x′

n(λ)| · (1 − kn(λ)∆R).

Proof. Differentiating Eq. (3) with respect to λ
and using the Frenet–Serret formula ṗn(λ) =
−kn(λ)tn(λ) yields

x′
n+1(λ) = x′

n(λ) · (1 − kn(λ)∆R).
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Taking the modulus on both sides of this last
equation, and bearing in mind the condition
kn(λ)∆R≤ 1, allows to write |x′

n+1(λ)| = |x′
n(λ)| ·

(1 − kn(λ)∆R). Recalling the definition of the
tangent vector x′

n(λ) = |x′
n(λ)|tn(λ), we obtain

tn+1(λ) = tn(λ). Differentiating this equation with
respect to λ and using the Frenet–Serret for-
mula ṫn(λ) = kn(λ)pn(λ), we obtain the equal-
ity pn+1(λ)kn+1(λ)|x′

n+1(λ)| = pn(λ)kn(λ)|x′
n(λ)|.

Since by definition we have |pn(λ)| = 1, the
equation kn+1(λ) = kn(λ)/(1 − kn(λ)∆R) holds.
Therefore, the equation pn+1(λ) = pn(λ) holds as
well. �

Lemma 2. Let x0(λ) be a parametric represen-
tation of class r ≥ 2 of an initial closed curve
C0 ⊂ R

2, which evolves according to the recur-
rence relation defined by Eq. (3). If the conditions
kn(λ)∆R ≤ 1 and σn(λ)∆R ≤ 1 hold for all n and
λ, the area An enclosed by the curve Cn can be iter-
ated by means of the equation

An+1 = An − ∆R

2

∮
(kn(λ)

+ σn(λ))|xn(λ) × x′
n(λ)|dλ

+
(∆R)2

2

∮
kn(λ)σn(λ)|xn(λ) × x′

n(λ)|dλ,

(4)

where σn(λ) = 1/rn(λ), with rn(λ) = −xn(λ) ·
pn(λ).

Proof. An allowable parametrization yn(r, λ) of the
planar surface Sn delimited by Cn is yn(r, λ) =
rxn(λ), with r ∈ [0, 1]. The element of area dAn can
be computed from the metric gn as

√
det gndrdλ.

In the present case we have
√

det gn = r|xn(λ) ×
x′

n(λ)|. Consequently, the area at the (n + 1)th
step is

An+1 =
1
2

∮
|xn+1(λ) × x′

n+1(λ)|dλ. (5)

Equation (3) and x′
n+1(λ) = x′

n(λ) · (1 −
kn(λ)∆R) permit to write

An+1 =
1
2

∮
(1 − kn(λ)∆R)|xn(λ) × x′

n(λ)

+ ∆Rpn(λ) × x′
n(λ)|dλ. (6)

Since pn(λ) × x′
n(λ) = −(xn(λ) × x′

n(λ)) ·
σn(λ) and we are considering the restriction
σn(λ)∆R ≤ 1, we have

An+1 =
1
2

∮
(1 − kn(λ)∆R)(1 − σn(λ)∆R)

× |xn(λ) × x′
n(λ)|dλ. (7)

The expansion of this equation in powers of ∆R
completes the proof. �

3. Proof of the Main Theorem

Before demonstrating the core proposition of this
work, we first derive three continuous formulae
describing the time evolution of the position vector,
the curvature and the speed related to the bound-
ary curves. The idea is to associate a continuous
time variable t to the discrete step n. Then, the fol-
lowing iteration n + 1 can be related to t + dt, as
long as we consider that ∆R → dR, with dR = cdt.
Clearly stated, we assume that the distance from
the boundary along the normal direction decreases
linearly with time at speed c. Therefore, a con-
tinuous equation expressing the time evolution of
the curvature can be written as k(t + dt, λ) =
k(t, λ)/(1 − k(t, λ)dR). A Taylor series expansion
of this relation on the variable dR about the ori-
gin leads to k(t + dt, λ) = k(t, λ) + k2(t, λ)cdt,
where the terms O(dt2) have been disregarded.
Thus we have the differential equation dk = k2cdt,
whose solution is k(t, λ) = k0(λ)/(1 − k0(λ)ct),
with k0(λ) = k(0, λ). To simplify notation, we now
define v(t, λ) ≡ |x′(t, λ)|. This function obeys the
difference equation v(t + dt, λ) = v(t, λ) − k(t, λ)
v(t, λ)cdt, which is tantamount to the differential
equation dv = −kvcdt. The solution to this equa-
tion is v(t, λ) = v0(λ)(1 − k0(λ)ct). Finally, since
p(t, λ) does not change over time, we can write
Eq. (3) as x(t, λ) = x0(λ) + ctp0(λ). This, in turn,
allows us to write r(t, λ) = r0(λ)− ct. We now pro-
ceed to introduce our main result.

Theorem 1. The area A of a convex and compact
planar set S0, whose boundary is of class r ≥ 2 and
shrinks continuously in the normal direction at a
constant rate c, decreases following a parabolic func-
tion of time

A(t) = A0 − cL0t + πc2t2, (8)

where A0 is the area of the original set S0 and L0

is the length of its boundary ∂S0.
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Proof. Disregarding the terms O(dt2), Eq. (4) can
be written in the form

A(t + dt) − A(t) = −dt
c

2

∮
(k(t, λ)

+ σ(t, λ))|x(t, λ) × x′(t, λ)|dλ,

(9)

with σ(t, λ) = 1/r(t, λ). Therefore, the following
differential equation governs the decay of the area

A′(t) = − c

2

∮
(1 + k(t, λ)r(t, λ))v(t, λ)dλ. (10)

This equation can be expanded and rewritten as

A′(t) = − c

2

(
L(t) +

∮
k(t, λ)r(t, λ)v(t, λ)dλ

)
,

(11)

where L(t) is the length of the boundary of the
shrinking set at time t. We now recall that

L(t) =
∮

v(t, λ)dλ = L0 − ct

∮
k0(λ)v0(λ)dλ,

(12)

by virtue of the equation v(t, λ) = v0(λ)(1 −
k0(λ)ct). Substituting Eq. (12) in Eq. (11) and
expressing the equations k(t, λ), v(t, λ) and r(t, λ)
in terms of the initial conditions yields

A′(t) = − c

2

(
L0 +

∮
k0(λ)r0(λ)v0(λ)dλ

− 2ct
∮

k0(λ)v0(λ)dλ

)
. (13)

The second integral appearing on the right-hand
side of Eq. (13) equals 2π by the Gauss–Bonnet the-
orem. We now solve the remaining integral∮

k0(λ)r0(λ)v0(λ)dλ =
∮

k0(s)r0(s)ds

= −
∮

ẍ0 · x0ds, (14)

where s is the length of arc of C0. This integral can
be solved by parts and it is immediate to show that
its value is L0, recalling that

ẍ0 · x0 =
1
2

d2

ds2
(x2

0) − 1. (15)

Thus we finally obtain the differential equation

A′(t) = −cL0 + 2πc2t, (16)

which has the simple solution A(t) = A0 − cL0t +
πc2t2. �

4. Numerical Simulation

We test the formula governing the reduction of the
area of an initial set, by considering the case of an
ellipse. To simulate the shrinkage of this planar sur-
face, we devise the following elementary algorithm,
which can be considered as a simplification of the
complex cellular automata presented in previous
works that study tumor lysis [López et al., 2017].
A planar grid of cells is represented, where those
cells that belong to the initial set are assigned a
value of one, while the remaining cells are set to
a value of zero. Then, at each step, the updating
rule proceeds by setting to a value of zero all those
cells which have a value of one and are at a dis-
tance from the boundary smaller than or equal to a
fixed value. The shrinkage of the set is represented
in Fig. 2. The algorithm continues until the set has
been eradicated. By counting cells, the size of the
set at each step is computed and represented graph-
ically. Finally, the graph given by Eq. (8) is rep-
resented together for comparison. The results are
shown in Fig. 3. As can be seen, such equation faith-
fully describes the shrinkage of the set.

According to Eq. (8), the time τ it takes to
reduce completely the set is

τ =
L0

2πc

(
1 −

√
1 − 4πA0

L2
0

)
. (17)

Fig. 2. The shrinkage of an ellipse. A simulation of the
shrinkage of an initial planar convex set C0 with the shape of
an ellipse. The semi-minor and semi-major axes of the initial
ellipse take a value of one and two, respectively. A sequence
of sets are generated as the original set is progressively erased
by a fixed distance of value ∆R = 0.05 in its normal direction.
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Fig. 3. The decay of the area of an ellipse. The results
obtained with the algorithm (dots) together with the curve
that represents the decay of the area as given by the equation
A(t) = A0 − cL0t + πc2t2. The values A0 = 2π, c = 0.05 and
L0 = 4E(

√
3/2) have been used, where E is the complete

elliptic integral of the second kind.

Since the isoperimetric inequality [Osserman, 1978]
imposes 4πA0 ≤ L2

0, where the saturation is
attained for a disk, it takes less spherical sets less
time to disappear. Concerning the lysis of a tumor,
as long as there is no lymphocyte infiltration, this
means that those tumors with a less spherical mor-
phology are easier to eradicate by the immune sys-
tem. This occurs because their boundary of contact,
relative to their size, is larger [López et al., 2017].

It is worth to establish how Eq. (16) differs
from Eq. (1). Beginning with Eq. (8), it is imme-
diate to demonstrate that the differential equation
governing the decay of a disk is precisely A′(t) =
−2π1/2cA1/2(t), as shown in Eq. (1). However, when
the shape differs from a disk, a form factor

δ(t) =

√
L2(t)

4πA(t)
(18)

is deserved. The inverse of δ(t) has been called the
sphericity [Wadell, 1935]. Therefore, a more gen-
eral differential equation that can be derived from
Eq. (8) is A′(t) = −2π1/2cδ(t)A1/2(t). When the
sphericity of the tumor barely changes with time,
we can make use of Eq. (1) and derive from the
first principles the value of the constant appearing
in such equation as d = 2π1/2cσ1/2δ0.

5. Bifurcation Analysis of the
Dynamics of a Tumor-Immune
Aggregate

Finally, we conclude our study of the process of lysis
of a tumor according to Eq. (1), taking into account
its growth, which we assume to be described by a
sigmoid function [de Pillis & Radunskaya, 2003].
In particular, for simplicity, we assume a logistic
growth with constant rate r and carrying capacity
K. Therefore, the differential equation that governs
the dynamics of the tumor is

T ′(t) = rT (t)
(

1 − T (t)
K

)
− dT 1/2(t). (19)

The previous equation can be nondimensional-
ized by defining the new time coordinate τ = rt and
the relative tumor size as x = T/K. Renaming the
time variable to its standard, yields

x′(t) = x(t)(1 − x(t)) − µx1/2(t), (20)

where the parameter µ = d/(rK1/2) has been
defined. Therefore, the dynamics of the tumor-
immune aggregate depends, not only on the ratio
between the rate at which the tumor is destroyed
and the rate at which it grows, but also on its car-
rying capacity in the absence of lysis. In Fig. 4 we
represent a bifurcation diagram, showing how the
fate of the tumor depends on the parameter µ. In

Fig. 4. Bifurcation diagram. As the parameter µ is
increased, two bifurcations take place. The first occurs at
µ = 0. A new fixed point is born in the vicinity of x = 0. In
the interval [0, µc] two stable fixed points, x∗

1 and x∗
3, coexist

separated by the unstable fixed point x∗
2. Finally, two fixed

points disappear through a saddle-node bifurcation, leaving
x∗
1 as a global attractor.
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(a) (b)

Fig. 5. The function f(x) = x(1− x)− µx1/2 for various µ. (a) As we can see, two bifurcations occur as we increase µ from
negative values to positive ones. The second bifurcation is a saddle-node bifurcation, while the first one is unknown to us.
(b) A blow up of the blue region appearing in the previous figure. At µ = 0 the sign of the slope and the curvature of the
function f(x) close to x = 0 change, allowing the appearence of a new fixed point and a switch of the stability of x = 0 from
unstable to stable. We recall that f ′(x) becomes unbounded at x = 0, except for µ = 0.

the absence of an immune response (µ = 0), we sim-
ply have a logistic growth, where x = 0 is an unsta-
ble fixed point and x = 1 corresponds to a stable
attractor. However, precisely at µ = 0 a bifurcation
occurs, and the unstable fixed point x = 0 gives
birth to a second fixed point, becoming stable. This
new fixed point arises through a change in the cur-
vature of the function f(x) = x(1−x)−µx1/2, as it
is shown in Fig. 5. In the interval µ ∈ [0, µc], where
µc = 2/(3

√
3), the tumor can exist below its origi-

nal carrying capacity or it can be destroyed by the
immune system, depending on its size at the time
that the immune response is triggered. Finally, at
µ = µc a saddle-node bifurcation occurs and only
the fixed point x = 0 remains. Therefore, when the
immune response becomes strong enough, relative
to the growth rate of the tumor, it can be effec-
tively destroyed.

6. Conclusions

In summary, the shrinkage of a set from its bound-
ary follows a power law decay. When the size of
the set is fixed, those sets with higher boundary to
interior ratio decay faster. This conclusion has some
relevance in the context of immunotherapy, where
cytotoxic T cells are tamed to destroy a tumor mass.
It allows to estimate the speed at which the tumor
is destroyed, as long as there is no severe immune
cell infiltration. As it has been reasoned in previ-
ous works [López et al., 2016], if the infiltration

is severe, an exponential decay represents a better
approximation. Finally, the ultimate fate of a grow-
ing tumor in the presence of an immune response,
depends on the relative rate of lysis and growth µ.
As we have shown, our bifurcation analysis suggests
the existence of a threshold value of this parameter
above which the complete destruction of the tumor
is guaranteed, independently of its size at the begin-
ning of the immune response. Nevertheless, even if
we are below this threshold and the immune system
is not capable of completely eradicating the tumor,
its carrying capacity can be considerably reduced by
a more active immune system (higher c), or by an
increase of the tumor surface of contact (higher δ0).
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