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Abstract We analyze the oscillatory dynamics of a
time-delayed dynamical system subjected to a periodic
external forcing.We show that, for certain values of the
delay, the response can be greatly enhanced by a very
small forcing amplitude. This phenomenon is related
to the presence of a Bogdanov–Takens bifurcation and
displays some analogies to other resonance phenom-
ena, but also substantial differences.
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1 Introduction

Different resonance phenomena play a key role in
the sciences. Examples, beyond the simplest case
of a linear system forced at its natural frequency,
include stochastic resonance [1,2], chaotic resonance
[3], coherence resonance [4] and vibrational resonance
(VR) [5]. For a recent monograph dealing with all
these phenomena, see [6]. The stochastic resonance of a
bistable system is triggered by the cooperation between
noise and a weak periodic forcing, or even an aperiodic
forcing. The noise can be replaced by a chaotic sig-
nal to obtain chaotic resonance. It is also possible to
have noise-induced resonance in the absence of exter-
nal periodic forces, a phenomenon called coherence
resonance. A nonlinear system driven by a biharmonic
forcing,with a frequency faster than the other, can show
VR. Resonances appear not only in systems described
by ordinary differential equations, but also in time-
delayed systems. Time-delay effects arise frequently in
practical problems and have received much attention in
recent years [7–11]. Hereditary effects are sometimes
unavoidable andmay easily turn awell-behaved system
into one displaying very complex dynamics. A simple
example is provided by Gumowski and Mira [12], who
demonstrate that the presence of delays may destroy
stability and cause periodic oscillations in systems gov-
erned by differential equations. Vibrational resonance
occurs in time-delayed systems with two harmonic
forcings of different frequencies [13–16]. Furthermore,
delay systems often possess oscillatory behavior even
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in the absence of forcing, and for this reason VR and
related phenomena may occur even in the presence of
only one external excitation [17,18].

In this work, we present a new resonance phe-
nomenon that may appear in systems with delay. The
addition of a very small external forcing may result in
the solution changing from a damped, small- ampli-
tude oscillation to a sustained, large-amplitude oscilla-
tion. The sustained response takes place for a range
of values of the frequency Ω of the external forc-
ing (as distinct from phenomena that require well-
defined values of Ω). The resonance occurs for a (nar-
row) interval of values of the delay and is related to
the presence of a Bogdanov–Takens bifurcation [19]
in the model. Therefore, we will refer to the reso-
nance phenomenon as Bogdanov–Takens resonance.
The Bogdanov–Takens bifurcation of an equilibrium
point appears in systems with two (or more) parame-
ters when the equilibrium undergoing the bifurcation
has a zero eigenvalue of algebraic multiplicity two
[20,21]. Many different dynamics appear as explained
in those references. In particular for some combinations
of parameters values, one finds Hopf, homoclinic and
periodic saddle-node bifurcations near the Bogdanov–
Takens bifurcation point.

2 The system

The model that we use to describe and analyze the
Bogdanov–Takens resonance is the apparently simple
system called delayed action oscillator [22]. It is a sin-
gle variable system with a double-well potential and a
linear delayed feedback termwith a constant time delay
τ ≥ 0. The oscillator can be written as:

ẋ = αxτ + x − (1 + α)x3 + F sinΩt (1)

xτ = x(t − τ), (2)

where α measures the influence of the returning signal
relative to that of the local feedback and represents a
negative feedback, τ is the time delay and F andΩ are
the amplitude and frequency of the external periodic
forcing. The constants α, τ , F and Ω are real, and the
interest is in the case α ∈ (− 1, 0). Without the delayed
term, this system would be a one-dimensional ODE
and could not oscillate, but the linear delayed feed-
back converts the system into an infinite-dimensional

one, allowingoscillatory dynamics. The system is inter-
esting, among other things, for its analogy with the
El Niño–Southern Oscillation (ENSO) [23,24] and the
well-knownDuffing oscillator ẍ+γ ẋ+x(x2−1) = 0,
as discussed in [22].

We begin by studying the unforced systemwith F =
0 and parameters α, τ :

ẋ = x + αxτ − (1 + α)x3. (3)

This has the equilibriumpoints x = 0 and x = ± 1. The
equilibrium x = 0 is always unstable as may be easily
shown by studying the corresponding linearization of
Eq. (3). The equilibria at ± 1 are stable in the absence
of delay (τ = 0), but undergo Hopf bifurcations [25]
in the delayed system. For x = 1 (and for symmetry
reasons for x = − 1), the characteristic equation of the
linearization is

λ = − 3α − 2 + αe−λτ . (4)

If α < − 1 or α > − 1/2, then, for any τ > 0, all roots
of this equation have negative real parts, and x = 1
and x = − 1 are asymptotically stable. If − 1 < α <

− 1/2, there is a sequence τ = τk, k = 0, 1, 2, . . . of
values of the delay for which Eq. (4) has a pair of imag-
inary roots± iω0, whereω0 = √

α2 − (3α + 2)2. The
delays τk and the frequency ω0 are related by the fol-
lowing expression:

τk = sin−1(−ω0/α) + 2kπ

ω0
. (5)

If τ ∈ [0, τ0), then all roots of Eq. (4) have neg-
ative real parts. For τ = τ0, the roots of Eq. (4)
have real parts < 0, except for the pair ± iω0. If
τ ∈ (τ0, τ1], Eq. (4) has one pair of complex con-
jugate roots with positive real parts. Thus, for fixed
α, − 1 < α < − 1/2, and varying τ , the equilib-
ria x = 1 and x = − 1 undergo a Hopf bifurca-
tion at τ = τ0, where, as τ increases, they turn from
being asymptotically stable into being unstable. Addi-
tional Hopf bifurcations occur at τk , k = 1, 2, . . .,
but we shall not be concerned with them. For the
value α = − 0.925 used in [22] and in the numer-
ical experiments below, τ0 ≈ 1.1436 and ω0 ≈
0.5050.

The panels in Fig. 1 plot “phase portraits” in the
plane x, xτ , showing the solutions of the system with
fixed α and varying τ . This behavior corresponds to a
symmetric Bogdanov–Takens bifurcation as described
in [20]. In each panel, there are different solutions,
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Fig. 1 Phase portrait of the system, Eq. (1), for α = − 0.925,
and for τ = 1, 1.122, 1.13 and 1.7, respectively. In the figures,
different trajectories arising from different history functions are
plotted with different colors. In panel (d), the black thick loop
is the limit circle, to which the trajectories are attracted that we
call stable loop, Ls. (colors available on line)

plottedwith different colors, corresponding to different
constant history functions xτ (t) = u0, t ∈ [−τ, 0], u0
a constant. Bear inmind that this is different from a true
phase portrait of anODE system because in the delayed
case it is not true that each point in the plane defines
a unique trajectory. In the panels, the solutions move
counterclockwise. Panel (a) corresponds to the case of
“small” τ ; solutions are generically attracted to a sta-
ble equilibrium± 1. For τ “large”, solutions are gener-
ically attracted to a single big stable loop that we call

fromnowon Ls, see panel (d). As τ → ∞, solutions on
Ls are approximately square waves where x(t) jumps
from a = +√

(1 − α)/(1 + α) to −a and back, and
simultaneously x(t − τ) jumps from−a to a and back.
The orbitally stable loop Ls is born at a saddle-node
bifurcation at τ = τc (for α = − 0.0925, τc ≈ 1.119).
The saddle-node bifurcation point τc is smaller than the
Hopf bifurcation point τ0 discussed above, so that for
τ ∈ (τc, τ0) the attracting big loop Ls coexists with
the attractors at x = ± 1. This is the regime of inter-
est for our purposes. The interval (τc, τ0) contains two
subintervals (τc, τh), (τh, τ0) corresponding to differ-
ent dynamics. In the first of these subintervals (panel
(b)), there is an unstable loop Lu surrounding the equi-
libria; Lu is of course born, together with Ls, at the
saddle-node bifurcation at τ = τc. At τ = τh , Lu

becomes a homoclinic connection of the equilibrium
at x = 0, and a further increase in τ turns the homo-
clinic connection into a couple of unstable orbits L±1,
one around x = 1 and the other around − 1 (panel (c)).
These unstable orbits disappear at the subcritical Hopf
bifurcation at τ = τ0, where each of them merges with
the corresponding equilibrium. The bifurcations at τc,
τh and τ0 for fixedα clearly correspond to aBogdanov–
Takens scenario for the two-parameter model Eq. (3).
A summary of the possible behaviors of the solutions
as τ varies appears in Table 1. Even though the results
just reported herewere obtained numerically, analytical
calculations of the bifurcation diagram corresponding
to Fig. 1 can be found by means of the procedure pre-
sented in [20]. There, the authors consider the general
equation

Table 1 Behavior of the
solutions of the unforced
system (3) as a function of
τ . Ls represents the stable
loop and Lu the unstable
loop, being both asymptotic
trajectories of the system
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Fig. 2 The unforced
(F = 0) system (1) with
α = − 0.925, τ = 1.14, and
a constant history function
u0 = 1.1. Panel (a) the
solution x(t). Panel (b) the
Fourier analysis shows the
frequency at which the
amplitude peak shows up.
The amplitude A has been
calculated after omitting the
initial transients

ẋ = f (x, xτ ) (6)

xτ = x(t − τ), (7)

where τ is the delay and f is an arbitrary smooth func-
tion. They use the Taylor expansion in the right-hand
side

ẋ = x + αxτ + γ1x
3 + γ2x

2xτ + γ3xx
2
τ

+ γ4x
3
τ + O(|x |5) (8)

and study the linear stability and bifurcations condi-
tions by calculating a center manifold reduction. Then,
they summarize the dynamics near the Bogdanov–
Takens point (α, τ ) = (− 1, 1). By following their
steps, it is possible to find the center manifold equa-
tions for our case (γ1 = −(1+α), γ2 = γ3 = γ4 = 0)
that yields

ż1 = z2 (9)

ż2 = (2α + 2)z1 +
(−4α

3
+ 2τ − 10

3

)
z2

+ az21z2 + 2bz31 (10)

a = b = − 2(1 + α). (11)

For the α values that we have quoted in the previous
section, the parameters a, b are both negative. So that,
our system fall in the second case discussed in detail in
[20], where the conditions for the system to undergo the
Bogdanov–Takens bifurcation in a small neighborhood
of the Bogdanov–Takens point are explicitly given.
These conditions reproduce our numerical results.

3 Resonance

The forced system ẋ = x−x3+ A cosωt shows small-
amplitude sustained oscillations aroundoneof the equi-
librium points x = ± 1, which are only possible due to

the slow forcing A cosωt . Then, by adding a fast forc-
ing B cosΩt , with Ω � ω, the oscillations may go
from one well to the other. This is the phenomenon
of vibrational resonance [5,26]. Equations like (1)
may exhibit something extremely similar [18,27]. The
autonomous system ẋ + x((1 + α)x2 − 1) − αxτ = 0
shows slowly damped oscillations around + 1 or − 1,
induced by the delay. Then, the addition of a forcing
term F sinΩt may give rise to sustained oscillations
that go from one well to the other. The phenomenon
that we study here is considerably different. We illus-
trate it in the case with α = − 0.925, τ = 1.14 and
constant history u0 = 1.1. For this value of τ , the equi-
libria ± 1 coexist with the attractor Ls. Figure 2 corre-
sponds to the unforced case F = 0. The solution is a
marginally damped oscillation with angular frequency
approximately equal to ωn = 0.50, as the position of
the peak in Fig. 2(b) shows. Then, we add a very small
forcing value F = 0.01of angular frequencyΩ = 0.50
(the exact value of the forcing frequency Ω is not criti-
cal, as we will discuss later). As we show in Fig. 3a, the
solution is a sustainedoscillationof large amplitude and
angular frequencyωn = 0.40, as shown by the position
of the peak in Fig. 3b. Therefore, there is a huge impact
of the small forcing term. The resulting sustained oscil-
lation is triggered by the forcing, but it is not a direct
response to it, because the frequency of the interwell
oscillation does not match the forcing frequency Ω , as
we see by comparing Figs. 2b and 3b. In a phase por-
trait, the forcing would cause the solution to jump from
the neighborhood of the equilibrium x = 1 to the stable
loop Ls. Figure 4 shows the amplitude of the solution
as a function of τ , without forcing (panel (a)) and as a
function of τ and Ω , with F = 0.01 (panel (b)). The
numerical experiments support the analysis done in the
previous section. In fact, it is possible to appreciate the
enhancement of the amplitude A for τ in panel (a),
and the enhancement of the amplitude A in the range
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Fig. 3 As in Fig. 2, except
that a small forcing
F = 0.01, Ω = 0.5 has
been added; the solution is
now a sustained oscillation
of large amplitude. When
comparing with Fig. 2b,
note the change in the
vertical scale for A. The
amplitude A has been
calculated after omitting the
initial transients

Fig. 4 The figures show the amplitude gradient of the oscillatory
solution of the system, Eq. (1), as a function of τ for F = 0 in
panel (a) and as a function ofΩ and τ for F = 0.01 in panel (b).
We have considered values of τ close to the critical values where
the bifurcations occur. It is possible to appreciate the complexity

of the panel (b) for values around Ω = 0.5. Here, α = − 0.925
and the history function is the constant u0 = 1.1. The amplitude
A has been calculated after omitting the initial transients. (colors
available on line)

Fig. 5 Model (12) with
τ = 1.19, α = − 0.9, and a
constant history function
u0 = 1.1. On the left:
damped oscillations in the
absence of forcing (F = 0).
On the right:
large-amplitude oscillations
for a small forcing,
F = 0.015, Ω = 0.45

1.119 < τ < 1.143 where Ls coexists with the stable
equilibria, in panel (b). If τ is larger than 1.143, then
the equilibrium points ± 1 loose their stability so that
the damped oscillations around them no longer exist,
and the system shows an interwell oscillation without
any need of an external forcing. On the other hand, if
τ is below 1.119, the solution will eventually settle in
one of the wells, even if in a transient phase it oscil-
lates between both wells. Moreover, by looking at the
Ω-axis it is possible to appreciate the complexity of

the amplitude values around the value of Ω = 0.5 due
to the nonlinearity of the system, as predicted in the
previous paragraphs. It is worth to point out that the
resonance phenomenon takes places for values of Ω in
a suitable interval, rather than at critical values.

It is important to point out that the phenomenon that
we are discussing is very different from well-known
cases where a forcing with a moderate value of F gives
a solution that, upon Fourier analysis, is seen to consist
of modes cos(Ωt + φ1) (the fundamental harmonic),
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Fig. 6 The figures show (a) the amplitude of the oscillation
and (b) the frequency ωn which gives the maximum in ampli-
tude, which we called ωmax, as a function of Ω , corresponding
to the system, Eq. (1), for F = 0.01, τ = 1.14, α = − 0.925,
and a constant history function u0 = 1.1. In (a), a well-defined

peak appears around Ω = 0.4 that shows that the resonance
phenomenon takes place for suitable values of the forcing fre-
quency. The amplitude A has been calculated after omitting the
initial transients

Fig. 7 The resonance for
Eq. (1), but now with
α = − 0.8, τ = 1.5. Panels
(a) and (b) show the
solution and its Fourier
analysis for F = 0. Panels
(c) and (d) show the
solution and its Fourier
analysis for F = 0.01,
Ω = 0.6. Panel (e) shows
the amplitude of the
solution as a function of Ω .
The amplitude A has been
calculated after omitting the
initial transients

123



Bogdanov–Takens resonance in time-delayed systems

Fig. 8 Amplitude of the
solution of Eq. (1) as a
function of Ω for different
values of the parameter α.
Panel (a) τ = 12.8 and
α = − 0.5. Panel (b)
τ = 3.3 and α = − 0.6.
Panel (c) τ = 2.01 and
α = − 0.7. Panel (d)
τ = 1.51 and α = − 0.8.
Panel (e) τ = 1.2 and
α = − 0.9. As α decreases,
the values of τ that trigger
the resonance decrease. The
amplitude A has been
calculated after omitting the
initial transients

cos(3Ωt +φ3) (the third harmonic) or cos(Ωt/3+φ1)

(subharmonic) (odd numbered overtones are expected
in view of the cubic nonlinearity). Similarly, the phe-
nomenon here is clearly different form that described
in [17].

In order to show that the phenomenon is not specific
to the particular model (1), we have also analyzed the
equation

ẋ = αxτ + x − 3(1 + α)xx2τ

+ 2(1 + α)x3τ + F sinΩt (12)

xτ = x(t − τ), (13)

that undergoes a Bogdanov–Takens bifurcation [20].
The resonance studied here also occurs, as shown in
Fig. 5: the introduction of a very small external forcing
induces again interwell oscillations.

4 Dynamics of the resonance

We now study the impact on the resonance of changes
in the forcing frequency Ω , the parameter α and the
history function u0.

Figure 6a depicts the amplitude (maximum value of
the Fourier spectrum) of the response x as a function
of Ω; the resonance manifests itself for a range of val-
ues of Ω around 0.4. Panel (b) gives the frequency ωn

for which the Fourier spectrum of the signal attains its
maximum value that we called in the figure ωmax. Note
the little correlation between ωmax and Ω; for Ω large,
ωmax corresponds to the frequency on Ls.

In Fig. 7, we use the alternative value α = − 0.8 in
order to check the occurrence of the resonance. Note
that the value of the critical τ0 for which the resonance
appears increases, in agreement with Eq. (5).
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It is of interest to study numerically the changes of
the critical τ0 as α varies, as shown in Fig. 8, that plots
the amplitude of the oscillation as a function of Ω for
different values of α, from α = − 0.5, panel (a) to
α = − 0.9, panel (e). We note that for larger values
of α, the critical value of τ that triggers the resonance
increases. The figures also show that the shape of the
peak in the (Ω, A) plane and the range of Ω leading to
resonance change with α, although not as much as the
value of τ0.

Another important factor in the study of delayed
systems is the history function. We have carried out
numerical experiments changing the history function
and found that the phenomenon is robust against the
variation of the history. In fact, none of the figures
shown above changes if we alternatively use linear,
quadratic or sinusoidal histories.

5 Conclusions

In conclusion, we have shown the phenomenon of
Bogdanov–Takens resonance in time-delayed systems.
This resonance is produced when a periodic signal of a
very small amplitude is applied to a delayed system that
undergoes, for some parameter values, a Bogdanov–
Takens bifurcation. This means that the forcing causes
the solution to jump from the unstable loop Lu in the
neighborhood of the equilibrium, to the stable loop Ls,
due to the coexistence of these two unstable and sta-
ble solutions in the formerly mentioned bifurcation.
Furthermore, the frequency of the resulting sustained
oscillation is not related to the frequencyΩ of the forc-
ing. Resonance takes places forΩ in a suitable interval,
rather than at critical values of Ω .
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