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The dynamics on a chaotic attractor can be quite heterogeneous, being much more unstable in
some regions than others. Some regions of a chaotic attractor can be expanding in more dimen-
sions than other regions. Imagine a situation where two such regions and each contains trajectories
that stay in the region for all time—while typical trajectories wander throughout the attractor. Fur-
thermore, if arbitrarily close to each point of the attractor there are points on periodic orbits that
have different unstable dimensions, then we say such an attractor is “hetero-chaotic” (i.e., it has het-
erogeneous chaos). This is hard to picture but we believe that most physical systems possessing a
high-dimensional attractor are of this type. We have created simplified models with that behavior to
give insight into real high-dimensional phenomena. Published by AIP Publishing. https://doi.org/10.
1063/1.5045693

Prediction and simulation for chaotic systems occur
throughout science. Predictability is more difficult when
the “chaotic attractor” is heterogeneous, i.e., if different
regions of the chaotic attractor are unstable in more direc-
tions than in others. More precisely, when arbitrarily close
to each point of the attractor there are different peri-
odic points with different unstable dimensions, we say
the chaos is heterogeneous and we call it hetero-chaos.
In particular, simple illustrative models of hetero-chaotic
attractors have been lacking in the literature, and here we
present the simplest examples we have found. In fact, our
new “baker” maps can be proved to have hetero-chaotic
attractors and to be ergodic.

I. INTRODUCTION

Predictability is especially difficult when a trajectory
enters a region that has more unstable directions than the
region it is leaving. This appears to occur in geomagnetic
storms and solar flares1 or natural hazards2 or earthquakes3

or weather.4 In such cases, “shadowing” breaks down: numer-
ical simulations no longer reflect true behavior. In our work
with simple whole earth weather models (e.g., Ref. 4), the
phase space had dimension 3 × 106, trajectories were chaotic,
and we estimate that there were 3 × 104 unstable directions,
that is, a tiny ellipse around an initial point would expand in
3 × 104 dimensions. The unstable dimension is usually about
one-hundredth of the dimension of the dynamical system. For
storm conditions, the regional unstable dimension is higher
and thus prediction and simulation and data assimilation are
much more difficult.

If the approximate state of the weather is known near
some point q in phase space, then after a short time, perhaps
a few hours, the possible weather states lie on an expanding

ellipse of some dimension D. We call D the unstable dimen-
sion at q. To update the current state of the weather every
few hours, it suffices to have enough observations to deter-
mine the location of the current state on that ellipsoid. The
number of data observations—point measurements of temper-
ature, humidity, pressure, etc. at nearby locations—needed for
that is proportional to D which can be far smaller than the
dimension of the state space.

For a barotropic atmospheric model, Gritsun5,6 found
many unstable periodic orbits, and he found a wide variation
in their numbers of unstable directions, all coexisting in the
same system. He did not attempt to verify that these orbits
were in the attractor.

Baker map. Our first examples with hetero-chaos are
based in part on the well-known “baker map.” It was defined
in 1933 by Seidel.7 The map is defined by dividing the square
into p equal vertical strips. Seidel used p = 10. We use p = 3
in Fig. 1, and p = 2 is most common in the literature. Each
strip is mapped to a horizontal strip by squeezing it vertically
by the factor p and stretching it horizontally by the same fac-
tor. The resulting horizontal strips are laid out covering the
square.

We also show a three dimensional version. In both of
these baker maps, the unstable dimension D is 1 and in par-
ticular is constant. In such cases,we refer to the chaos as
homogeneous chaos. The baker maps are area or volume pre-
serving. The earliest use of the map name “baker” that we
have found appears in the 1956 Lectures on Ergodic Theory by
Paul Halmos.8 He writes that the actions of the map are remi-
niscent of kneading dough and that it is “sometimes called the
baker’s transformation.”

In the bottom half of Fig. 1, we give a 3D baker map.
Here, the unstable dimension is D = 1 (and the map contracts
the y and z directions). To convert this example into one with
unstable dimension D = 2 and stable dimension 1, just take
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the inverse, mapping each box X ′ on the right to the box X on
the left. For area-contracting (“skinny”) and area-expanding
(“fat”) 2D-baker maps, see Refs. 9 and 10, respectively.

Our hetero-chaotic baker maps. The baker maps in
Fig. 1 are homogeneously chaotic, but we here modify them
to be hetero-chaotic (HC). We introduce two such modified
maps in Figs. 2 and 3 as prototypes for understanding attrac-
tors with far higher dimension. Our 2D map is not invertible
so its relevance to science may seem suspect, but we add one
dimension to that map and it becomes our 3D map, which is
invertible.

In Fig. 2, there are two regions (R1 = A ∪ D, the left
and right thirds of the square) where the dynamics is unsta-
ble in one direction (the x coordinate) while in the middle third
(B ∪ C), denoted R2, it is unstable in both x and z coordinates.
See Fig. 3 for a 3D invertible volume-preserving version.
There exist trajectories that stay in either region but almost
every trajectory wanders through the entire square. See Fig. 4
for the homogeneously chaotic invariant set formed by such
limited trajectory. We call the set an index set, as described
later. For simplicity, we ignore the dynamics of all points on
the boundaries of the rectangles A, B, C, and D. In the exam-
ple, in R1, the map contracts the y direction by a factor of 2
while it expands by a factor of 2 in R2. Hence a periodic orbit

FIG. 1. The homogeneous chaotic baker map in 2D and 3D. Top panel: The
standard, i.e., 2D, baker map is defined by splitting the square into p equal-
sized vertical slabs where p = 3 here. The square is mapped to the square,
with x �→ 3x mod 1. Each vertical slab on the left maps to a different horizon-
tal slab on the right, each stretched in the horizontal direction and shrunken
vertically. The assignment of which maps to which has been chosen arbitrar-
ily but the assignment is fixed. This map is homogeneously chaotic with one
expanding direction. Each slab has a fixed point denoted by a red dot. (Note
that two are on slab boundaries). The images are denoted by primes ′ so, for
example, A maps onto A′. Bottom panel: We provide a 3D version by slicing
a unit cube into four equal-sized pizza-box shaped slabs as shown. The cube
is mapped to the cube, using x �→ 4x mod 1 so each pizza-box is expanded to
the width of the cube; and each pizza-box maps to a different shoe box-shaped
region on the right, each shrunken by a factor of two in the y and z coordi-
nates. The assignment of which pizza-box maps to which shoe box has been
chosen arbitrarily but the assignment is fixed. This map is homogeneously
chaotic with one expanding direction.

FIG. 2. Our 2D Hetero-chaotic (HC) baker map BHC(x, z). The figure shows a
four piece version of the baker map. We divide 0 ≤ x < 1 into three intervals,
L = [0, 1/3), M = [1/3, 2/3), and R = [2/3, 1), and divide the square into 3
tall rectangles A, B ∪ C, and D whose bases are L, M , and R. The map BHC

is defined as follows: For x ∈ L, z �→ z/2. For x ∈ M , z �→ 2z mod 1. For x ∈
R, z �→ z/2 + 1/2. Then, x �→ 3x mod 1. Hence, BHC expands each rectangle
horizontally to full width as shown. The region R1 = A ∪ D is contracted
vertically. The region R2 = B ∪ C is expanded in both coordinates so that
the images of B and C each cover of the entire square. Hence R1 and R2 are
regions of one- and two-dimensional instability.

that has most of its points in R1 will have unstable dimension
1 while if most are in R2 it has unstable dimension 2.

Unstable Dimension Variability. If a periodic orbit is
unstable in k directions, we say it has UD-k. In our 2D exam-
ples, UD-1 orbits are saddles and UD-2 orbits are repellers.
Hence, if an attractor (with a dense trajectory) has a UD-1
orbit and a UD-2 orbit, the attractor has UDV.

When an attractor has 2 periodic orbits that are unstable
in different numbers of dimensions, we say the attractor has
Unstable Dimension Variability (UDV).11

Conjecture 1. Almost every chaotic attractor has the prop-
erty that if there is one UD-k periodic orbit, then there are
infinitely many UD-k periodic points and they lie arbitrarily
close to each point of the attractor.

II. HETERO-CHAOS

A set S is a chaotic attractor if (1) it is invariant (i.e.,
if a trajectory is in S at some time, then it is in S for all later
time), (2) S has a dense trajectory with at least one positive
Lyapunov exponent, and (3) trajectories near S are attracted
to it as time increases.

FIG. 3. A volume-preserving 3D version of Fig. 2. Here, the x-z plane plays
the role of x-z in Fig. 2 and the y coordinate has been added. Here, the cube
is partitioned into four regions A, B, C, and D and for all four x �→ 3x mod 1,
and each is mapped into a region of the same volume. We write X ′ for the
image of any region X . Both B and C expand in two directions and contract
in one, both having 1/6 the volume of the cube. A and D each have volume
1/3 and expand in only the x direction. In other words, the y-height of A′ and
D′ is 2/3 and the y-height (or thickness) of B′ and C′ is 1/6. Note that under
F the y coordinate shrinks for all four regions.
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FIG. 4. The invariant “index” sets. For the map in Fig. 2, the vertical red
lines here constitute the invariant set whose trajectories stay in R1 and the
vertical blue line (at x = 1/2) is the invariant set of points whose trajectories
stay inside R2. In contrast to points on these “index” sets, almost every ini-
tial point yields a trajectory that comes arbitrarily close to every point in the
square.

We will say a chaotic attractor has hetero-chaotic if arbi-
trarily close to each point of the attractor there are periodic
points on UD-k periodic orbits and this is true for multiple
values of k. Note that a chaotic “attractor” can have the whole
space as is the case with the baker map and our 2D and 3D
hetero-chaos baker maps. In Ref. 12, it is called “multi-chaos”
but “hetero-chaos” seems more appropriate. We expect that
most high-dimensional attractors are hetero-chaotic.

A consequence of UDV is that any trajectory that wan-
ders densely through the invariant set will occasionally get
very close to each periodic point. Therefore, that trajectory
will spend arbitrarily long intervals of time near each of
the fixed points (or periodic orbits). Hence, for each time
T > 0, the trajectory’s time-T positive Lyapunov exponents
will occasionally be the same as for the periodic orbit it
approaches.

Conjecture 2. UDV almost always implies hetero-chaos.

Results for the hetero-chaotic baker maps in Figs. 2
and 3. We can prove the maps in Figs. 2 and 3 are hetero-
chaotic. Specifically, arbitrarily close to each point q in the
square there are periodic points of different UD-k.

Degenerate periodic orbits. It is possible for some peri-
odic orbits to be degenerate. For our 2D HC-baker map, a
simple period-2 example has x = 1/8 and 3/8. Then, for each
z ∈ [0, 1), the point (1/8, z) maps to (3/8, z/2) which maps to
(1/8, z), so this is periodic. Clearly, there is an infinite collec-
tion of such period-2 orbits. There is a corresponding family
in the 3D version of the map. More generally, at each iterate
of a trajectory, nearby points differing only in the z-coordinate
either move apart by a factor of 2 or move closer by a factor
of 2, and if a periodic orbit has an equal number of both types,
then the orbit is neutrally stable in the z direction. All such

degenerate orbits have even period. Non-degenerate orbits are
called hyperbolic.

Counting hyperbolic periodic orbits. We can show the
numbers of period-N hyperbolic UD-1 and UD-2 periodic
orbits are both approximately 3N when N is large.

Ergodicity. We can show our 2D and 3D HC-baker maps
(denoted by F below) are “ergodic” in the following sense.
For every continuous function φ on the square or the cube,
write φ̂ for the average value of φ on the cube or the square.
The map F is ergodic if for almost every initial point q, the
trajectory average

1

N

N∑

n=1

φ[Fn(q)] → φ̂ as N → ∞.

Due to the ergodicity, we can also conclude that there is a
dense trajectory. In fact, ergodicity for our baker maps implies
that for almost every initial point q, the trajectory Fn(q) for
n ≥ 0 comes arbitrarily close to every point of the square or
cube, respectively.

The proofs of the statements that F is hetero-chaotic and
ergodic will be provided elsewhere.

The route to hetero-chaos when the attractor changes
continuously with a parameter. In addition to presenting
low-dimensional examples, the purpose of this paper is to ask
how hetero-chaos arises from homogeneous chaos as some
physical parameter is varied. We show numerical evidence
that the Zigzag map in Fig. 5 (where σ = 5) is homoge-
neously chaotic for α < αHC ∼ 0.31 and is hetero-chaotic for
α > αHC. Similarly, we show numerical evidence that the
Kostelich map (Eq. 1) is homogeneously chaotic for σ <

σHC = 1/π ∼ 0.318 and appears to be hetero-chaotic for σ >

σHC, when α = 0.07.
We believe if an attractor is changing continuously, the

transition will occur at a periodic orbit bifurcation and we give
some examples of this transition.

The crisis route to hetero-chaos. As some parameter,
say α, is varied, a “crisis” occurs at some value α0 when
there is a sudden discontinuous change in the size of a chaotic
attractor. Hence, a crisis can be seen as a sudden jump in
the plot of an attractor versus α. On the side of α0 where
the attractor is small, the attractor could be homogeneously
chaotic. On the other side, the attractor can be much larger
and can include periodic orbits of a different UD value. Then
the attractor has UDV and appears to be hetero-chaotic. See
Refs. 12–15.

The continuous route to hetero-chaos. If as a param-
eter α is varied, a homogeneous chaotic attractor suddenly
becomes hetero-chaotic after some α = αHC , we say a hetero-
chaos bifurcation (HCB) occurs at αHC. What is the nature of
this bifurcation? As a parameter changes, a periodic orbit in a
chaotic attractor can migrate to a region that is more unstable,
and the orbit’s UD value can increase. Then, an exponent of
that orbit will pass through 0 and a bifurcation will occur. Or
a new pair of orbits can appear in an analogue of a saddle-
repeller bifurcation, with UD values k and k + 1 for some
k > 0.

Conjecture 3. For a typical attractor, if an HCB occurs as
the attractor changes continuously (without a crisis), then
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FIG. 5. Defining our Zigzag map. Here, as in Fig. 2, the definition of the map
depends on which of the three intervals x is in: L = [0, 1/3), M = [1/3, 2/3),
and R = [2/3, 1). For x ∈ L, y �→ −1 + α(y + 1). For x ∈ R, y �→ 2 + α(y −
2). For x ∈ M , the figure shows the map. Each of the three maps is from
[−1,2] into itself. The horizontal coordinate x �→ 3x mod 1. Each slope in
the map shown is either 0 < α < 1 or ±σ , where σ > 3. Here α = 1/3, and
σ = 5 both here and in Fig. 6. All 5 fixed points are shown with large red dots.
The Zigzag map has an invariant fractal set on the vertical line for which
x = 1/2 (x is not shown). Here, these y values are illustrated using dots on
axes.

there will be a periodic orbit bifurcation, i.e., either period-
doubling or pitchfork or Hopf or pair-creation such as
saddle-repeller.

Expanding regions Rk and “index sets.” Let Rk denote
the region of phase space in which the dynamics (specifically,
the map’s Jacobian) is k-dimensionally expanding; see e.g.,
Fig. 2. We call the largest invariant set that lies wholly in Rk

the index-k set. In Fig. 2, R1 and R2 are described. The index
sets for the 2D HC baker map are shown in Fig. 4.

At the center of Fig. 6-Right for the Zigzag map (Fig. 5),
there is a different R2, the white rectangle (1/3 < x < 2/3,

FIG. 6. The Zigzag map’s bifurcation diagram and index sets. Left panel. The
chaotic attractor (red) is shown increasing in size as α increases. The blue set
is the index-2 set. At α ≈ 0.28 (solid black vertical line), the attractor begins
to move into the expanding region, but the attractor does not contain repelling
periodic points until after αHC ≈ 0.31 (dotted black vertical line), when a
period-4 repeller exists. Then, there is hetero-chaos. At α = 1/3, there is a
“crisis” after which the attractor jumps in size and is the entire x-y square.
Right panel. Here α = 0.4 (>1/3). We show only the index-1 set (red) and
the index-2 set (blue), which is on the vertical line x = 1/2. This illustrates
that within the hetero-chaotic attractor (the entire square) there are relatively
large index sets.

−c < y < 1 + c), where c = (1 − α)/(σ − α) ≈ 0.13, and
R1 is the rest, excluding boundary points.

It probably seems strange that the existence of two peri-
odic orbits with different UD values has such a dramatic
consequence for an attractor that it implies hetero-chaos. Our
response is that these orbits generally lie in index sets, that
can be quite big as Figs. 2 and 6 illustrate.

III. HETERO-CHAOS CONNECTS MANY PHENOMENA
LIKE FLUCTUATING EXPONENTS (FE) AND UDV

Hetero-chaotic attractors contain periodic orbits with dif-
ferent UD values. A typical trajectory will return near each,
occasionally spending long times near them before moving
on, and while near the periodic orbit of a region, it will have
the same number of positive finite-time Lyapunov exponents
(FTLEs) as the periodic orbit. As it moves among the peri-
odic orbits, its number of positive FTLEs fluctuates (for each
time T > 0); see Refs. 16 and 17. This property is referred to
as FE (Fluctuating Exponents). Some papers have used the
term UDV to mean FE. UDV and FE are both implied by
other dynamical phenomena in the literature such as riddled
basins, blowout bifurcations, on-off intermittency, and chaotic
itinerancy.18–22

Transitions from homogeneous chaos to FE or UDV have
been observed in Refs. 17, 23, and 24, but the mechanism of
the transitions is not discussed.

Shadowing. It is important for a physicist to know how
good a numerical simulation is—as in a climate simula-
tion—and for how long it is valid. When each numerical
trajectory stays close to some actual trajectory of the sys-
tem, we say the system has the shadowing property, i.e.,
simulations are realistic.

When a trajectory moves from a region where the dynam-
ics has fewer unstable directions to a region where it has more,
shadowing fails, and trajectories become unrealistic—see
Fig. 3 of Ref. 25. Such a transition causes fluctuations in the
number of positive FTLEs, which means FE will be common
in higher-dimensional attractors.

The FE property implies shadowing fails, as was estab-
lished by Dawson et al.16 Homogeneous chaotic systems
can have the shadowing property but hetero-chaotic systems
cannot, as shown for UDV in Refs. 25–27.

Hetero-chaos is not Hyper-chaos. Hetero-chaos should
not be confused with “hyper-chaos.”28,29 A hetero-chaotic
attractor can have one or more positive Lyapunov exponents.
It need not be hyper-chaotic (i.e., have more than one posi-
tive Lyapunov exponent). Furthermore, all periodic orbits of
a hyper-chaotic attractor might have the same UD value, in
which case it would not be hetero-chaotic.

UDV in the mathematics literature. The first examples
of a (robust) invariant set containing periodic orbits with dif-
ferent UD values were given by Abraham and Smale30 and
Simon31 in four and three dimensions, respectively. “Robust”
means the property persists under all sufficiently small pertur-
bations. Later, it was mathematically studied using the notions
of “blenders” and “hetero-dimensional cycles” (see Ref. 32
and references therein). That literature generally shows no
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FIG. 7. Homoclinic points and periodic saddles for Kostelich map. It can
be shown that both saddles and repellers are dense in the attractor, so that
we have hetero-chaos. This figure shows what the sets of homoclinic points
and periodic points look like for limited computations. Left panel. Points in
the attractor that map to the repelling origin within 14 iterates. Since they
are in the unstable manifold of (0, 0), they are homoclinic points. In fact,
the homoclinic points can be shown to be densely distributed in the attractor
implying that repelling periodic points are dense, since Marotto34 shows that
arbitrarily close to each homoclinic point there are repelling periodic points.
Right panel. The saddle periodic points (red) of period 13 are plotted on top
of the chaotic attractor (green). They become denser as the period increases.

interest in whether their invariant sets are (physically observ-
able) attractors.

IV. TWO MORE HETERO-CHAOTIC MAPS

Our “Zigzag” map and its route to hetero-chaos. As
with the 2D HC Baker Map, the next 2D map has x dynam-
ics described by x �→ 3x mod 1, and its y dynamics depends
on whether x is in L, M , or R. It has two slope parameters,
α and σ . Figure 5 shows the y dynamics on M and the cap-
tion gives the map also on L and R. The map has an index-2
fractal invariant set on the vertical line at x = 1/2 for every
α and every σ > 1; (we use σ = 5 and then its dimension is

FIG. 8. A projection of the chaotic attractor and three periodic orbits
with different UD values. This shows a projection into the x1-x2 plane of
orbits O1, O2, and O3 with UD-1 (green), 2 (blue), and 3 (light blue), respec-
tively. There are infinitely many possible projections of R

8 into a plane and all
those tested show all three periodic orbits lying within the projected attractor.
See also Fig. 9.

FIG. 9. Trajectories approach 3 periodic orbits. We investigated three peri-
odic orbits O1, O2, and O3 in Fig. 8, O1 in the left panel and O2 in the right.
The graph for O3 is omitted since it is quite similar to the right panel. We
chose 21 initial conditions very close to each other. In each panel, for each
of 21 trajectories, the closest approach by time t to the respective periodic
orbit is reported. The 8 Lyapunov exponents for the global chaotic attractor
are as follows: 1.594, 0.390, 0.0, −0.453, −0.960, −1.508, −2.450, −4.613.
A standard estimate of a dimension of a chaotic attractor is its “Lyapunov”
dimension.38 The Lyapunov dimension of the attractor is 5.379 and according
to a long-standing conjecture, Farmer et al.9 the closest approach of a typi-
cal trajectory to a typical point of the attractor is expected to be proportional
to t−1/5.379 for time t ∈ [0, t]. The straight line indicates that rate of closest
approach to that orbit (though periodic orbit points are not generally typical).
The straight line has been shifted vertically slightly. For all three, the actual
convergence appears slightly faster than expected. It suggests that given suf-
ficient time the typical trajectory would come arbitrarily close to all three
periodic orbits. The Lyapunov dimension for these periodic orbits are 5.268
for O1, 5.107 for O2, and 5.514 for O3.

ln 3/ln 5 ≈ 0.683). The attractor is chaotic for all α > 0, and
for α < 0.28 is an index-1 set.

As α increases from 0, at αHC ≈ 0.31 (see the left panel of
Fig. 6), there is a pitchfork bifurcation of a period-4 periodic
orbit, one of whose branches consists of repellers. Numeri-
cally, this appears to be the first occurrence in the attractor of a
repelling periodic orbit. This observation supports Conjecture
3. Hence, the HCB occurs at αHC.

At α = 1/3, the attractor collides with the index-2 set,
after which the attractor suddenly jumps in size, covering the
whole x-y square. For α = 0.4, the attractor is the whole torus
and both index-1 and index-2 sets coexist (see the right panel
of Fig. 6). We have identified the index sets by using the
Stagger-and-Step method.33

Kostelich map. The following smooth map11,12 is defined
on a two-dimensional torus:

xn+1 = 3xn mod 1

yn+1 = yn − σ sin(2πyn) + α[1 − cos(2πxn)] mod 1. (1)

It has an HCB whose periodic orbit bifurcation is a period-
doubling at the origin, a fixed point that becomes a repeller.
We find numerically that immediately after the bifurcation,
the chaotic attractor has a dense set of repellers and a dense set
of saddles. This observation also supports Conjecture 3. For
α = 0.07 and σ ∈ (0.2, 1/π), there is a chaotic attractor for
which all periodic orbits in the attractor are saddles. The origin
period-doubles as σ increases at σ = σ0 = 1/π ∼ 0.318 (the
HCB value). As σ increases from beyond σ0 a new index-2
set appears in the attractor, and repelling periodic orbits are
immediately dense in the attractor (Fig. 7, left, for σ = 0.35),
and the saddle periodic orbits are still dense in the attractor
(Fig. 7, right).

Lower-triangular Jacobians. Our hetero-chaotic baker
maps and the maps in this section have the following property.
Each periodic orbit lying wholly in some Rk has UD-k. This is
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true because for each map F, the Jacobian matrix DF(x, y) is
lower triangular. Such maps are called “skew products.” The
Jacobian DFT of the time-T map FT is also lower triangular
since by the chain rule, DFT is the product of T of these matri-
ces DF. The number of expanding directions for a point is the
number of diagonal elements of DF that are >1.

V. LORENZ-96 MODEL

So far in this paper, we have considered maps rather than
differential equations in order to keep the models as simple as
possible, but our real goal is to understand higher dimensional
hetero-chaotic differential equations. Edward Lorenz pro-
posed a variety of closely related chaotic differential equation
models. See Ref. 35 for connections among them and for some
generalizations. In particular, Lorenz36,37 proposed a dissipa-
tive N-dimensional ODE as a model of some oscillating scalar
atmospheric quantity described by

dxk

dt
= xk−1(xk+1 − xk−2) − xk + f , for k = 1, . . . , N ,

where the system has cyclical symmetry, so xN+k = xk for all
k = 1, . . . , N , and where f is a forcing parameter. We use
the case N = 8. For the Lorenz-96 model with f = 8, the
chaotic attractor has Lyapunov dimension 5.379. Numerically,
we found many periodic orbits of UD-1, 2, and 3, and no peri-
odic orbits with UD-k (k > 3). Three of them with different
UD values are shown in Fig. 8. The distances between three
periodic orbits and chaotic orbits were calculated and shown
in Fig. 9. This implies that the periodic orbits are in the attrac-
tor and the attractor has UDV, and at least according to our
conjecture it is also hetero-chaotic.

VI. DISCUSSION

We began this project to try to understand how such
a phenomenon as hetero-chaos could exist with trajecto-
ries wandering through very different kinds of regions. We
believe hetero-chaos is important for all models with high-
dimensional attractors including weather prediction and cli-
mate modeling. It is perhaps the unifying concept linking
different phenomena observed in numerous numerical simula-
tions of chaotic dynamical systems and physical experiments,
such as unstable dimension variability (UDV), on-off inter-
mittency, riddled basins, blowout, and bubbling bifurcations.
It is also a major cause of shadowing to fail, i.e., for simulated
solutions to be non-physical. We have made three conjectures
as the beginning of a general theory of hetero-chaos.

Hetero-chaotic systems have been particularly difficult
to visualize, so we have introduced some low-dimensional
examples as paradigms, including our baker maps that are
perhaps the simplest possible examples of hetero-chaos. See
Figs. 2 and 3.

Our baker maps are only the second example(s) proved
to have a hetero-chaotic attractor. (We think of our 2D
and 3D examples as different aspects of a single example.)
The first case12 had a quasi-periodic set in the attractor.
Yet quasi-periodicity would appear to have little to do with
hetero-chaos. So our examples here (which do not have
quasi-periodicity) is reassuring and much simpler.

We investigate how hetero-chaos arises as a parameter
is varied. It can either occur at a crisis, that is a sudden
jump in the size of the chaotic attractor, or it can occur when
the attractor is changing continuously. In the latter case, we
find that the transition to hetero-chaos occurs at a periodic
orbit bifurcation, and we believe this is the typical case when
the attractor varies continuously. Because shadowing fails for
hetero-chaotic systems, detecting the transition from homo-
geneous chaos to hetero-chaos can be critical for prediction
efforts.

While the UDV condition requires only two orbits of dif-
ferent UD values, we have focused on the existence of not
just these two orbits but much larger index sets which exist in
hetero-chaotic attractors and make hetero-chaos persistent.

Because of the increasing importance of models with
high dimensional chaotic attractors, we have tried to create
terminology that is easy to use.
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