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Abstract We investigate the aperiodic stochastic res-
onance (ASR) in a bistable fractional-order system
when the fractional order lies in the interval (0, 2]. We
find that a weak aperiodic signal can be amplified and
optimized by varying the fractional order in the nonlin-
ear system, nomatterwhether it has the assistance of the
noise or not. We focus mainly on the self-similarity of
the response to the input aperiodic signal and the adap-
tive ASR. The self-similarity is a characteristic that the
response of a nonlinear systemmatches the input signal
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well, in the absence of the noise excitation. The adap-
tive ASR is a technique for the optimal ASR to occur
by modulating the fractional order, the noise intensity,
or the bistable system parameters. In order to make the
optimal ASR occur, an adaptive particle swarm opti-
mization (APSO) algorithm is used in this work as the
method of parameter optimization. In previous works,
only the periodic signal is optimized in a noisy bistable
fractional-order system and the ASR induced by the
fractional-order system has not been achieved. In engi-
neering and scientific fields, not only periodic signals
need to be processed, but also weak aperiodic ones.
Moreover, the optimal ASR shows better results based
on the APSO algorithm. We believe that the results
of this paper might have a positive contribution in the
dynamics research.
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1 Introduction

Stochastic resonance (SR) is a nonlinear physical phe-
nomenon exploiting the effect of the background noise
to enhance the system’s response to a weak periodic
input signal. The concept of SR was firstly proposed
by Benzi et al. [1–3] to explain the periodic recurrence
of ice ages on the earth in the early 1980s. Since the
phenomenonof SRwas discovered, it has attracted con-
siderable attention over the past three decades and has
been widely applied in physics [4], chemistry [5–7],
biology [8–10], engineering [11–13], and so on. Fur-
thermore, the theory of the adaptive SR [14] was pro-
posed to achieve the SR optimality condition and it
is widely applied in many disciplines [15,16]. How-
ever, given that real-world external signals are typi-
cally aperiodic, the applicability of SR to a practical
project is limited to some extent. Another interesting
phenomenon consisting in the fact that noise can also
serve to enhance the response of a nonlinear system to
a weak aperiodic input signal was found by Collins et
al. [17–19]. It is called aperiodic stochastic resonance
(ASR). ASR can be used to detect and process weak
aperiodic signals. Also, the ASR technique has been
used to implement memory and logic gates [20], base-
band binary signal transmission [21–24], mammalian
cutaneous mechanoreceptors [25], digital watermark-
ing [26], optical cavity [27], etc. The bipolar binary
signal is one kind of common aperiodic signal. It is
usually utilized in the field of information transmission
and other signal issues. Studying on it may be benefit
to improve the accuracy of digital communication and
pattern recognition. Moreover, it has been investigated
by both experimental [28–30] and numerical methods
[31,32]. As a result, the bipolar binary signal will be
considered in this paper.

In recent years, due to the intensive development of
fractional-order calculus theory, there have been sev-
eral researches on the phenomenon of SR in fractional-
order nonlinear systems [33–35]. As expected, SR can
also occur as a response by modulating the fractional
order, noise intensity, or system parameters. More
importantly, fractional-order systems usually showbet-
ter properties. It especially has excellent performance
in industrial control [36,37], viscoplasticity modeling
[38,39], signal processing [40], mechanical fault diag-
nosis [41], membrane mechanics [42], and in many
other fields. Moreover, under the excitation of peri-
odic signals, the fractional systems may present rich

dynamical behaviors. Shen et al. [43,44] studied the
primary and subharmonic resonance of the van der Pol
oscillator with fractional-order derivative by the aver-
aging method and discussed the effects of the frac-
tional damping. Yang and Zhu [45] investigated the
vibrational resonance phenomenon in overdamped and
underdamped Duffing systems with fractional-order
damping. Some new resonance and bifurcation phe-
nomena were found.

Although some interesting results havebeen reported
in many research articles, some problems still need to
be further discussed. On the one hand, external weak
signals, whichwe need to process, are usually aperiodic
in the real world. Hence, it is necessary to achieve the
ASR induced by the nonlinear system. Meanwhile, in
view of better properties of the fractional-order system,
in this work, we will analyze some dynamical proper-
ties of ASR in a noisy bistable fractional-order system
when the fractional-order lies in the interval (0, 2]. On
the other hand, the adaptive SR was applied in differ-
ent fields, but the adaptive ASR has not been achieved.
In addition, the response of a nonlinear system sub-
jected to only a weak aperiodic input signal has not
been intensively studied yet.

The rest of this paper is organized as follows.
In Sect. 2, we will investigate the properties of the
response of a nonlinear system induced by an aperi-
odic input signal. Besides, we will introduce an index
to discuss the self-similarity of the response to the input
signal. In Sect. 3, we will investigate the phenomena
of the traditional ASR induced by the fractional order
and the noise intensity, respectively. In Sect. 4, we will
make the optimal ASR occur based on the adaptive par-
ticle swarm optimization (APSO) algorithm. Finally,
we will give main conclusions of this paper in Sect. 5.

2 Self-similarity of the response to the input
aperiodic signal

A typical fractional-order system is governed by

dαx

dtα
= f (x) + s(t), α ∈ (0, 2], (1)

where f (x) is a nonlinear function and s(t) is an
aperiodic signal. In this paper, we let f (x) = ax −
bx3 which is a bistable potential system. Herein, we
use the Grünwald–Letnikov definition [46,47] for the
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fractional-order differential operator to discretize the
fractional-order system. According to the Grünwald–
Letnikov definition, the fractional-order differential
operator is defined as follows

dαx(t)

dtα

∣
∣
∣
∣
∣
∣

t=kh = lim
h→0

1

hα

k
∑

j=0

(−1) j
(

α

j

)

x(kh − jh) ,

(2)

where h denotes the time step and

(

α

j

)

is the binomial

coefficient

(

α

j

)

= Γ (α + 1)

Γ ( j + 1)Γ (α − j + 1)
. (3)

In Eq. (3), Γ (•) is the Gamma function. Letting wα
j =

(−1) j
(

α

j

)

, according to [47], we have

wα
0 = 1, wα

k =
(

1 − α + 1

k

)

wα
k−1, k = 1, 2, . . . , n.

(4)

Under the zero initial conditions, the fractional-order
operator is discretized to

dαx(t)

dtα

∣
∣
∣
∣
t=kh

= lim
h→0

1

hα

⎡

⎣x(kh) +
k−1
∑

j=1

wα
j x(kh − jh)

⎤

⎦ . (5)

For simplification, we introduce the notation as xk =
x(kh). Here, xk is the kth point in the discrete time
series. For a small value of h, the limitation symbol
can be removed. As a result, we get the discretization
for Eq. (1), i.e.,

xk = −
k−1
∑

j=1

wα
j xk− j + hα[ f (xk−1) + sk−1]. (6)

In this paper, s(t) is the aperiodic bipolar binary signal

s(t) = A
∞∑
i=0

qiΓ (t − iT )

Γ (t) =
{

1, t ∈ [0, T ]
0, t /∈ [0, T ]

. (7)

Herein, A is the signal amplitude and T is the minimal
random pulse width. Besides, qi presents the random
numbers of+1or−1with an independent distribution.

The input signal and the output signal of Eq. (1)
under the fractional-order value α = 0.1, 0.5, 1, 1.5, 2
are, respectively, given in Fig. 1 by the algorithm shown
inEq. (6). In Fig. 1b,when the fractional orderα = 0.1,
the signal distortion appears. In Fig. 1c, as the fractional
order increases to α = 0.5, the distortion of the out-
put signal turns severely. With the increase in the frac-
tional order further, as shown in Fig. 1d, e, α = 1.0 and
α = 1.5, respectively, the distortion of the output signal
comparedwith the input signal turns slightly. If we con-
tinue to increase α to 2, as shown in Fig. 1f, the output
presents oscillation behavior. There are some mono-
graphs investigating this kind of oscillation according
to the nonlinear vibration theory [48,49], where the
signals are distorted completely for this case.

To measure the strength of the output, we define an
index β as the amplification factor, specifically,

β =
1
n

∑n
k=1 |xk − x̄ |

A
. (8)

In Eq.(8), the term x̄ = 1
n

∑n
k=1 xk is the mean value

of the response. Another term |xk − x̄ | represents the
distance of the kth point to the mean value of the
response. Further, the numerator inEq. (8), i.e., the term
1
n

∑n
k=1 |xk − x̄ | is an approximate ensemble mean

value of the response amplitude.We know that the time
series appear around the mean value of the response.
Hence, Eq. (8) represents the ratio of the amplitude of
the output to the input approximately. We declare that
β defined in Eq. (8) is only an approximate measure-
ment. Due to the stochastic characteristics of an aperi-
odic signal, it is difficult to give a definition to measure
the amplitude of the response exactly. When t → ∞,
β approaches an exact value.

To investigate the influence of the fractional order
on the response of the bistable system, we plot the
dependence of the amplification factor β on the value
of the fractional order α in Fig. 2a. Apparently, with
the increase in the fractional order, the magnitude of
the amplification factor begins to increase gradually,
then it almost keeps changeless when the fractional
order reaches a certain value. In addition, it can be
seen clearly that the smaller the signal amplitude is, the
larger the amplification factor will be. In other words,
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Fig. 1 a The input signal.
b–f The response of the
system under different
values of the fractional
order. The simulation
parameters are a = 0.2,
b = 0.2, A = 0.2, h = 0.1,
T = 100, in b α = 0.1, in c
α = 0.5, in d α = 1, in e
α = 1.5, and in f α = 2
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the weak aperiodic signal can be enhanced by the frac-
tional order system easily.

From Fig. 1, we learn that the distortion of the out-
put signal is influenced by the factional-order. From the
time series, we cannot measure the distortion quantita-
tively. Hence, we introduce the cross-correlation coef-
ficient which is a common index in the statistics and an
effective tool to describe the similarity of two differ-
ent time series. The cross-correlation coefficient Csx

which measures the similarity between the input signal
and the output signal is given by

Csx =
∑n

k=1 (sk − s̄)(xk − x̄)
√

∑n
k=1 (sk − s̄)2

∑n
k=1 (xk − x̄)2

, (9)

where sk is the kth point in the signal time series and
s̄ = 1

n

∑n
k=1 sk . The notation x̄ is the same as that

defined in Eq. (8).
In Fig. 2b, we give curves of the cross-correlation

coefficient Csx versus the fractional order α. With the
increase ofα,Csx goes downgradually.However,when
Csx decreases to a certain value, Csx goes up to the
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Fig. 2 a The magnitude of the amplification factor versus the
fractional order for different values of the amplitude.bThe cross-
correlation coefficient versus the fractional order for different
values of the amplitude. The simulation parameters are a = 0.2,
b = 0.2, A = 0.2, h = 0.1 and T = 100

maximal value and keeps it as a constant almost before
α = 2. For small values of α, the distortion is slight.
It can also be obtained from the time series in Fig. 1b
intuitively. However, it is a remarkable fact that the
cross-correlation coefficient goes down dramatically
and reaches a very small valuewhen the fractional order
α approaches to 2 closely. It is because the oscillation
appears for this case as shown in Fig. 1f. In otherwords,
the curves in Fig. 2b can express the distortion of the
time series excellently. Consequently, from Figs. 1 and
2b, we can see that the cross-correlation coefficient is
an effective tool to characterize the degree of the sig-

nal distortion. Moreover, we find that the smaller the
signal amplitude is, the smaller of the maximal value
of Csx will be. It is contrary to the effect of the signal
amplitude on the amplification factor in Fig. 2a.

Tohelpunderstand theperformanceof the fractional-
order system further, we give some explanations with
the help of the considered system under the step signal
excitation. It is because in a short-time interval, the sys-
tem under the aperiodic binary signal excitationmay be
viewed as that under a step signal excitation. The step
response curves of the fractional-order system for sev-
eral values of α are illustrated in Fig. 3. When α ≤ 1,
for example α = 0.1, 0.5, 1, the response is sluggish
without oscillation and does not overshoot the mean
value of the response. As α increases, the mean value
of the response also increases in Fig. 3b. The ampli-
tude of the response is controlled by fractional order in
certain range, which is the same as the phenomenon of
Fig. 1. As α increases over 1, for example α = 1.5, 1.8,
the response overshoots and oscillates around the final
value. The larger α is, the larger of the overshoot is
and the longer it takes for the oscillations to die out.
As α increases to 2, the oscillation is sustained. These
facts are in accordance with those in Fig. 1b–f. Hence,
taking Figs. 1 and 3 into account, we educe that the
waveform of the output is mainly affected by the tran-
sient response and the amplitude of the output ismainly
affected by the fractional order. As to the focus in this
paper, i.e., the similarity and the amplification of the
signal, the response of the system induced by the tran-
sition of the aperiodic signal from negative (positive)
to positive (negative) value is the key factor. In the tran-
sition point, the performance of the system under the
excitation of aperiodic bipolar binary signal is similar
to that under the excitation of a step signal. Hence, as
we show in Fig. 3, the factional-order value influences
the waveform and amplitude, i.e., the performance of
the system.

To investigate the dependence of the response on the
input signal thoroughly, we keep the signal amplitude
fixed, but change the signal waveform only. In Fig. 4,
three aperiodic signals for different waveforms with
A = 0.1 are given. Then, we plot Fig. 5 under the
excitation of these signals. In Fig. 5a, the curves of the
amplification factor β versus the fractional order α are
plotted. In this subplot, we see that the β − α curve is
independent of the input signal waveform. In Fig. 5b,
the curves of the cross-correlation coefficient Csx ver-
sus the fractional order α are shown. Apparently, the
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Fig. 3 a The step response
of the fractional-order
system for several values of
the fractional order. b The
mean value of the step
response versus the
fractional order. The
simulation parameters are
a = 0.2, b = 0.2, A = 0.2,
h = 0.1 and T = 100
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Fig. 4 The input aperiodic
signal for three different
waveforms with A = 0.1
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Fig. 5 a The amplification factor versus the fractional order
under the excitation of three input signals described in Fig. 4.
b The cross-correlation coefficient versus the fractional order
under the excitation of three input signals described in Fig. 4.
The simulation parameters are a = 0.2, b = 0.2, A = 0.1,
h = 0.1 and T = 100

Csx − α curve is also independent of the input wave-
form. These facts reveal that the dynamical properties
(such as β and Csx ) of the response is almost inde-
pendent of the waveform of the aperiodic signal. How-
ever, in Fig. 2, we know that these dynamical properties
closely depend on the signal amplitude.

As a conclusion of this section, we find that the
output of the system can be optimized and amplified
by modulating the fractional-order value. The main
properties of the response are independent of the sig-
nal waveform but influenced by the signal amplitude.

Moreover, the cross-correlation coefficient introduced
in this section is an effective index tomeasure the signal
distortion.

3 The noise-induced traditional ASR

Noise is almost ubiquitous in nature.TheSR inducedby
a noisy bistable systemhas been investigated in our pre-
vious work [50]. Even though some interesting results
have been observed, it is significant to investigate the
ASR induced by a nonlinear system, since the ASR is a
high efficientmethod to process the aperiodic signal. To
our knowledge, the ASR has not yet been achieved in a
fractional-order system. Hence, it is necessary to study
and develop the ASR further, especially in a fractional-
order system.

As is well known, the fractional-order damping and
the noise are important factors to induce the SR phe-
nomenon [50]. Hence, we focus mainly on how the
fractional-order value and noise intensity affect the
ASR phenomenon in the following. In this part, the
system for ASR to occur is a typical nonlinear system
which is governed by

dαx

dtα
= f (x) + s(t) + ξ(t), α ∈ (0, 2], (10)

where we still use f (x) = ax − bx3 · s(t) is an ape-
riodic signal function as is used in last section. ξ(t) is
a Gaussian white noise with the following statistical
properties

〈ξ(t)〉 = 0, 〈ξ(t1)ξ(t2)〉 = σ 2δ(t1 − t2). (11)

In Eq. (11), σ is the noise intensity. According to [51],
the time series of a Gaussian white noise can be con-
structed by the following series

ξk = σ√
h

ζk, k = 1, 2, . . . , n, (12)

where ζ presents the randomnumberswith the standard
normal distribution and h represents the time step. Sim-
ilar to the deducing process from Eqs. (1) to (6), we
obtain the discretization algorithm for Eq. (10)

xk = −
k−1
∑

j=1

wα
j xk− j+hα[ f (xk−1)+sk−1+ξk−1]. (13)

123



C. Wu et al.

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.2

0.4

0.6

0.8

1

σ

C
sx

α= 0.8
α= 1
α= 1.5

Fig. 6 The cross-correlation coefficient versus the noise inten-
sity for different fractional-order values. The simulation param-
eters are a = 1, b = 1, A = 0.22, h = 0.2 and T = 200

The response of the fractional system under the aperi-
odic signal and noise excitation can be calculated by
using Eq. (13).
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Fig. 8 The cross-correlation coefficient versus the fractional
order for different values of the noise intensity. The simulation
parameters are a = 1, b = 1, A = 0.3, h = 0.1 and T = 100

In Fig. 6, we fix the fractional order α as a con-
stant, for example α = 0.8, the noise intensity on
the response of the fractional-order system is shown

Fig. 7 a The input
aperiodic signal. b–d The
response of the system
under different noise
intensities with α = 1.5.
The simulation parameters
are a = 1, b = 1, A = 0.22,
h = 0.2, T = 200, in b
σ = 0.1, in c σ = 0.3, and
in d σ = 0.6
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Fig. 9 a The input
aperiodic signal. b–e The
response of the system
under different
fractional-order values with
σ = 0.1. The simulation
parameters are a = 1,
b = 1, A = 0.3, h = 0.1,
T = 100, in b α = 0.4, in c
α = 0.7, in d α = 1.3, in e
α = 1.9, in f α = 1.98
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clearly. It can be seen that the change tendency of the
curves in the fractional-order system is similar to that
in the ordinary system (α = 1). Corresponding to the
curve (for α = 1.5) in Fig. 6, different time series of the
fractional-order system under a Gaussian white noise
excitation are given in Fig. 7.Weuse the same aperiodic
input signal in Figs. 6 and 7. The input aperiodic signal
is shown in Fig. 7a.We see that the weak input signal is
optimized and amplified in a nonlinear fractional-order
system when σ = 0.3, as shown in Fig. 7c. In other
words, σ = 0.3 is the optimal noise intensity. Under
weaker noise excitation, the output signal turns worse,

as shown in Fig. 7b, althoughCsx can reach a quite high
value. Under stronger noise excitation, the weak input
signal will be overwhelmed by the noise and the out-
put is scrambled, as shown in Fig. 7d. Moreover, based
on the fact that the larger the fractional order is, the
smaller the optimal noise intensity will be, the ASR
tends to occur more easily. It can also be seen from
Fig. 6. In other words, there exists a reference value
of the parameter modulation to achieve optimal ASR.
Both Figs. 6 and 7 show the traditional ASR induced
by modulating the noise intensity.
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Fig. 10 The flowchart for the adaptive ASR based on the APSO
algorithm

To investigate the effect of the fractional order on
the response of the fractional-order system, we fix the
noise intensity and make the fractional order as a con-
trollable variable. The cross-correlation coefficientCsx

versus the fractional order α is clearly shown in Fig. 8.
For the case σ = 0.1, theCsx −α curve presents appar-
ently a double-peak. However, when the noise intensity
is σ = 0.2, the cross-correlation coefficient function
degenerates into a single peak. If we increase the noise
intensity further, the curveof the cross-correlation coef-
ficient function tends to be flat. In other words, the
effect of the fractional order on the response will be
weaker, when the noise intensity increases gradually.
In addition, for the case σ = 0.1, in the intervals

[0.3, 0.7] and [1.3, 1.9], the cross-correlation riseswith
the increase of α. However, in the intervals (0.2, 0.3],
[0.7, 1.3] and [1.9, 2], the cross-correlation decreases
with the increase of α. Corresponding to the curve (for
the case σ = 0.2) in Fig. 8, the time series of five output
signals are depicted in Fig. 9. We use the same aperi-
odic input signal in Figs. 8 and 9. The input aperiodic
signal is shown in Fig. 9a. In Fig. 9c, α = 0.7, it corre-
sponds to the first peak of the curve in Fig. 8. In Fig. 9e,
α = 1.9, it corresponds to the second peak of the curve
in Fig. 8. In Fig.9d, the optimal output is achieved.
For other fractional-order values, such as time series
in Fig. 9b–d, the output cannot cross the potential well
synchronicallywith the input signal. The output signals
are distorted for these cases.

As a conclusion of this section, we find that both
the noise intensity σ and the fractional order α can
induce the ASR. Moreover, the ASR induced by the
noise can improve the cross-correlation coefficient and
reduce the signal distortion effectively. In other words,
the noise-induced ASR plays an important role in the
fidelity of the input signal. Moreover, we find that the
larger the fractional order is, the smaller the optimal
noise intensity might be.

4 The adaptive ASR

The adaptive SR is a theory for the optimal SR to
occur by modulating the fractional order, noise inten-
sity, or system parameters. Similarly, the adaptive ASR
is to achieve an optimal ASR bymodulating the related
parameters. In order to search these optimal parameters
fast and exactly, we can utilize some optimization algo-
rithms, such as the particle swarm optimization (PSO)
algorithm [52], the modified particle swarm optimiza-
tion algorithm [53], and the genetic algorithm [54].

The APSO algorithm [55] possesses better search
efficiency than the classical PSO, especially perform-
ing a global search over the entire search space with a

Table 1 The optimization results of the fractional order and the noise intensity under different values of the system parameter a

a 0.1 0.3 0.5 0.6 0.8 1 1.2

α 1.087280 1.404065 1.591632 1.644298 1.844786 1.462384 1.556489

σ 0.200682 0.208095 0.202791 0.210723 0.200462 0.385922 0.436082

Csx 0.937289 0.945958 0.947071 0.925858 0.888732 0.840848 0.785853

The simulation parameters are b = 0.8, A = 0.2 and T = 100
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Fig. 11 a The input
aperiodic signal. b–d The
response of the system
under the noise excitation
with different values of the
system parameter. The
simulation parameters are
b = 0.8, A = 0.2, h = 0.1,
T = 100, in b a = 0.3, in c
a = 0.6, and in d a = 0.8
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Table 2 The optimization results of the system parameters under different values of the fractional order

α 0.6 0.7 0.8 1.0 1.2 1.4 1.6

a 0.548526 0.444167 0.296858 0.234842 0.312448 0.399378 0.344482

b 0.652437 0.529641 0.361056 0.237422 0.226623 0.213681 0.149553

Csx 0.800489 0.832314 0.850076 0.867303 0.872182 0.870035 0.865829

The simulation parameters are σ = 0.36, A = 0.2, h = 0.1 and T = 100

faster convergence speed. The classical PSO algorithm
can easily get trapped in the local optima when solving
complex multimodal problems. Hence, we choose the
APSO algorithm as the optimization method.

Each particle is regarded as a potential solution to
a problem. The i th particle is connected with two vec-
tors, i.e., the position and velocity of the particle. The
position of the i th particle is recorded as the vector
Xi = (xi1xi2, . . . xid), i = 1, 2, . . .m. The veloc-
ity of the particle i is recorded as the vector Vi =
(vi1, vi2, . . . vid), i = 1, 2, . . .m. Here, d stands for
the dimensions of the search space. At first, each parti-
cle with random position and velocity on d dimensions
is initialized. The initial fitness value of each particle is

obtained by using the fitness function g(x). Pid is the
local best value of the position and Pgd is the global
best value of the position. They are governed by

pid (k
′ + 1)

=
{

pid(k′), g(xid(k′ + 1)) < g(pid (k′))
xid(k′ + 1), g(xid(k′ + 1)) ≥ g(pid (k′)) (14)

and

pgd (k
′ + 1)

=
{

pgd(k′), g(pid (k′ + 1)) < g(pgd (k′))
pid(k′ + 1), g(pid (k′ + 1)) ≥ g(pgd (k′)) , (15)

where k′ represents the k′th iteration (k′ < k′
max). k

′
max

represents the maximum value of the iterations. As a
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Fig. 12 a The input
aperiodic signal. b–d The
response of the system
under the noise excitation
with different values of the
fractional order. The
simulation parameters are
σ = 0.36, A = 0.2,
h = 0.1, T = 100, in b
α = 0.8, in c α = 1, and in
d α = 1.2
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result, Pid equals Pgd when k′ = 0, which is the best
value of the initial fitness values of all particles. The
position and velocity of each particle are updated as

xid(k
′ + 1) = xid(k

′) + vid(k
′ + 1) (16)

and

vid(k
′ + 1) = wvid(k

′) + c1r1[pid(k′) − xid(k
′)]

+ c2r2[pgd(k′) − xid(k
′)], (17)

where c1 and c2 are acceleration constants, as well as
r1 and r2 are the random numbers in the interval [0, 1].
In Eq. (18), w represents the inertia weight controlling
the effect of the former velocity on the present velocity.
We can modulate w to skip the local minimum. It can
be determined by

w =
{

wmin − (wmax−wmin)(g−gmin)
gavg−gmin

, g ≤ gavg
wmax, g > gavg

. (18)

Herein, wmax represents the maximum of w, and wmin

represents the minimum of w, as well as g represents
the present fitness function value of the particle. In
addition, gavg and gmin are the average value and the
minimum value of the entire particle swarm. Then, the
flowchart for the adaptive ASR based on the APSO
algorithm is depicted in Fig. 10.

In the following section, we will achieve the opti-
mal ASR based on the APSO algorithm. The nonlinear
function is still in the form f (x) = ax − bx3. In addi-
tion, the cross-correlation coefficient Csx is the fitness
function here.

Firstly, we fix the parameter b = 0.8, but take the
fractional order and the noise intensity as the targets
of the global optimization under different values of the
parameter a. The results of the global optimization are
shown in Table 1. Moreover, according to the results,
the responses of a fractional-order system under differ-
ent values of a are given in Fig. 11. We can observe
the ASR clearly and make it occur based on the APSO
algorithm.
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Fig. 13 The convergence curve of the APSO algorithm

Secondly, we fix the parameter σ = 0.36, but take
the system parameters a and b as the targets of the
global optimization under different values of the frac-
tional orderα. The results of the global optimization are
shown in Table 2. In addition, according to the results,
some time series of the fractional-order system under
different values of α are plotted in Fig. 12. Similarly,
the phenomenon of the ASR also appears.

Finally, we plot the convergence curve of the APSO
algorithm in an numerical experiment, as shown in
Fig. 13. We can see that the optimal results can be
obtained when k′ = 7. It takes us about 485s to obtain
the optimal results in a simple and accurate manner by
our laptop.

5 Conclusions

In this work, we have investigated the ASR in a
fractional-order bistable system induced by a Gaus-
sian white noise. We focus mainly on two points in
this paper: the properties of the response of a nonlinear
system excited by aperiodic input signals and the ASR
induced by the noise intensity and the fractional order.
In addition, we achieve the adaptive ASR based on the
APSO algorithm.

With regard to the first problem, we find that
the weak input signals can be amplified and opti-
mized by the system only depending on modulating
the fractional-order value. However, these properties
are independent of the waveform of the input signal,
except the amplitude. Moreover, we utilize the cross-

correlation coefficient to characterize the degree of the
signal distortion and it works well.

For the second problem, we investigate the ASR
induced by a fractional-order system. Both the frac-
tional order and the noise intensity can induce ASR.
For a fixed fractional order, ASR occurs by modulat-
ing the noise intensity. For a fixed noise intensity, ASR
can also occur by tuning the fractional order. More-
over, we find that the larger the fractional order is, the
smaller the optimal noise intensity might be.

Finally, we achieve the optimal ASR based on the
APSO algorithm. Taking the noise intensity and frac-
tional order as the targets of optimization, the optimal
ASRcanoccur. Taking the systemparameters as the tar-
gets of optimization, ASR can also occur. We believe
that the APSO algorithmmight have a positive value in
the dynamics research, performing a global search over
the entire search space with a fast convergence speed.
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