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Abstract We show that the presence of KAM islands
in nonhyperbolic chaotic scattering has deep implica-
tions on the unpredictability of open Hamiltonian sys-
tems. When the energy of the system increases, the
particles escape faster. For this reason, the boundary of
the exit basins becomes thinner and less fractal. Hence,
we could expect a monotonous decrease in the unpre-
dictability as well as in the fractal dimension. How-
ever, within the nonhyperbolic regime, fluctuations in
the basin entropy have been uncovered. The reason
is that when increasing the energy, both the size and
geometry of the KAM islands undergo abrupt changes.
These fluctuations do not appear within the hyperbolic
regime. Hence, the fluctuations in the basin entropy
allow us to ascertain the hyperbolic or nonhyperbolic
nature of a system. In this manuscript, we have used
continuous and discrete open Hamiltonian systems in
order to show the relevant role of the KAM islands on
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the unpredictability of the exit basins, and the utility of
the basin entropy to analyze this kind of systems.
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1 Introduction

Sensitive dependence on initial conditions is one of the
hallmarks of chaos and is responsible for the unpre-
dictability inherent to the chaotic systems. However,
unpredictability has many facets, and for each of them
several tools and methods have been developed. One
of the facets of unpredictability is the difficulty to pre-
dict the evolution of the trajectories. With this per-
spective, several measures have been developed, such
as the topological entropy [1], the expansion entropy
[2] and the Kolmogorov–Sinai entropy [3,4]. However,
in many physical situations we are interested in the
asymptotic behavior rather than the evolution of the
system. In this case,we consider another facet of unpre-
dictability: the difficulty to predict the final state of a
system from certain initial conditions. Under this con-
sideration, basins of attraction [5,6] and exit basins [7]
have aroused much the interest about the predictability
of dynamical systems. A basin of attraction of a dis-
sipative system is the set of initial conditions that are
attracted to a certain attractor. Similarly, we define the
exit basins in conservative systems as the set of initial
conditions that after a finite time escape through one
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of the exits of the system (openings in the potential
in continuous systems or predefined regions in area-
preserving maps). When two different attractors (or
exits) coexist in the phase space, two basins exist and
are separated by a boundary. This boundary between
the basins can be a smooth curve, but also a fractal
curve with non-integer dimension.

In real systems such as engineering systems, the
destination of some initial condition is not the unique
concern, because the environment is not free of noise
and imperfections. Even if in the absence of pertur-
bations, the basin of attraction can exhibit compact
and extensive safe regions, and a fast erosion of the
basin can occur under small changes in the parame-
ters [8,9]. In this way, some works developed mea-
sures of the dynamical integrity [10] of the basins of
attraction, in order to quantify the capability of the sys-
tem when accommodating small perturbations with-
out undesired effects [11]. Among other measures, we
highlight anisometric local integrity measure (ALIM)
[12], the integrity factor (IF) [13] and the local integrity
measure (LIM) [14].

In this work, we study the KAM islands in conser-
vative systems, so we are not interested in the evolution
of the trajectories nor in the effect of small perturba-
tions. The escape dynamics of an open Hamiltonian
system will vary with the energy (or another parame-
ter of interest). Hence, we can analyze the changes on
the escape dynamics by simply studying the exit basins
for different values of the energy. If we are interested
in the fractality of the boundaries of the exit basins,
we can calculate the fractal dimension using the uncer-
tainty algorithm [15,16]. However, in order to quantify
the unpredictability in this kind of problems we must
give an account of the main sources of unpredictabil-
ity in the exit basins: the number of destinations, the
boundary size and its fractality. None of these factors
imply by themselves a high unpredictability. For exam-
ple, we can deal with a system with a really fractal but
thin basin boundary. This system is highly predictable.
In order to obtain a new quantitative measure of the
unpredictability of the exit basins (or basins of attrac-
tion in dissipative systems), recently the basin entropy
[17] has been introduced. The basin entropy gives an
account of the three previously mentioned ingredients
and allows the comparison of the unpredictability of
two or more basins. This tool has been used in prob-
lems concerning relativistic [18] and classical chaotic
scattering [19] and experiments with cold atoms [20].

For simplicity, from now onwewill use the term unpre-
dictability in the basin entropy sense.

If the escape dynamics of the system is hyperbolic,
when the energy increases, the exits widen and the par-
ticles escape faster, following an exponential decay law
of the survival probability. Therefore, the boundaries of
the exit basins become thinner and less fractal. How-
ever, if the escape dynamics is nonhyperbolic, the decay
law of the survival probability is algebraic and, more-
over, therewill be trajectories that never escape, follow-
ing a quasiperiodic orbit that belongs to aKolmogorov–
Arnold–Moser (KAM) torus [21]. The quasiperiodic
orbits constitute a new destination of the dynamical
system and, therefore, appear in the exit basins form-
ing what we know as KAM islands. Analogously to
the exit basins, a KAM island is the set of initial condi-
tions that leads to trajectories that do not escape from
the scattering region. One of the main motivations for
this work is to clarify the effect of the KAM islands
on unpredictability of the exit basins. For this purpose,
we have selected three open Hamiltonian systems, two
continuous and one area-preserving map with escapes,
and we have quantified the unpredictability of the exit
basins as a function of the energy (or another relevant
parameter of the system) using the basin entropy. We
have also obtained the fractal dimension to establish
whether both quantities provide the same information.

In hyperbolic cases, both the fractal dimension and
the basin entropy evolve monotonously. However, in
the nonhyperbolic case, large fluctuations in the basin
entropy appear due to the metamorphosis of KAM
islands.

The structure of this manuscript is as follows. In
Sect. 2, we explain in detail the theoretical and com-
putational aspects of the unpredictability measures that
we have used, in particular the basin entropy and the
uncertainty algorithm. In Sect. 3, we discuss the nonhy-
perbolic cases, showing the effect of KAM islands on
the unpredictability of exit basins of the Hénon–Heiles
system and the standard map with two symmetrical
exits. In Sect. 4, we discuss the hyperbolic case using
the four-hill system as an example. Finally, in Sect. 5,
we present the main conclusions.

2 Unpredictability measures: basin entropy and
uncertainty algorithm

The method to compute the basin entropy is as follows.
We subdivide the exit basins into a grid composed of N
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square boxes of linear size ε. Each box is filled with nt
trajectories (25 in our case); to each of them we asso-
ciate a natural number depending on the destination of
the particle. In order to plot the exit basins, we associate
a color to each natural number. Using this convention,
the entropy of a certain box i is given by

Si =
ci∑

j=1

ni, j
nt

log

(
nt
ni, j

)
, (1)

where ci is the number of different colors in the box i
and ni, j is the number of points with color j in the box
i . The quotient ni, j/nt is the probability of the color j .
The base of the logarithm is e.

We calculate the entropy of N square boxes, follow-
ing a Monte Carlo method, and we compute the total
entropy of the exit basin

S =
N∑

i=1

Si =
N∑

i=1

ci∑

j=1

ni, j
nt

log

(
nt
ni, j

)
. (2)

Finally, the basin entropy is defined as the entropy rela-
tive to thenumber of boxes used in the randomsampling

Sb = S

N
. (3)

The previous description of the basin entropy gives
us an understanding about the computational methods
used to obtain it. However, in order to get a better under-
standing about the factors that affect the basin entropy,
we can look at it from another perspective. Let us con-
sider that the colors inside the boxes are equiprobable,
so ni/nt = 1/ci in any box. Hence, the total entropy
reads:

S =
N∑

i=1

log ci . (4)

Only the Nk boxes that lie in the boundary between two
or more basins contribute to the total entropy, being
k ∈ [1, kmax] the label for different boundaries. Hence,
we can write the total entropy

S =
kmax∑

k=1

Nk log ck, (5)

and the basin entropy

Sb =
kmax∑

k=1

Nk

N
log ck . (6)

The number of boxes of linear size ε required to cover
the boundary k grows as Nk = nkεαk−D [16], being αk

the uncertainty exponent, D the dimension of the phase
space and nk > 0 a constant. On the other hand, the
number of boxes required to cover all the phase space
grows like N = ñε−D , where ñ > 0 is a constant.
Using these formulas for N and Nk in Eq. (6), we obtain

Sb =
kmax∑

k=1

nk
ñ

εαk log ck . (7)

Although we never use this equation to compute the
basin entropy, we can get from it a qualitative infor-
mation of the different ingredients that affect the basin
entropy, that is, the size of the boundaries (nk/ñ), the
uncertainty dimension (εαk ) and the number of colors
in the basins (log ck).

The way to perform the calculation of the fractal
dimension is the following. We obtain the exit for a
certain initial condition (x0, y0) and also the exit for
the weakly perturbed initial conditions (x0 + δ, y0),
(x0−δ, y0), (x0, y0+δ) and (x0, y0−δ). If all of them
coincide, we will say that the initial condition is cer-
tain. On the other hand, if they do not coincide we will
label the initial condition as uncertain. We repeat this
procedure for many initial conditions and many values
of the perturbation δ, and we calculate the fraction of
uncertain initial conditions that obeys the power law:

f (δ) ∼ δα, (8)

where α = D − d is the uncertainty exponent, being
D the dimension of the phase space and d the fractal
dimension.

Taking logarithms in the above equation, we obtain

log f (δ) = (D − d) log δ + c, (9)

where c is a constant.Using this equation,we canobtain
the fractal dimension d computationally from the slope
of the line thatmust yield a plot of log f (δ) versus log δ.

In all the simulations of thismanuscript related to the
fractal dimension calculation, we have taken 250, 000
initial conditions in order to obtain the fraction of
uncertain initial conditions for each δ. On the other
hand, we have taken 21 values of δ from 10−9 to 10−5.

3 Nonhyperbolic case

Perhaps, the most significant model discussed in this
manuscript is the Hénon–Heiles system [22]. This sys-
tem arose in the context of celestial mechanics and is
given by the Hamiltonian
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H = 1

2
(ẋ2 + ẏ2) + 1

2
(x2 + y2) + x2y − 1

3
y3. (10)

The systembecomes a paradigmatic example of chaotic
scattering if the energy is higher than the threshold
value Ee = 1/6. Over this value of the energy, the
isopotential curves are open, and hence, the particles
can escape from the scattering region through one of
the three exits of the potential well. To intuitively visu-
alize the system, we show in Fig. 1 the exit basins in the
physical space (x, y), following the tangential shooting
method [23], for different values of the energy. The exit
basins of theHénon–Heiles systemhavebeen studied in
many works (e.g., Refs. [23–26]). For the energy value
used in panel (a), the system is nonhyperbolic and has
KAM islands (see white regions) mixed with the exit
basins. We cannot observe KAM islands in the basin
of panel (b), because the basin has been computed for
an energy value in which the system is hyperbolic.

First, we have computed the fractal dimension d.
The evolution of d with increasing energy is shown
in Fig. 2. In the figure, we can see that d decreases
monotonously with E . The result is intuitive, since
increasing the energy also increases the size of the exits
and reduces the escape times. Consequently, in the exit
basins we can observe the decrease in the width and
fractality of the basin boundaries (see, for example,
Fig. 1).
The KAM islands in the exit basins constitute regions
of high predictability and exhibit a smooth boundary
with the other three basins. For this reason, the size of
theKAM islands does not have deep implications in the
fractal dimension. In fact, the evolution of the fractal
dimension in Fig. 2 is the same if we do not consider the
KAM islands as a different destination of the dynami-
cal system. Since the KAM islands are not mixed with
the three exit basins in a complex manner, a big area of
the exit basins occupied by the KAM islands leads to
a higher predictability of the system. As we mentioned
in the introduction, the basin entropy depends on the
number of destinations in the exit basins, the boundary
size and its fractality. Therefore, the existence of KAM
islands, although it does not affect the fractality of the
boundaries, does affect the other two ingredients.

In order to compute the exit basins, we have used a
1000 × 1000 grid filled with initial conditions in the
region Ω ∈ [−1, 5, 1.5] × [−1, 5, 1.5]. In all our sim-
ulations, we have used a very long maximum time of
integration t = 100, 000 using a fourth-order Runge–
Kutta method, in order to ensure that the particles

Fig. 1 Exit basins in the physical space for the Hénon–Heiles
system. The energies are a E = 0.20 and b E = 0.45. The colors
red, green and blue refer to initial conditions leading to the three
exits shown in the figure. The white color in panel a corresponds
to the bounded orbits that never escape and make up the KAM
islands. Since there are no KAM islands in panel b, the system
is hyperbolic for this value of the energy. (Color figure online)

that have not escaped will not escape. We have com-
puted 400 exit basins for different energies in the range
E ∈ [0.17, 0.45]. For each exit basin, we have obtained
the basin entropy after launching 100, 000 boxes in
the region Ω , following a Monte Carlo method. The
result is shown in Fig. 3. We can clearly observe
two different regions: fluctuations in the basin entropy
(E ∈ [0.17, 0.23]) and a monotonous decrease (E >

0.23). Thefirst region coincideswith the nonhyperbolic
regime, while the second corresponds to the hyperbolic
regime. The previous research reported that the KAM
islands disappear on the y-axis around E ≈ 0.2113
[26]. Our numerical simulations concerning the size
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Measuring the transition between nonhyperbolic and hyperbolic regimes 3033

Fig. 2 Variations in the fractal dimensionof the basin boundaries
of the Hénon–Heiles system with the energy. For each energy
and for each value of δ, 250, 000 initial conditions have been
launched in order to compute the fractal dimension

of the KAM islands support the result shown by the
basin entropy, detecting the disappearance of the KAM
islands on the physical space (x, y) for E ≈ 0.2309.

Because the exit basins of the Hénon–Heiles system
are Wada [23,27], there is only one boundary between
the exit basins. When the regime is nonhyperbolic,
there is a second boundary that separates the KAM
islands from the other three basins. Hence, following
Eq. (7), the basin entropy is given by

Sb = n1
ñ

εα1 log 3 + n2
ñ

εα2 log 4, (11)

where the first term refers to the boundary of the exit
basins (with only three possible destinations) and the
second term with the boundary between the exit basins
and the KAM islands (with four possible destinations).

Since the fractal dimension decreasesmonotonously
with an increasing value of the energy, the fluctuations
in the basin entropy must be related to the term nk/ñ,
that is, to the size of the boundaries. Because the KAM
islands in the exit basins are regions of high predictabil-
ity, we can guess that the larger these are, the lower
the basin entropy (as long as the other factors remain
constant). The second term of Eq. (11) will increase if
the size of the KAM islands increases. However, this
term will have little weight in the final value of the
basin entropy, since the boundary of theKAMislands is
much lower than the boundary of the exit basins. There-
fore, the main effect of an increase in the area occupied
by the KAM islands is the decrease in the size of the
boundaries between the exit basins, which implies a
decrease in the basin entropy. To verify the above argu-
ments, we have calculated the fraction of the exit basins

(a)

(b)

Fig. 3 aBasin entropy evolution of the exit basins of theHénon–
Heiles system with increasing energy. Two different regions can
be observed in the figure: fluctuations (E ∈ [0.17, 0.23]) and,
after a slight jump in the basin entropy, a monotonous decrease
(E > 0.23). The red dashed line is located at E = 0.2309 and
separates both regions. b Zoom-in of the nonhyperbolic region
of the a panel, showing four relative maxima of the basin entropy
(see red circles) that appear for energies E = 0.1735, 0.1775,
0.1850 and 0.1950. (Color figure online)

Fig. 4 Fraction of the area of the exit basins occupied for the
KAM islands in function of the energy of the Hénon–Heiles
system. The four relativeminima (see red circles) occur when the
energy is E = 0.1735, 0.1775, 0.1850 and 0.1950, respectively.
These values correspond to the values of the energy that generate
relative maxima in the basin entropy. (Color figure online)
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3034 A. R. Nieto et al.

Fig. 5 Zoom-in of the exit
basins, showing the KAM
islands in the physical space
for energies a 0.1770, b
0.1775, c 0.1845, d 0.1850,
e 0.1945 and f 0.1950. The
white regions are the KAM
islands and the other colors
refer to the initial conditions
leading to escaping
trajectories. We can observe
big changes in both the size
and geometry of the KAM
islands when we modify
slightly the energy. (Color
figure online)

(a) (b)

(c) (d)

(e) (f)

occupied by the KAM islands in terms of the energy.
The result is shown in Fig. 4. The maximum value of
the energy shown in the figure is E = 0.21, since the
fraction occupied by the KAM islands is very small for
higher values of the energy. However, as we mentioned
before, the disappearance of the KAM islands occurs
in E ≈ 0.2309.

The relative maxima in the basin entropy that were
observed in Fig. 3 correspond to the abrupt decrease in
the size of the KAM islands. To illustrate these changes
in the KAM islands, we represent a zoom-in of the exit
basins in Fig. 5, showing the KAM islands for very
close values of the energy. These values correspond to

the second, third and fourth relative maxima of Fig. 3b.
A metamorphosis can be observed in Fig. 5 from the
left panel to the right by a small variation (0.005) in the
energy.

In the hyperbolic regime, due to the absence of
KAM islands, there exists only one boundary in the
exit basins, and hence, the basin entropy is given by

Sb = n

ñ
εα log 3. (12)

As the energy increases, the escape times of the trajec-
tories are reduced, so that the boundary becomes thin-
ner and the term n/ñ decreases monotonously. Since
the fractal dimension also decreases monotonously
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Fig. 6 Exit basins of the
standard map with two
symmetrical exits of width
ω = 0.01, for different
values of the parameter
a K = 1.2, b K = 2.45,
c K = 4.5 and d K = 5.1.
The color code is as
follows: red and blue
correspond to the initial
conditions that lead to the
left exit and the right exit,
respectively. White colors
refer to bounded orbits, and
hence, white regions are the
KAM islands. Variations in
the size and geometry of the
KAM islands can be
observed. (Color figure
online)

with increasing energy, we do not appreciate fluctu-
ations in the basin entropy in the hyperbolic regime.

This result allows us to use the basin entropy as a
tool to discern whether the regime is hyperbolic or non-
hyperbolic. Moreover, in systems in which the regime
changes in some value of the energy (or another param-
eter), we can detect this change by looking for a jump
in the basin entropy. This result is quite important,
because in the previous research themethodused tofind
the transition between regimes was based on the decay
law of the survival probability [28,29]. The method
based on the basin entropy requires less computational
effort and is more accurate.

Finally, the minimum value reached by the basin
entropy for E = 0.45 is Sb ≈ 0.13, as can be observed
in Fig. 3. If we increase even more the energy, the
boundary will continue becoming thinner. For this rea-
son, we can expect that for very high values of the
energy

lim
E→∞

n

ñ
= 0 �⇒ lim

E→∞ Sb = 0. (13)

In order to show similar conclusions in a different sys-
tem, we have computed the basin entropy and the frac-
tal dimension of the exit basins of the standard map
[30] with two symmetrical exits. The equation of the
standard map is given by

θn+1 = θn + Jn+1 mod 2π,

Jn+1 = Jn + K sin θn,
(14)

where K > 0 is a constant.
The system is a closed Hamiltonian map. However,

as explained in [31], it is possible to open the system by
introducing exits. These exits represent some kind of
interactionwith theoutside and allowus to construct the
exit basins to study the underlying dynamics of the sys-
tem. The procedure is as follows.We define two regions
E1 ≡ [θ1, θ2] × [0, 2π ] and E2 ≡ [θ3, θ4] × [0, 2π ].
Arbitrarily, we place the center of the regions in θ =
0.2π (E1) and in θ = 1.8π (in order to be located at the
same distance of θ = 0). The width of each region is
θ2−θ1 = θ4−θ3 = 2πw,wherew ≤ 0.2 is the parame-
ter thatwe can use tomodify the size of the regions. Fol-
lowing this method, the left region is placed in [0.2π −
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3036 A. R. Nieto et al.

wπ, 0.2π + wπ ] × [0, 2π ] and the right region in
[1.8π −wπ, 1.8π +wπ ]×[0, 2π ]. If after one or more
iterations the orbit falls in E1 or E2,we say that the orbit
has escaped. Following this procedure for several initial
conditions in the (θ, J ) plane, and assigning blue color
to the exit 1 and red color to the exit 2, we can construct
the exit basins. The arbitrary choice of the shape and
width of the exits does not affect the size and geometry
of the KAM islands. If we define exits with different
sizes or geometries, only the fractal dimension of the
basin boundaries would change, but the results regard-
ing the basin entropy would be qualitatively identical.

To carry out the computation of the exit basins, we
have used a 1000 × 1000 grid filled with initial con-
ditions in the region [0, 2π ] × [0, 2π ]. The parameter
that we have varied is K . As an example, we show in
Fig. 6 the exit basins for different values of K .

Figure 6 shows the existence of the large KAM
islands for low values of K . As the value of the param-
eter increases, the KAM islands evolve, changing their
size and geometry. Although the fractal dimension
increases monotonously until it stabilizes at the max-
imum possible value d = 2 (see Fig. 7a), the basin
entropy follows a totally different trend, as shown in
Fig. 7b. The fluctuations in the evolution of the basin
entropy stop after the value K ≈ 7.5, because the size
of the KAM islands is extremely small, and then, the
dominating term is the fractal dimension.

4 Hyperbolic case

Our numerical example of a hyperbolic system is the
four-hill system [32,33], given by

H = 1

2
(ẋ2 + ẏ2) + x2y2e−(x2+y2). (15)

The potential of the system consists of four hills located
at (x, y) = (±1,±1). For any value of the energy,
the isopotential curves are open and the particles can
escape through four symmetrical exits, separated by
an angle of π/2 radians. We have chosen this system
because it has two interesting characteristics. First, the
system has a maximum value of the energy Em =
1/e2 ≈ 0.135 above which the scattering is nonchaotic
[34], and hence, the basin boundary becomes smooth.
On the other hand, in the range E ∈ (0, Em] the scatter-
ing is always hyperbolic. For this reason, there are no
KAM islands in the exit basins. In order to visualize the

(a)

(b)

Fig. 7 Fractal dimension and basin entropy evolution of the exit
basins of the standard map with two symmetrical exits of width
ω = 0.01. a The fractal dimension increases monotonously.
b The basin entropy exhibits fluctuations due to the effect of
KAM islands

system, we plot two exit basins for energies E = 0.01
and E = 0.1 in Fig. 8.

Because there are no KAM islands in the exit basins
of this system, both the basin entropy and the fractal
dimension decrease without fluctuations, as shown in
Fig. 9. The main qualitative difference between both
figures is the abrupt decrease in the fractal dimension
near the value E = Em . When this value of the energy
is reached, the scattering becomes nonchaotic and the
fractal dimension falls to the value d = 1. This meta-
morphosis between fractal and smooth boundaries is
not strongly detected by the basin entropy. This is
because themetamorphosis is a change that affects only
to the basin boundary, and for high values of the energy
the boundary is really thin. Therefore, the fact is the
boundary of the exit basins is smooth or fractal does
not substantially affects the basin entropy.

However, if we are interested in detecting changes
in the basin boundary we can use the boundary basin
entropy, Sbb [17]. This quantity is obtained by simply
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Measuring the transition between nonhyperbolic and hyperbolic regimes 3037

Fig. 8 Exit basins in the physical space of the four-hill system.
The energies are a E = 0.01 and b E = 0.1. The different colors
refer to initial conditions leading to the four different exits of the
Hamiltonian. We can clearly observe that the dynamics is much
more unpredictable for E = 0.01 than for E = 0.1

dividing the total entropy between the number of boxes
that fall in the boundaries of the exit basins. The bound-
ary basin entropy allows us to determine if a boundary
is fractal. This criterion, known as log 2 criterion [17],
is a sufficient condition that states that if Sbb > log 2,
then the boundary is fractal. In Fig. 10, we show the
Sbb evolution near the metamorphosis of the boundary
of the exit basins. Near the critical value E = Em , the
boundary basin entropy decreases abruptly below the
value log 2, as expected.

We have carried out the calculations of the fractal
dimension and the basin entropy in the case of the

(a)

(b)

Fig. 9 a Fractal dimension and b basin entropy of the exit basins
of the four-hill system for different values of the energy. For each
energy and for each value of δ, 250, 000 initial conditions have
been launched in order to compute the fractal dimension. To
compute the basin entropy, 500 basins of resolution 1000×1000
inside the region Ω ∈ [−1.5, 1.5]× [−1.5, 1.5] have been com-
puted. For each exit basin, the basin entropy has been computed
using a random sampling with Nin = 100, 000 boxes inside the
potential

sawtooth map with two symmetrical exits [31], which
is an hyperbolic discrete system. In the same line as
in the four-hill system or in the hyperbolic regime
of the Hénon–Heiles system, no qualitative difference
between both magnitudes has been observed.

5 Conclusions

In summary, our research reveals that it is not possi-
ble to understand the unpredictability in nonhyperbolic
open Hamiltonian systems without considering the
KAM islands. By modifying parameters with physical
meaning in discrete and continuous systems, significant
changes in the geometry and size of the KAM islands
have been uncovered. These changes lead to fluctua-
tions in the unpredictability of the exit basins that are
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Fig. 10 Boundary basin entropy of the exit basins of the four-hill
near the critical value Em = 1/e2 ≈ 0.135. The horizontal black
line is located at the value Sbb = log 2, while the vertical red line
is at Em . The result shows that the boundary basin entropy allows
us to detect the transition between fractal and smooth boundaries.
(Color figure online)

not detected by the fractal dimension. We expect that
these changes may appear in many dynamical systems
with mixed phase space. However, the methods used in
this manuscript will not be of interest when the KAM
islands are small enough to be considered irrelevant in
the dynamics of the system, or when the parameters of
interest do not influence its size and geometry.

We have provided theoretical reasoning for the fluc-
tuations, from the point of view of the basin entropy
concept. In short, a bigger area occupied by the KAM
islands leads to a higher predictability of the exit basins,
since these are not mixed in a complex manner with the
chaotic sea. So, the KAM islands are a source of peri-
odicity and predictability in the exit basins.

In the absence of the KAM islands, the unpre-
dictability of the exit basins studiedhere follows an evo-
lution without fluctuations. For this reason, the basin
entropy allows us to detect accurately the transition
between the hyperbolic and the nonhyperbolic regime.
Moreover, using this procedure we can reduce the com-
putational effort, since we do not need to compute the
exponent of the decay law of the survival probability.

Despite the fact that the basin entropy allows a reli-
able portrait of the unpredictability in the presence of
KAM islands, if the number of destinations of the sys-
tem does not change and the boundaries do not undergo
ametamorphosis, the evolution of the fractal dimension
and the basin entropy will be qualitatively the same.

Moreover, if we are interested in studying a metamor-
phosis in the boundaries of the exit basins, it is more
useful to use the fractal dimension or the boundary
basin entropy than the basin entropy.

We think that this work could help, giving new per-
spectives and tools, to future research concerning non-
hyperbolic dynamics in chaotic scattering problems.

For further developments, we think that could be
interesting to use integrity measures like the aniso-
metric local integrity measure, to study the dynamical
integrity of the KAM island in the presence of pertur-
bations such as noise, forcing or asymmetries in the
size of the exit.
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