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Transient chaos under coordinate transformations in relativistic systems
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We use the Hénon-Heiles system as a paradigmatic model for chaotic scattering to study the Lorentz factor
effects on its transient chaotic dynamics. In particular, we focus on how time dilation occurs within the scattering
region by measuring the time with a clock attached to the particle. We observe that the several events of time
dilation that the particle undergoes exhibit sensitivity to the initial conditions. However, the structure of the
singularities appearing in the escape time function remains invariant under coordinate transformations. This
occurs because the singularities are closely related to the chaotic saddle. We then demonstrate using a Cantor-like
set approach that the fractal dimension of the escape time function is relativistic invariant. In order to verify this
result, we compute by means of the uncertainty dimension algorithm the fractal dimensions of the escape time
functions as measured with an inertial frame and a frame comoving with the particle. We conclude that, from a
mathematical point of view, chaotic transient phenomena are equally predictable in any reference frame and that
transient chaos is coordinate invariant.
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I. INTRODUCTION

Chaotic scattering in open Hamiltonian systems is a fun-
damental part of the theoretical study of dynamical systems.
There are many applications such as the interaction between
the solar wind and the magnetosphere tail [1], simulation
in several dimensions of molecular dynamics [2], modeling
of chaotic advection of particles in fluid mechanics [3], and
analysis of the escaping mechanism from a star cluster or
a galaxy [4,5], to name a few. A scattering phenomenon is
a process in which a particle travels freely from a remote
region and encounters an obstacle, often described in terms
of a potential, which affects its evolution. Finally, the particle
leaves the interaction region and continues its journey freely.
This interaction is typically nonlinear, possibly leading the
particle to perform transient chaotic dynamics, i.e., chaotic
dynamics with a finite lifetime [6,7]. Scattering processes
are commonly studied by means of the scattering functions,
which relate the particle state at the beginning of its evolution
once the interaction with the potential has taken place. Thus,
nonlinear interactions can cause these functions to exhibit
self-similar arrangements of singularities, which hinder the
system’s predictability [8]. Transient chaos is a manifestation
of the presence in phase space of a chaotic set called the
nonattracting chaotic set, also called the chaotic saddle [9].
This phenomenon can be found in a wide variety of situations
[10], for example, the dynamics of decision making, the
doubly transient chaos of undriven autonomous mechanical
systems, or even the sedimentation of volcanic ash.

There have been numerous efforts to characterize chaos in
relativistic systems in an observer-independent manner [11].

*jesus.seoane@urjc.es

It has been rigorously demonstrated that the sign of the Lya-
punov exponents is invariant under coordinate transformations
that satisfy four minimal conditions [12]. More specifically,
these conditions require that a valid coordinate transformation
has to leave the system autonomous, its phase space bounded,
the invariant measure normalizable, and the domain of the
new time parameter infinite [12]. As a consequence, chaos is
a property of relativistic systems independent of the choice
of the coordinate system in which they are described. In
other words, homoclinic and heteroclinic tangles cannot be
untangled by means of coordinate transformations. We utilize
the Lorentz transformations in this paper, which satisfy this
set of conditions [13]. Although we utilize a Hamiltonian
system in its open regime, from the point of view of Lyapunov
exponents the phase space can be considered bounded because
of the presence of a chaotic saddle. This set is located in
a finite region of the system’s phase space and contains all
the nonescaping orbits in the hyperbolic regime. Hence, the
Lyapunov exponents are well defined because these trajecto-
ries stay in the saddle forever. On the other hand, concerning
the computation of the escape time function, in this work we
consider only the finite part of the phase space where the
escaping orbits remain bounded, and similarly, from the point
of view of the finite-time Lyapunov exponents the phase space
can be considered bounded as well [14].

Despite the fact that the sign of the Lyapunov exponents
is invariant, the precise values of these exponents, which
indicate “how chaotic” a dynamical system is, are nonin-
variant. Therefore, this lack of invariance leaves some room
to explore how coordinate transformations affect the unpre-
dictability in dynamical systems with transient chaos. In the
present work we analyze the structure of singularities of the
scattering functions under a valid coordinate transformation.
In particular, we compute the fractal dimension of the escape
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time function as measured in an inertial reference frame
and another noninertial reference frame comoving with the
particle, respectively. We then characterize the system’s un-
predictability by calculating this fractal dimension, since it
enables us to infer the dimension of the chaotic saddle [15].
Indeed, this purely geometrical method has been proposed as
an independent-observer procedure to determine whether the
system behaves chaotically [16].

Relevant works have been devoted to analyzing the re-
lationship between relativity and chaos in recent decades
[17–19]. More recently, the Lorentz factor effects on the
dynamical properties of the system have also been studied
in relativistic chaotic scattering [20,21]. In this paper, we
focus on how changes in the reference frame affect typical
phenomena of chaotic scattering. We describe the model in
Sec. II, which consists of a relativistic version of the Hénon-
Heiles system. Two well-known scattering functions are ex-
plored in Sec. III: the exit through which the particle escapes
and its escape time. In Sec. IV, we demonstrate the fractal
dimension invariance under a coordinate transformation by
using a Cantor-like set approach. Subsequently, we quantify
the unpredictability of the escape times and analyze the effect
of such a reference frame modification. We conclude with a
discussion of the main results and findings of the present work
in Sec. V.

II. MODEL DESCRIPTION

The Hénon-Heiles system was proposed in 1964 to study
the existence of a third integral of motion in galactic models
with axial symmetry [22]. We consider a single particle whose
total mechanical energy can be denoted EN in the Newtonian
approximation. This energy is conserved along the trajectory
described by the particle, which is launched from the interior
of the potential well, within a finite region of the phase space
called the scattering region. We have utilized a dimensionless
form of the Hénon-Heiles system, so that the potential is
written as

V (x, y) = 1
2 (x2 + y2) + x2y − 1

3 y3, (1)

where x and y are the spatial coordinates. When the energy
is above a threshold value, the potential well exhibits three
exits due to its triangular symmetry in the physical space,
i.e., the plane (x, y), as visualized in Fig. 1. We call the
exit located at the top (y → +∞) Exit 1, the one located
downwards to the left (x → −∞, y → −∞) Exit 2, and
the exit on the right (x → +∞, y → −∞) Exit 3. One of
the characteristics of open Hamiltonian systems with escapes
is the existence of highly unstable periodic orbits known
as Lyapunov orbits [23], which are placed near the saddle
points. In fact, when a trajectory crosses through a Lyapunov
orbit, it escapes to infinity and never returns to the scattering
region. Furthermore, we recall that the energy of the particle
determines also the dynamical regime. We can distinguish two
open regimes in which escapes are allowed. On the one hand,
in the nonhyperbolic regime the KAM tori coexist with the
chaotic saddle and the phase space exhibits regions where the
dynamics is regular and also chaotic [24], whereas the chaotic
saddle rules the dynamics in the hyperbolic regime, making it
completely chaotic.

FIG. 1. (a) Three-dimensional representation of the Hénon-
Heiles potential V (x, y) = 1

2 (x2 + y2) + x2y − 1
3 y3. (b) The isopo-

tential curves in the physical space show that the Hénon-Heiles sys-
tem is open and has triangular symmetry. If the energy of the particle
is higher than a threshold value, related to the potential saddle points,
there exist unbounded orbits. Following these trajectories the particle
leaves the scattering region through any of the three exits.

When the speed of the particle is comparable to the speed
of light, the relativistic effects have to be taken into account
[25]. In the present work we consider a particle which in-
teracts in the limit of weak external fields, and therefore we
deal with a special relativistic version of the Hénon-Heiles
system, whose dynamics is governed by the conservative
Hamiltonian [26–29]

H = c
√

c2 + p2 + q2 + V (x, y), (2)

where c is the value of the speed of light, and p and q are the
momentum coordinates. On the other hand, the Lorentz factor
is defined as

γ = 1√
1 − v2

c2

= 1√
1 − β2

, (3)

where v is the velocity vector of the particle and β = |v|/c
the ratio between the speed of the particle and the speed of
light. The Lorentz factors γ and β are two equivalent ways
to express the speed of the particle compared to the speed
of light. These two factors vary in the ranges γ ∈ [1,+∞)
and β ∈ [0, 1), respectively. For convenience, we use β as the
parameter in this work. Hamilton’s canonical equations can be
derived from Eq. (2), yielding the equations of motion

ẋ = ∂H

∂ p
= p

γ
, ṗ = −∂H

∂x
= −x − 2xy,

ẏ = ∂H

∂q
= q

γ
, q̇ = −∂H

∂y
= y2 − x2 − y, (4)

where the Lorentz factor can be alternatively written in
the momentum-dependent form as γ = 1

c

√
c2 + p2 + q2. Al-

though the complete phase space is four-dimensional, the
conservative Hamiltonian constrains the dynamics to a three-
dimensional manifold of the phase space, known as the energy
shell.

Some recent works aim at isolating the effects of the
variation of the Lorentz factor γ (or equivalently β) from
the remaining variables of the system [20,21]. In order to
accomplish this, they modify the initial value of β and use
it as the only parameter of the dynamical system. Since β is
a quantity that depends on |v| and c, they choose to vary the
numerical value of c. Needless to say, the value of the speed
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FIG. 2. The evolution of a particle launched within the scattering region from the same initial condition for different values of β. (a) For
a very low β (Newtonian approximation), the particle is trapped in the KAM tori and describes a bounded trajectory. (b) The value of β is
large enough to destroy the KAM tori and the particle leaves the scattering region following a trajectory typical of transient chaos. (c) Finally,
a larger value of β than in (b) makes the particle escape more rapidly.

of light c remains constant during the particle trajectory. The
fundamental reason for deciding to increase the kinetic energy
of the system by reducing the numerical value of the speed
of light is simply as follows. If we keep the Hénon-Heiles
potential constant and increase the speed of the particle to
values close to the speed of light, the potential will be in a
much lower energy regime compared to the kinetic energy
of the particle. Therefore, the potential becomes negligible
and the interaction between them becomes irrelevant. Con-
sequently, each time we select a value of the speed of light
we are scaling the system and, hence, the ratio of the kinetic
energy and the potential as well. The sequence of potential
wells with different values of β represents potential wells with
Hénon-Heiles morphology, but at different scales in which the
interaction of a relativistic particle is not trivial. In this way,
the effects of the Lorentz factor on the dynamics are isolated
from the other system variables, because the Lorentz factor is
the only parameter that differentiates all these scaled systems.

We then consider the same initial value of the particle
speed |v0| in every simulation with a different value of β,
launching the particle from the minimum potential, which
is located at (x0, y0) = (0, 0) and where the potential energy
is null. We have arbitrarily chosen |v0| ≈ 0.5831 (as in [20]
and [21]), which corresponds to the open nonhyperbolic
regime with energy EN = 0.17, close to the escape energy
in the Newtonian approximation. Thus, we analyze how the
relativistic parameter β, as its value increases, affects the
dynamical properties starting from the nonhyperbolic regime.
The numerical value of c varies, as shown in Fig. 2, and for
instance, if the simulation is carried out for a small β, where
|v0| � c, the initial speed of the particle represents only a very
low percentage of the speed of light. In this case, we recover
the Newtonian approximation and the classical version of the
Hénon-Heiles system. On the contrary, if the simulation takes
place with a value of β near 1, the speed of the particle
represents a high percentage of the speed of light and the
relativistic effects on the dynamics become more intense.

Numerical computations reveal that the KAM tori are
mostly destroyed at β ≈ 0.4, and hence the dynamics is hy-
perbolic for higher values of β [21]. If some small tori survive,
they certainly do not rule the system overall dynamics. As
we focus on the hyperbolic regime, the simulations are run
for values of β ∈ [0.5, 0.99] and by means of a fixed-step
fourth-order Runge-Kutta method [30]. We recall that the
initial values of the momentum (p0, q0) depend on the chosen

initial value of β, and therefore this computational technique
(to vary the value of β fixing |v0|) is an ideal method to
increase the particle kinetic energy to the relativistic regime.
For example, a particle trapped in the KAM tori can escape if
the initial value of β is high enough, as shown in Fig. 2.

III. ESCAPE TIMES IN INERTIAL
AND NONINERTIAL FRAMES

The scattering functions enable us to represent the relation
between input and output dynamical states of the particle,
i.e., how the interaction of the particle with the potential
takes place. The Hénon-Heiles potential leads the particle to
describe chaotic trajectories before converging to a specific
exit, which causes the scattering functions to exhibit a fractal
structure. In order to verify the sensitivity of the system to
exits and escape times, we launch particles from the potential
minimum slightly varying the shooting angle θ that is formed
by the initial velocity vector and the positive x axis, as shown
in Fig. 3(a).

The maximum value of the kinetic energy is reached at the
potential minimum, as the system is conservative. We define
the value of the Lorentz factor associated with this maximum
kinetic energy as the critical Lorentz factor,

γc(β ) = 1√
1 − β2

. (5)

We emphasize that the initial Lorentz factor of every particle
is the critical Lorentz factor, since every trajectory is initial-
ized from the potential minimum in this work. We monitor
the Lorentz factor of the particle along its trajectory and
use the critical Lorentz factor as the criterion for whether or
not the particle has escaped. This escape criterion is based on
the fact that the value of the kinetic energy remains bounded
while the particle evolves chaotically within the potential
well, bouncing back and forth against the potential barriers
before escaping. The Lorentz factor value then varies between
unity and the critical value inside the scattering region, i.e.,
γ (t ) ∈ [1, γc]. Eventually, the particle leaves the scattering
region and the value of its Lorentz factor breaks out towards
infinity, because its kinetic energy no longer remains bounded.
In order to prevent this asymptotic behavior of the Lorentz
factor, it is convenient to set the escape to occur at time te
when γ (te) > γc. In this manner, we define the scattering
region as the part of the physical space where the dynamics is
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FIG. 3. (a) Each of the exits is identified by a different color: Exit 1 (red), Exit 2 (green), and, finally, Exit 3 (blue). In order to avoid
redundant results due to the triangular symmetry of the well, we only let the particle evolve from the angular region θ0 ∈ [π/2, 5π/6] (dashed
black lines). (b) Scattering function of the exits (2000 × 2000) given the parameter map (β ∈ [0.5, 0.99], θ0 ∈ [π/2, 5π/6]) in the hyperbolic
regime.

bounded. This escape criterion is computationally affordable
and useful to implement in any Hamiltonian system without
knowing specific information about the exits. In addition, it
includes all the escapes that take place when the Lyapunov
orbit criterion is considered.

A particle launched with θ = π/2 escapes directly towards
Exit 1 for every value of β as shown in Fig. 3(b), whereas if
it is launched with θ = 5π/6, the particle bounces against the
potential barrier placed between Exit 1 and Exit 2 and escapes
through Exit 3. The whole structure of exits in between is
apparently fractal. Nonetheless, the exit function becomes
smoother when the value of β increases, but it is never com-
pletely smooth. On the other hand, we recall that the chaotic
saddle is an observer-independent set of points formed by the
intersection of the stable and unstable manifolds. Concretely,
the stable manifold of an open Hamiltonian system is defined
as the boundary between the exit basins [9]. If a particle starts
from a point arbitrarily close to the stable manifold, it will
spend an infinite time converging to an exit, i.e., it never
escapes. The unstable manifold is the set along which particles
lying infinitesimally close to the chaotic saddle will eventually
leave the scattering region over the course of time [10].

The escape time can be easily defined as the time the
particle spends evolving inside the scattering region before
escaping to infinity. In nonrelativistic systems, the particular
clock with which the time is measured is irrelevant since time
is absolute. However, here we consider two time quantities:
the time t , which is measured by an inertial reference frame
at rest; and the proper time τ , as measured by a noninertial
reference frame comoving with the particle. This proper time
is simply the time measured by a clock attached to the
particle.

As is well known, a uniformly moving clock runs more
slowly by a factor of

√
1 − β2 in comparison to another

identically constructed and synchronized clock at rest in an
inertial frame. Therefore, we assume that at any instant in time
the clock of the accelerating particle advances at the same rate
as an inertial clock that momentarily had the same velocity
[31]. In this manner, given an infinitesimal time interval dt ,

the particle clock will measure a time interval

dτ = dt

γ (t )
, (6)

where γ (t ) is the particle Lorentz factor at the instant
in time t . Since the Lorentz factor is greater than unity,
the proper time interval always obeys that dτ � dt , which
is just the mathematical statement of the twin paradox.
When the particle velocities are very close to the speed of
light, the time dilation phenomenon takes place so that the
time of the particle clock runs more slowly in comparison
to clocks at rest in the potential. In the context of special
relativity, it is important to bear in mind that it is assumed that
the potential does not affect the clocks’ rates. In other words,
all the clocks placed at rest at any point of the potential are
ticking at the same rate along this work.

Without loss of generality, Eq. (6) can be expressed as an
integral in the form

τe =
∫ te

0

dt

γ (t )
, (7)

where the final time of the integration interval is the escape
time in the inertial frame. We solve this integral using Simp-
son’s rule [32]. Since each evolution of the Lorentz factor
is unique because each particle describes a distinct chaotic
trajectory, every particle clock measures a different proper
time at any instant in time t . Nonetheless, as the dynamics
is bounded under the same energetic conditions given the
value of β, the Lorentz factor of all trajectories is similar on
average at any instant in time t . For this reason, we assume
that there exists an average value of the Lorentz factor
along the particle trajectory and estimate it as the arithmetic
mean between the maximum and the minimum values of the
bounded Lorentz factor inside the scattering region, i.e.,

γ̄ (β ) = 1 + γc

2
= 1 +

√
1 − β2

2
√

1 − β2
. (8)

Using this definition in Eq. (7), we can define the average
time dilation in the form τ̄e ≡ te/γ̄ . This value should only
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FIG. 4. (a) Lorentz factor evolution γ (t ) of three trajectories: a fast escape (yellow curve) and two typical transient chaotic trajectories
(red and blue curves). The dashed black guideline represents the Lorentz factor value of γ̄ , corresponding to β = 0.75. The time differences
δt (t ) along these trajectories is also shown. (b) The scattering function of escape times te at logarithmic scale given the parameter map
(β ∈ [0.5, 0.99], θ0 ∈ [π/2, 5π/6]). The two dashed black lines correspond to (c) and (d), which show the scattering function of the escape
time te(θ0) (blue dots) and τe(θ0) (red dots) for β = 0.5 and β = 0.8, respectively. (e, f) Time difference function δte(θ0) for the same
values of β.

be regarded as an approximation, which shall prove of great
usefulness in interpreting the numerical results obtained later.
Accordingly, the difference between the average escape time
and the time te is also approximately linear on average. In this
manner, we can also define the magnitude,

δt̄e ≡ te − τ̄e = 1 −
√

1 − β2

1 +
√

1 − β2
te. (9)

We emphasize that this value is again just an approximation
representing the average behavior of the system, which dis-
regards the fluctuations of the Lorentz factor. It reproduces
qualitatively the behavior when the dynamics is bounded in
the well, as shown in Fig. 4(a).

The escape time function is similar to the exit function, as
shown in Fig. 4(b); the longest escape times are located close
to the the boundary of the exit regions, i.e., the mentioned sta-
ble manifold, because these trajectories spend long transient
times before escaping. In this manner, the structure of singu-
larities is again associated with the stable manifold, equally
that the exit function. This is evidence that the fractality of
the escape time function must be an observer-independent
feature, since the exit through which the particle escapes does
not depend on the considered clock. Indeed, we observe that
the escape proper time function exhibits a similar structure
of singularities because of the approximated linear relation

described by τ̄e [see Figs. 4(c) and 4(d)]. Despite being
almost-identical structures, the dilation time phenomenon al-
ways makes τe(θ0) < te(θ0).

Importantly, the time difference function δte(θ0) also pre-
serves the fractal structure as shown in Figs. 4(e) and 4(f).
This occurs because sensitivity to initial conditions is trans-
lated into sensitivity to time dilation phenomena. The longer
the time the particle spends in the well, the more it travels
from the center to the potential barriers and back. If we
think of each of these trips as an example of a twin paradox
journey, we get an increasing time dilation for particles that
spend more time in the well. Since these times are sensitive
to modifications in the initial conditions, so are time dilation
effects. We can then introduce what might be called the triplet
paradox. In this case an additional third sibling leaves the
planet and comes back to the starting point having a different
age than its two other siblings, because of the sensitivity to
initial conditions. This phenomenon in particular illustrates
how chaotic dynamics affects typical relativistic phenomena.

IV. INVARIANT FRACTAL DIMENSION AND
PERSISTENCE OF TRANSIENT CHAOS

The chaotic saddle and the stable manifold are self-similar
fractal sets when the underlying dynamics is hyperbolic [9].
This fact is reflected in the peak structure of the escape time
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functions, which is present at any scale of initial conditions.
In this sense, the escape time functions share with the Cantor
set some properties with regard to their singularities and,
therefore, to their fractal dimensions. It is possible to study
the fractal dimensions of the escape time functions in terms of
a Cantor-like set [33,34].

In this manner, we can build a Cantor-like set to schemat-
ically represent the escape of particles launched from differ-
ent initial conditions θ0. We consider that a certain fraction
ηt of particles escapes from the scattering region when a
minimal characteristic time t0 has elapsed. If these particles
are launched from initial conditions centered in the original
interval, two identical segments are created; the trajectories
that began in these segments do not escape at least by a time
t0. Similarly, the same fraction of particles ηt from the two
surviving segments escapes by a time 2t0. If we continue
this iterative procedure for 3t0, 4t0, and so on, we obtain
a Cantor-like set of Lebesgue measure zero with associated
fractal dimension dt that can be computed as

dt = ln 2

ln 2 − ln (1 − ηt )
. (10)

Similarly, if the escape times are measured by a noninertial
reference frame comoving with a particle, a fraction of parti-
cles ητ escapes at every time τ0, and therefore the associated
fractal dimension can be defined as dτ .

The behavior is governed by Poisson statistics in the hyper-
bolic regime. Therefore, the average number of particles that
escape follows an exponential decay law. More specifically,
the number of particles remaining in the scattering region
according to an inertial reference frame at rest in the potential
is given by

N (t ) = N0e−σ t . (11)

We note that this decay is homogeneous in an inertial ref-
erence frame, whereas according to an observer describing
the decay in a noninertial reference frame comoving with a
particle, we get the decay law

Ñ (τ ) ≡ N (t (τ )) = N0e−σ
∫ τ

0 γ (t (τ ′ ))dτ ′
, (12)

where we have substituted the equality t = ∫ τ

0 γ (t (τ ′))dτ ′
from solving Eq. (6). In other words, for an accelerated
observer the decay is still Poissonian, but inhomogeneous.
Nevertheless, if we disregard the fluctuations in the Lorentz
factor, homogeneous statistics can be nicely approximated
once again, by defining the average constant rate σ̄τ ≡ σ γ̄ .
We recall that γ (t ) is the Lorentz factor along the trajectory
of a certain particle, and therefore Ñ (τ ) here describes the
number of particles remaining in the scattering region accord-
ing to the accelerated frame comoving with this particle. This
particle must be sufficiently close to the chaotic saddle in
order to remain trapped in the well a sufficiently long time to
render useful statistics, by counting a high number of escaping
test bodies.

Now we calculate, without loss of generality, the fraction
of particles that escape during an iteration according to this
reference frame as

ητ = Ñ (τ0) − Ñ (τ ′
0)

Ñ (τ0)
= N (t0) − N (2t0)

N (t0)
= ηt , (13)

where τ ′
0 is the proper time observed by the accelerated

body when the clocks at rest in the potential mark 2t0. In
this manner, we obtain that the fraction of escaping particles
is invariant under reference frame transformations, because
there exists an unequivocal relation between time t and time
τ given by γ (t ). From this result we derive that the fractal
dimension of the Cantor-like set associated with the escape
time function is invariant under coordinate transformations,
dt = dτ . This equality holds for every particle clock evolving
in the well, as long as it stays long enough. On the other hand,
this result is in consonance with the Cantor-like set nature,
because its fractal dimension does not depend on how much
time an iteration lasts.

In order to compute the fractal dimensions associated with
these scattering functions, we make use of the uncertainty
dimension algorithm [34,35] and the shooting method pre-
viously described. We launch a particle from the potential
minimum at a random shooting angle θ0 in the interval
[π/2, 5π/6] and measure the escape times te(θ0) and τe(θ0)
and the exit e(θ0) through which it escapes. Then we carry out
the same procedure again with a slightly different shooting
angle, θ0 + ε, where ε can be considered a small perturbation,
and calculate the quantities te(θ0 + ε), τe(θ0 + ε), and e(θ0 +
ε). We then say that an initial condition θ0 is uncertain in
measuring, e.g., the escape time te if the difference between
the escape times, |te(θ0) − te(θ0 + ε)|, is larger than a given
time. This time is usually associated with the integration step h
of the numerical method, which is the resolution of an inertial
clock. Conveniently, we set this criterion for uncertain initial
conditions as 3h/2, i.e., halfway between the step and two
times the step of the integrator, for any clock. The reason for
this is that the time differences according to a particle clock
are the result of a computation by means of Eq. (7). Therefore,
an initial condition θ0 is uncertain in measuring the escape
time te if

�te(θ0) = |te(θ0) − te(θ0 + ε)| > 3h/2. (14)

Similarly, an initial condition θ0 is uncertain in measuring the
escape time τe if

�τe(θ0) = |τe(θ0) − τe(θ0 + ε)| > 3h/2. (15)

Finally, an initial condition is uncertain with respect to the exit
through which the particle escapes if e(θ0) 	= e(θ0 + ε).

We generally expect that the time differences hold,
�τe(θ0) < �te(θ0), since we have defined previously that
τ̄e ≡ te/γ̄ . Thus, given the same criterion 3h/2 for both
clocks, there will be some uncertain initial conditions θ0

in the inertial clock [�te(θ0) > 3h/2] that become certain
in the particle clock [�τe(θ0) < 3h/2]. We show a scheme
in Fig. 5(a) to clarify this physical effect on the escape time
unpredictability. It is easy to see that this effect is caused by
the limited resolution of the hypothetical clocks and becomes
more intense for high values of β because it is proportional to
the Lorentz factor.

The fraction of uncertain initial conditions behaves as

f (ε) ∼ ε1−d , (16)

where d is the value of the fractal dimension, which enables
us to quantify the unpredictability in foreseeing the particle’s
final dynamical state. In particular, d = 0 (d = 1) implies
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FIG. 5. (a) A scheme to visualize the physical effect of a reference frame modification on the unpredictability of the escape times, where
h = 0.005. (b) Fractal dimensions according to exits de (green symbols), escape time dt (blue symbols), and escape proper time dτ (red
symbols), with standard deviations computed by the uncertainty dimension algorithm versus 25 equally spaced values of β ∈ [0.5, 0.98].

minimum (maximum) unpredictability of the system [34]. All
the cases in between, 0 < d < 1, also imply unpredictability,
and the closer to unity the value of the fractal dimension
is, the more unpredictable the system is. According to our
scattering functions, it is expected that the values of their
fractal dimensions decrease as the value of β increases, since
these functions become smoother. Taking decimal logarithms
in Eq. (16), we obtain

log10
f (ε)

ε
∼ −d log10 ε. (17)

This formula allows us to compute the fractal dimension of
the scattering functions from the slope of the linear relation,
which obeys the representation log10 f (ε)/ε versus log10 ε.
We use an adequate range of angular perturbations accord-
ing to our shooting method and the established criterion for
uncertain initial conditions, specifically, log10 ε ∈ [−6,−1].

The computed fractal dimensions always hold, de < dt , dτ ,
as shown in Fig. 5(b). This occurs because it is generally
more predictable to determine the exit through which the
particle escapes than its exact escape time when the clock
resolution is low. Therefore, there is a greater number of
uncertain conditions concerning escape times than in relation
to exits. The former are located outside and over the stable
manifold, whereas the uncertain conditions regarding exits
can only be located on the stable manifold, by definition.
We obtain computationally dt ≈ dτ for almost every value of
β. Nonetheless, the physical effect explained above causes
a small difference between the computed fractal dimensions
regarding escape times, implying dτ < dt in a very energetic
regime.

From a mathematical point of view, if we consider an
infinitely low clock resolution, i.e., h → 0, uncertain initial
conditions in any clock will be only the ones whose associ-
ated escape time differences are also infinitely small. Such
uncertain conditions will be located on the stable manifold.
In this case, the geometric and observer-independent nature
of the fractality caused by the chaotic saddle is reflected in
the values of the fractal dimensions. It is expected that in this
limit the equality de = dt = dτ holds.

This equality extends the very important statement that
relativistic chaos is coordinate invariant to transient chaos as
well. The result provided in [12] showing that the signs of
the Lyapunov exponents of a chaotic dynamical system are
invariant under coordinate transformations can be perfectly
extended to transient chaotic dynamics. For this purpose,
it is only necessary to consider a chaotic trajectory on the
chaotic saddle which meets the necessary four conditions
described in [12]. Since the signs of the Lyapunov exponents
of a trajectory on the chaotic saddle are also invariant, it
is therefore evident that the existence of transient chaotic
dynamics cannot be avoided by considering suitable changes
of the reference frame. We believe that this analytical result
is at the basis of the results arising from all the numerical
explorations performed in the previous sections.

V. CONCLUSIONS

Despite the fact that the Hénon-Heiles system has been
widely studied as a paradigmatic open Hamiltonian system,
we have added a convenient definition of its scattering region.
In this manner, the scattering region can be defined as the part
of the physical space where the particle dynamics is bounded,
and therefore a particle escapes when its kinetic energy is
higher than the kinetic energy value at the potential minimum.

Since relativistic chaos has been demonstrated as coor-
dinate invariant, we have focused on the special relativistic
version of the Hénon-Heiles system to extend this occurrence
to transient chaos. We have then analyzed the Lorentz factor
effects on the system dynamics, specifically, how the time
dilation phenomenon affects the scattering function structure.
The exit and the escape time functions exhibit a fractal struc-
ture of singularities as a consequence of the presence of the
chaotic saddle. Since the origin of the escape time singular-
ities is geometric, the fractality of the escape time function
must be independent of the observer. We conclude that the
time dilation phenomenon does not affect the typical structure
of the singularities of the escape times, and interestingly, this
phenomenon occurs chaotically.

The escape time function as measured by any clock is
closely related to a Cantor-like set of Lebesgue measure zero,
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since it is a self-similar set in the hyperbolic regime. This
feature allows us to demonstrate that the fractal dimension of
the escape time function is relativistic invariant. The key point
of the demonstration is that, knowing the evolution of the
Lorentz factor, there exists an unequivocal relation between
the transformed times. In order to verify this result computa-
tionally, we have used the uncertainty dimension algorithm.
Furthermore, we have pointed out that the system is more
likely to be predictable in a reference frame comoving with
the particle if a limited clock resolution is considered, even
though from a mathematical point of view the predictability
of the system is independent of the reference frame.

The main conclusion of the present work is that transient
chaos is coordinate invariant from a theoretical point of view.
This statement extends the universality of the occurrence of
chaos and fractals under coordinate transformations to the
realm of transient chaotic phenomena as well.
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