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ABSTRACT 
 

We can find dynamics in every field of science, including economics, 
chemical reactions, physiology or neurodynamics, showing its intrinsic 
interdisciplinarity. The interactions between the parts of a system and their 
feedback mechanisms constitute a source of nonlinearity and complexity, 
which added to the sensitive dependence on initial conditions, hallmark of 
chaotic behavior, lead to a crucial change of perspective with serious 
consequences in the understanding of science. Relevant problems such as 
the three-body problem in celestial mechanics, turbulence in fluid dynamics, 
irreversibility in statistical physics; or the logistic equation in population 
dynamics, have been at the origins of this fascinating field of nonlinear 
dynamics, chaos, and complex systems. A knowledge of its origins, as well 
as the many schools of mathematics and physics that have contributed to its 
development, allow us to better understand the discipline and the breadth of 
its many applications to science. 
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1.   Introduction 
 
Nonlinear dynamics is the discipline that aims to study nonlinear dynamical 
systems, which are those systems defined by one or more variables evolving 
with time where the response is not proportional to the stimulus. Chaos is 
one of the three kinds of motion, in addition to the periodic and quasi-
periodic motions. Naturally, there are as many dynamical systems as there 
are variables that have a temporal evolution, which gives us an idea of the 
interdisciplinary nature and scope of nonlinear dynamics [1-4]. 
 
Many of the ideas and concepts of complexity, such as a science of complex 
systems, pose a real challenge for the integration of various disciplines, 
among which we must point out nonlinear dynamics and chaos theory, 
statistical physics, stochastic processes, information theory, network theory, 
engineering science, life sciences, and computer sciences. This listing is 
naturally not complete, but it gives an idea of the challenge behind the idea 
of complexity. This intended goal means more than the idea of crossing 
disciplinary boundaries, but rather to integrate disciplines in a common 
background. 
 
Much has been discussed in recent years about a fruitful dialogue between 
different scientific disciplines, not only to solve old problems, but also as a 
source of inspiration for new problems. For the study of complexity this is 
one of the fundamental elements, since its object of study covers problems 
related to both the so-called hard and soft sciences. Complex systems exist 
in biology, chemistry, physics, sociology, economics, etc. In any case, the 
true dialogue between disciplines so necessary for the advancement of 
knowledge of complex systems in particular, and of science in general, is 
still lacking. 
 
Different paths that have led to the understanding of chaos as we understand 
it today. Among them, I like to point out: (1) The logistic map and 
population dynamics (2) Nonlinear oscillators (3) The three-body problem 
in celestial mechanics (4) Turbulence in fluid dynamics and (5) 
Irreversibility in statistical mechanics. All of them will be discussed 
throughout this article. 
 
2.   Nonlinear Dynamics and Deterministic Chaos 

 
As previously discussed, dynamics is the science that studies the variation in 
time of different variables, that is, its motion. Basically, there are three types 
of motion: stationary and equilibrium; periodic and quasi-periodic; and 
finally chaotic motion. Considering the notion of motion in a broad sense, it 
is easy to understand that we can find dynamical systems in any scientific 
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discipline. That is why it is customary to say that one of the characteristics 
of nonlinear dynamics is its interdisciplinarity, since with its methods we 
can approach the study of many different phenomena that evolve over time. 
We use the term "nonlinear" to logically contrast it with the term "linear", 
since the linear approach is the one traditionally used in science due to its 
mathematical simplicity. The linear approach implies the assumption of 
properties such as: (1) Proportionality: small causes cause small effects (2) 
Additivity: the whole is equal to the sum of its parts (3) Replication: the 
same action under the same conditions produces the same result and (4) 
clear relationships between cause and effect: it is enough to know a little 
about the behavior of a system to fully know it. 
 
However, when nature's relationships are not linear, it leads us to very 
different situations. A proportional relationship between two variables x and 
y, where y = kx, indicates a linear relationship. Therefore, any relationship 
between two variables that does not respond to a proportional relationship 
like the previous one will be nonlinear. It is easy to figure out that most 
dynamical systems are nonlinear. 
 
When there are relationships of nonlinearity, there can be chaotic behavior 
that has the following properties: (1) There is no proportionality: small 
causes can cause large effects (2) Emergence: additivity does not exist, so 
the whole is greater than the sum of its parts (3) Sensitive dependence on 
initial conditions: which can make that the same experiment can never be 
reproduced exactly; and finally (4) Nonlinearity that can generate 
instabilities, discontinuities and unpredictability, which requires flexibility, 
adaptability, dynamic change, innovation and reaction capacity. 
 
Possibly one of the deepest ideas about the nature of what is known as 
chaotic behavior is the idea of sensitive dependence on the initial 
conditions. That is, trajectories of a chaotic system move away from each 
other as time progresses when they start from very close initial points. This 
fact has very drastic consequences on the predictability of a system. 
 
From this viewpoint, it is somehow surprising to read the following 
sentence from the Chapter XIV of The Origin of Species (1859) [5] by 
Charles Darwin: 
 
"More individuals are born than can possibly survive. A grain in the 
balance will determine which individuals shall live and which will shall die, 
which variety or species shall increase in number, and which shall 
decrease, or finally become extinct",  
 



that in a certain sense shows already the true notion of sensitive dependence 
on initial conditions. 
 
In this regard, it is also interesting to bring up a famous rhyme traditionally 
associated with Benjamin Franklin, although antecedents of the same idea 
date back to the 15th century, and which is known as "For Want of a Nail " 
as shown in Fig. 1. 
 

 
 

Fig. 1: The rhyme "For Want of a Nail..." offers an intuitive and poetic 
image of the idea of sensitive dependence on initial conditions, which is the 
hallmark of chaos. 
 
We can define chaotic behavior or chaos as a type of motion that is derived 
from deterministic temporal dynamics of simple systems that can in fact be 
described in terms of few variables and whose fundamental characteristics 
are: (1) Being irregular in time, and given its nonlinear character, of course, 
cannot be the superposition of periodic motions, being in fact of aperiodic 
nature and bounded (2) Be unpredictable in the long term and very sensitive 
on the initial conditions and (3) Be complex, but ordered in the phase space, 
presenting a geometry of a fractal nature. If we compare the chaotic motion 
with the regular motion, we can say that the latter is repetitive, periodic, 
predictable and with a simple geometry, while the former is irregular, 
unpredictable and with a complicated geometry. 
 
There are different types of chaotic motions. It is fundamentally called 
permanent chaos when once a dynamical system finds this state it remains 
in it forever. On the other hand, it is called transient chaos when this chaotic 
behavior occurs only in a certain period of time and the system subsequently 



  
 
 
 
 MIGUEL A. F. SANJUÁN 

5 
 

behaves differently. Furthermore, dynamical systems generally distinguish 
between dissipative and conservative based on whether or not they conserve 
energy. Well, for dissipative systems permanent chaos occurs in what is 
called a chaotic attractor in the phase space. However, in the case of 
transient chaos, chaotic transients occur in a fractal set. In the conservative 
case, on the one hand, permanent chaos occurs in bounded regions of the 
phase space and transient chaos is associated, for example, with the 
phenomenon of chaotic scattering that occurs in numerous physical 
phenomena, giving rise to very complex fractal structures. These concepts 
will be explained in more detail throughout the article. 
 
Dynamical systems are usually classified as discrete and continuous 
depending on whether time is measured discretely or continuously. A 
paradigm for discrete dynamical systems is the logistic map, defined as 
 

, 
 

which is an iterative equation where the index n indicates an iteration that is 
linked to the discrete way of measuring time. Figure 2 shows a Feigenbaum 
bifurcation diagram corresponding to the logistic map, where the final state 
of the system is displayed as a function of the variation of parameter r. 
 

 
 

Fig. 2: Feigenbaum bifurcation diagram corresponding to the logistic map. 
It indicates how the final state of the system varies depending on the value 
of parameter r. 
 
A paradigm for continuous systems is the simple pendulum (Fig. 3). It 
consists of a body of mass m that hangs on a cord that is in principle 
inextensible and of negligible mass, and whose suspension point moves 
periodically.  

xn+1 = rxn (1− xn )



 
 

Fig. 3. Oscillatory motion of a pendulum 
 

In this system, time is measured continuously, and therefore it can be 
modeled, once normalized, using a differential equation such as 
 

. 
 

This equation contains in addition to the inertia term (the second derivative 
of the position), the friction of intensity µ which is proportional to the 
velocity, the nonlinear sinusoidal term and an external periodic forcing of 
amplitude F and frequency w. If we consider the friction with the air and 
assuming that the suspension point remains fixed, then the motion will 
gradually dampen until it stops in its stable equilibrium position. When the 
suspension point moves periodically, it has the effect of introducing energy 
into the system, causing oscillations to be maintained. However, it is also 
possible to give rise to another type of motion of an irregular and 
unrepeatable nature on a periodic basis, which is chaotic motion. 
 

 
 

Fig. 4. Evolution of velocity over time for periodic and chaotic motions. 
 
Figure 4. indicates the time evolution of the velocity of a pendulum. In one 
of them clearly the periodic nature of the oscillations can be observed, that 
is, after a certain period of time the same motion is repeated. In the other 
figure, however, an irregular behavior is shown, which turns out to be 
chaotic, where it can be observed that the same type of motion is not 

!!x +µ !x + sin x = F cosωt
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reproduced after any period of time. This is precisely one of the 
characteristics of chaotic motion, its lack of periodicity. 
 
A simple example of periodic system is the mass-spring system formed by a 
body that is attached by a spring to a wall (Fig. 5). If the displacement with 
respect to the equilibrium position is very small, then the spring recovery 
force is proportional (linear) to the displacement, so that the result of motion 
is regular, oscillatory, and periodic.  

 
Fig. 5. Oscillatory motion of a system formed by a body of mass m attached 
to a spring. 
 
When the deformation is greater, the spring recovery force is not linear, 
leading to irregular spring responses. In this situation, the resulting motions 
can be very irregular, and may be chaotic in nature where there are no 
regularities or periodicities and where the long-term predictability is lost. 
 

 
 

Fig. 6: The figure represents the chaotic attractor of the Lorenz system. 
 
Perhaps one of the more well-known chaotic systems is the Lorenz system, 
which at the same time is one of the most studied chaotic systems. Figure 6 
shows a chaotic attractor of the Lorenz system in phase space. It was 



introduced by the meteorologist Edward Lorenz to study the thermal 
convection in a fluid and by means of computer numerical simulations he 
was able to observe the property of sensitive dependence on initial 
conditions, the hallmark of chaotic behavior. 
 
Figure 7 shows the idea of sensitive dependence on initial conditions in the 
Lorenz chaotic system. The figure shows the temporal evolution in phase 
space of two orbits (one red and one blue) whose initial conditions are very 
close. After a certain time, approximately 24 time-units, the corresponding 
orbits start to drift apart, turning out to be very different at long times.  
 

 
 

Fig. 7. Time evolution in phase space of two orbits of the Lorenz system 
initially very close, where the property of sensitive dependence on initial 
conditions is shown. 
 
A very important tool in nonlinear dynamics is the geometric notion of 
phase space. The notion of phase space [6] is attributed to the American 
physicist Josiah Willard Gibbs (1839-1903), who was one of the pioneers of 
kinetic theory and is also considered one of the founding fathers of 
statistical mechanics, a term that he also coined. The concept of phase space 
plays a crucial role in nonlinear dynamics, from whose analysis we can 
obtain much information about a given dynamical system.  
 
Studying the phase space of a given dynamical system allows complex 
fractal structures to be obtained whose physical consequences are reflected 
in uncertainty when determining the subsequent state of the system (Fig. 8). 

 
3.   A Historical Overview of Nonlinear Dynamics 

 
Throughout the 19th century, certain limitations appeared around the myth 
of determinism. On the one hand, it is essential to have a complete 
knowledge of the initial conditions of the problem. On the other hand, 
notable difficulties arose in solving the dynamics of a physical system made 
up of a large number of particles. The latter led to the introduction of 
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concepts related to probability theory in the study of the physical laws of 
systems made up of many particles, such as gases, liquids and solids, giving 
rise to the birth of statistical mechanics. The founding fathers of the 
discipline include Ludwig Boltzmann (1844-1906), Josiah Willard Gibbs 
(1839-1903), and James Clerk Maxwell (1831-1879). 
 

 
 
Fig. 8. Fractal structures in the phase space of a chaotic nonlinear oscillator. 
The variables of the phase space are the position on the x axis and the 
velocity on the y axis. 
 
Scottish physicist James Clerk Maxwell (1831-1879), is fundamentally 
known for having unified the laws of electricity and magnetism. However, 
his contributions to physics have been among the most prolific in history. 
Among his great scientific work, it is important to mention that he is 
considered the father of automatics and statistical mechanics. However, the 
role he played in the development of modern chaos theory is largely 
unknown. 
 
Precisely in one of his writings: Does the progress of physical science tend 
to give any advantage to the opinion of necessity (or determinism) over that 
of the contingency of events and the freedom of the will? from a lecture he 
gave at Cambridge on February 11, 1873 are the following excerpts 
showing to what extent Maxwell was familiar with the idea of sensitive 
dependence on initial conditions, of which we have spoken earlier. 
 
“Much light may be thrown on some of these questions by the consideration 
of stability and instability. When the state of things is such that an infinitely 



small variation of the present state will alter only by an infinitely small 
quantity the state at some future time, the condition of the system, whether 
at rest or in motion, is said to be stable; but when an infinitely small 
variation in the present state may bring about a finite difference in the state 
of the system in a finite time, the condition of the system is said to be 
unstable. It is manifest that the existence of unstable conditions renders 
impossible the prediction of future events, if our knowledge of the present 
state is only approximate, and not accurate.” 
 
Due to the enormous consequences on determinism in physics that quantum 
mechanics has brought about through Heisenberg uncertainty principle, the 
idea of indeterminism has been directly related to quantum mechanics. This 
has led somehow to consider classical mechanics as completely 
deterministic and predictable, which is not entirely true [7]. 
 
It is fascinating to corroborate that the idea of sensitive dependence on 
initial conditions was considered in detail by the German physicist Max 
Born (1882-1970), Nobel Prize in Physics in 1954, in an article entitled Is 
Classical Mechanics in fact deterministic? [8]. In it he presented a study of 
a two-dimensional Lorentz gas initially proposed by the Dutch physicist 
Hendrik A. Lorentz (1853-1928) in 1905 as a model for the study of 
electrical conductivity in metals. In this model, a particle moves in a plane 
that is full of hard spheres and collides with them so that a small change in 
the initial conditions will significantly alter the trajectory of the particle. 
This fact led Born to conclude that determinism traditionally related to 
classical mechanics is not real, since it is not possible to know with infinite 
precision the initial conditions of a physical experiment. 
 
Furthermore, in the lecture [9] he gave on the occasion of the awarding of 
the Nobel Prize in 1954 the following words appear: 
 
“Newtonian mechanics is deterministic in the following sense: If the initial 
state (positions and velocities of all particles) of a system is accurately 
given, then the state at any other time (earlier or later) can be calculated 
from the laws of mechanics. All the other branches of classical physics have 
been built up according to this model. Mechanical determinism gradually 
became a kind of article of faith: the world as a machine, an automaton. As 
far as I can see, this idea has no forerunners in ancient and medieval 
philosophy. The idea is a product of the immense success of Newtonian 
mechanics, particularly in astronomy. In the 19th century it became a basic 
philosophical principle for the whole of exact science. I asked myself 
whether this was really justified. Can absolute predictions really be made 
for all time on the basis of the classical equations of motion? It can easily 
be seen, by simple examples, that this is only the case when the possibility of 
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absolutely exact measurement (of position, velocity, or other quantities) is 
assumed. Let us think of a particle moving without friction on a straight line 
between two end-points (walls), at which it experiences completely elastic 
recoil. It moves with constant speed equal to its initial speed v0 backwards 
and forwards, and it can be stated exactly where it will be at a given time 
provided that v0 is accurately known. But if a small inaccuracy Dv0 is 
allowed, then the inaccuracy of prediction of the position at time t is tDv0 
which increases with t. If one waits long enough until time tc = l/Dv0 where l 
is the distance between the elastic walls, the inaccuracy Dx will have 
become equal to the whole space l. Thus it is impossible to forecast anything 
about the position at a time which is later than tc. Thus determinism lapses 
completely into indeterminism as soon as the slightest inaccuracy in the 
data on velocity is permitted.” 
 
The American physicist Richard Feynman (1918-1988), who won the Nobel 
Prize for Physics in 1965 (Fig. 9), makes similar reflections in his well-
known book Lectures in Physics [10], where he explains that indeterminism 
does not belong exclusively to quantum mechanics, it is a basic property of 
many physical systems. 
 

 
 
 

Fig. 9. Richard Feynman (1918-1988), Nobel Prize in Physics in 1965. 
 



In section 38-6, entitled "Philosophical Implications", in the first volume of 
his Lectures in Physics, a masterful description of indeterminism in classical 
mechanics is made. The fundamental idea is the uncertainty in accurately 
setting initial conditions to predict the final state of a physical system. 
Finally affirming: "Because in classical mechanics there was already 
indeterminism from a practical point of view". 
 
3.1 Poincaré, the Three-Body Problem and the Birth of Chaos 
 
To understand the three-body problem, we go back to the beginnings of 
modern science with Isaac Newton's works on the gravitational field and the 
universal law of gravitation. The so-called two-body problem basically 
consists of analyzing the motion of a system formed by two bodies that 
attract each other under the action of gravitational forces. Newton solves the 
problem by reducing the motion of the two bodies to the motion of each of 
them around the so-called center of mass, which is a point whose mass is the 
total mass of the system. 
 
Later, an attempt was made to solve the three-body problem, which can be 
formulated in a simple way: Let 3 bodies of arbitrary masses m1, m2 and m3 
be mutually attracted by Newton's law of gravitation. Assuming that they 
can move freely in a three-dimensional space and with arbitrary initial 
conditions, determine the evolution of the motion. 
 
Despite the simplicity of its formulation, its resolution has caused real 
headaches for many scientists. Among them we may highlight Isaac Newton 
(1642-1727), Alexis Clairaut (1713-1765), Leonhard Euler (1707-1783), 
Pierre-Simon Laplace (1749-1827), Joseph-Louis Lagrange (1736-1813), 
Carl Jacobi (1804-1851), George Hill (1838-1914) and Henri Poincaré 
(1854-1912). 
 
It is precisely the latter who wrote a famous memoir in 1889 on the three-
body problem and the equations of dynamics, after winning the prize of the 
contest on the stability of the Solar System that had been summoned by 
King Oscar II of Sweden and Norway on the occasion of his 60th 
anniversary. This competition [11] had been proposed by the Swedish 
mathematician Gösta Mittag-Leffler, who had received it from the German 
mathematician Karl Weiertrass, who had been his teacher, the idea that the 
contestants write an original work facing one of four questions. One of 
Weiertrass's four questions had to do with Celestial Mechanics. The 
question was born out of a suggestion formulated by the mathematician 
Peter Gustav Lejeune Dirichlet at the University of Göttingen, who in 1858 
had told his student Leopold Kronecker that he had discovered a new 
method of solving certain differential equations and pointed out that by 
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applying them to the equations of celestial mechanics he could prove with 
all rigor that the solar system was stable. The committee that evaluated this 
competition was made up of mathematicians Karl Weiertrass, Frenchman 
Charles Hermite and Swedish Gösta Mittag-Leffler. 
 
Subsequently, in 1892, Poincaré published his great work Les Méthodes 
nouvelles de la Mécanique Céleste (Fig. 10) in three volumes where 
numerous new concepts appear that have given rise to the development of 
the theory of dynamical systems, as mathematicians usually call it or 
nonlinear dynamics, a term more used by physicists, as well as other 
mathematical disciplines such as topology. Poincaré is considered to be one 
of the fathers of chaos theory, as many fundamental ideas of the theory are 
contained in this book. 
 

 
 

Fig. 10. Les Méthodes Nouvelles de la Mécanique Céleste was published by 
Henri Poincaré in 1892. 
 
The general three-body problem is of enormous difficulty and only in recent 
years notable advances have been made, without being definitive. However, 
there is a case that is called restricted, circular and plane, which is the one 
that has been studied by many of the scientists to whom I have previously 
referred. Fundamentally, it is considered that the system is not made up of 
any three masses, but one of them is considered much larger than the others 
and the third of them is of negligible mass compared to the rest. The 
analogy certainly comes from considering systems like the Sun, Earth, and 



Moon, or Earth, Moon, and a satellite, where the approximation of moving 
in a plane is also correct. In these circumstances and with an appropriate 
reference system, the equations of motion can be found without difficulty, 
from which a potential is derived that gives us an idea of the equilibrium 
positions in which a third body can be found. These are five equilibrium 
positions that Lagrange found, which is why they are currently known as the 
Lagrange points (Fig. 11). 
 

 
 

Fig. 11. The figure shows the equipotential curves of the restricted three-
body problem, in this case, Sun-Earth-Moon where the five Lagrange points 
are illustrated. 
 
Knowledge of the Lagrange points is very useful. In fact, at point L1 is the 
Solar and Heliospheric Observatory (SOHO), which is a space probe to 
study the Sun. At Lagrange point L2, the Wilkinson Microwave Anisotropy 
Probe (WMAP) was positioned to study radiation from microwave 
background of the universe, getting it to stay in place with minimal fuel 
consumption, always keeping its sensors pointed away from the Earth and 
the Sun. The James Webb Space Telescope (JWST) is planned to be 
launched in 2021, which is a developing space observatory that will study 
the sky in infrared frequency, and that will orbit around the L2 Lagrange 
point. 
 
As pointed out above, Poincaré did not approach the three-body problem in 
a general way, but focused on studying what is known as the “restricted 
three-body problem”, which is a particular case in which it is considered 
that one of the masses is very small compared to the others. In this study he 
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found what he called doubly asymptotic or homoclinic orbits, which are 
characterized by having a homoclinic point in the phase space. The presence 
of one of these points have very serious implications on the dynamic 
complexity of the system. After studying the problem, Poincaré wrote: 
 
“One will be struck by the complexity of this picture that I do not even dare 
to sketch. Nothing is more appropriate to give us an idea of the intricateness 
of the three-body problem and in general all problems of dynamics…” 
 
And it is that when trying to solve this problem he created a method or a 
geometric approximation by means of which he glimpsed that this problem 
had a very complex dynamics that is basically what we now call 
deterministic chaos. 
 

 
 

Fig. 12. French mathematician and physicist Henri Poincaré (1854-1912) 
 
The influence of Poincaré (Fig. 12) on the development of Hamiltonian 
systems is enormous and in this sense it is interesting to mention that his 
witness was taken by the American mathematician George David Birkhoff 
(1884-1944), who coined the term dynamical systems, since in turn it had an 
enormous influence on Edward Lorenz who would rediscover the sensitive 
dependence on initial conditions in the middle of the 20th century. 
 
Within this stream of thought, and in the American context, it is necessary 
to mention the mathematician Steven Smale (Fig. 13), deserving of the 
Fields medal in 1966 for his great contributions to the theory of dynamical 
systems. It is precisely to him that the concept of Smale horseshoe is due, 
which was an important step in understanding the relationship between the 
existence of a homoclinic point and the notion of deterministic chaos, 



through the simple idea of symbolic dynamics using the so-called Bernoulli 
shift map. 
 

 
 

Fig. 13. Steve Smale, Fields Medal 1966. 
 

As for the Russian tradition, we must go back to Alexander M. Lyapunov 
(1857-1918), who had been a doctoral student of the famous mathematician 
Pafnuti L. Chebychev (1821-1894), and whose thesis on the stability of 
motion has exerted an enormous influence on Physics. From Lyapunov we 
have inherited concepts such as the stability of dynamical systems and also 
Lyapunov's useful exponents, which help us to characterize when a given 
dynamical system is chaotic or not. 
 
One of the main schools within the Russian tradition is that of Leonid I. 
Mandelstam (1879-1944), continued by his disciples Alexander A. 
Andronov (1901-1952) and Lev S. Pontryagin (1908-1988). Another key 
school within this same tradition is that of Andrei N. Kolmogorov (1903-
1987). All of them developed new methods and made notable contributions 
to the construction of nonlinear dynamics as we know it today. 
 
In the year 1954, at the International Congress of Mathematics that took 
place in Amsterdam, Kolmogorov enunciated a theorem for Hamiltonian 
systems that was subsequently proved by his student Vladimir I. Arnold and 
by the German Jürgen Moser (1928-1999), who has turned out to be of 
considerable importance. This theorem is currently known as the KAM 
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theorem (Kolmogorov-Arnold-Moser) [12] and it has to do with the 
problem of the stability of invariant tori in the integrable systems of 
Hamiltonian mechanics under the action of small perturbations. 
 
This work, in fact, naturally links with Poincaré's pioneering works on 
celestial mechanics, since he had brought out the idea of the complexity of 
orbits in the three-body problem, and the KAM theorem can be considered 
as a culmination of these ideas. As we have already seen, the stability of the 
solar system is a problem of special importance in celestial mechanics and 
the KAM theorem shows that under certain conditions these orbits remain 
confined in certain regions.  
 
3.2 Complexity in Fluid Motion  
 
The phenomenon of turbulence in fluid motion is one of the most 
spectacular cases of chaotic behavior. Although the fundamental equations 
of fluid motion, the Navier-Stokes equations, have been known since the 
end of the 19th century, it should be remembered that the form of their 
solutions in turbulent regime is not yet known. 
 

 
 

Fig. 14. Edward N. Lorenz (1917–2008) 
 
In 1963 the meteorologist at the Massachusetts Institute of Technology 
(MIT) Edward N. Lorenz (Fig. 14) developed a model of three ordinary 
differential equations to describe the motion of a fluid under the action of a 



thermal gradient. When it came to finding numerical solutions with the help 
of a computer, he again encountered the phenomenon of sensitive 
dependence on initial conditions. That is, the system was inherently 
unpredictable, such that small variations in determining the initial 
conditions led to drastically different solutions. 
 
At the time, very few gave importance to this fact, perhaps because the 
results of Lorenz's work were published with a somewhat cryptic title, 
“Deterministic Nonperiodic Flow”, [13] in a meteorology journal and went 
unnoticed by many scientists.  

 
The theory of the Russian physicist Lev D. Landau, and the German 
Eberhard Hopf that proposed the existence of an infinite set of 
incommensurable frequencies to explain the turbulence, was surpassed in 
the 1970s by the theoretical contributions of David Ruelle and Floris 
Takens, who introduced in 1971 the fundamental concept of strange 
attractor. It is an attractive geometric object, different from the previously 
known cases of periodic fixed points, quasi-periodic fixed points or limit 
cycles, hence the name "strange", and which also has a non-integer or 
fractional (fractal) dimension.  
 
On the other hand, the development of fractal geometry started by Benoit 
Mandelbrot [14], who had been a student of the French mathematician 
Gaston Julia, has played a fundamental role in the understanding and 
analysis of the complex behavior of nonlinear dynamical systems. In any 
case, it is important not to forget the role played in many aspects of the 
development of nonlinear dynamics by the German mathematician Georg 
Cantor (1845-1918), 

 
 

Fig. 15. The middle-third Cantor set is one of the simplest fractal sets 
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particularly with regard to the middle-third Cantor set (Fig. 15) and its 
constant appearance in many dynamic problems. This will be discussed in 
more detail in section 3.6. 
 
3.3 Statistical Mechanics, Origin of Irreversibility and Ergodic Theory 
 
Statistical mechanics is an essential part of theoretical physics whose 
purpose is to describe the macroscopic properties of a very large system of 
particles in terms of their averaged properties. It is a discipline that 
combines the basic laws of dynamics for a particle system along with the 
laws of statistics, especially those concerning the law of large numbers. The 
discovery of deterministic chaos has stimulated some physicists to 
reconsider from a new perspective the foundations of statistical mechanics. 
This is because deterministic chaos implies that not only systems with a 
large number of particles, but even deterministic systems with very few 
degrees of freedom can present behaviors that require statistical tools for 
their study. Many efforts have been made during this last century to give a 
correct interpretation of the dynamical origins of irreversibility. Despite all 
the efforts made to date, there is still no general agreement on what are the 
essential ingredients needed to support statistical mechanics. 
 

 
 
Fig. 16. The founding fathers of Statistical Mechanics: Ludwig Boltzmann 
(1844-1906), James Clerk Maxwell (1831-1879 and Josiah W. Gibbs (1839-
1903)  
 
The problem of irreversibility was one of the major concerns of one of the 
"founding fathers" of statistical mechanics (Fig. 16), the Viennese physicist 
Ludwig Boltzmann (1844-1906). The objection raised by Josef Loschmidt 
(1821-1895) to Boltzmann's program, consisting in deriving the laws of 
thermodynamics directly from mechanical behavior, revealed the 
paradoxical of a situation in which, while the laws of mechanics are 
reversible under temporal inversion, the thermodynamic behavior of the 
systems is fundamentally irreversible. There has certainly been great 



progress in this century in the attempt to clarify the dynamic origin of the 
kinetic equations, although the problem remains to some extent open. 
Following Boltzmann, the first attempts to substantiate classical statistical 
mechanics were based on the supposed validity of the ergodic hypothesis, 
which, after making considerable theoretical efforts, led to a true impasse. 
 
Following the work of Maxwell and Boltzmann, Gibbs introduced the 
concept of a "Mixing" associated to a system using the simile of an oil drop 
in an immiscible fluid, a small region in the phase space that simulates the 
oil drop, the dynamical evolution would help fill the entire phase space. 
This idea implies that for a given dynamical system, two sufficiently close 
points would separate exponentially after a certain period of time. This 
concept is linked to the notion of sensitive dependence on initial conditions 
that is at the base of chaotic dynamics in nonlinear dynamics and that leads 
to define the so-called Lyapunov exponents [15]. The concept of Lyapunov 
exponent indicates that if a dynamical system has any positive Lyapunov 
exponent then these initial points or conditions would separate exponentially 
and this type of systems are called chaotic systems, since the prediction of 
the evolution of the system in the long term is impossible.  
 
In this sense, scientists like George Birkhoff (1884–1944) stand out, who 
proposed the ergodic theorem, which was later proved by the German 
mathematician Eberhard Hopf (1902-1983) using the fact of the ergodicity 
of the trajectories on surfaces of constant negative curvature that French 
mathematician Jacques Hadamard had pointed out a few years earlier. 
However, these results had little impact on the foundation of nonequilibrium 
statistical mechanics. 
 
The importance of the Lorentz gas, which was previously mentioned when 
talking about Max Born, is that it shows thermodynamic physical properties, 
is ergodic and has a positive Lyapunov exponent. The great achievement of 
Russian American mathematician Yakov Sinai, who received the Abel Prize 
in 2014 (Fig. 17), was to show the connection between the classical 
Boltzmann-Gibbs set for an ideal gas and a chaotic Hadamard billiard. 
 
Ideas from chaos theory have been used for the foundation of statistical 
mechanics, finding deep connections between the dynamical properties of a 
system, such as its Lyapunov exponents and its transport properties. 
Knowledge of both the nonequilibrium statistical mechanics and nonlinear 
dynamics is essential to understand works on nonequilibrium states. Despite 
numerous efforts and apparent new perspectives to support the 
nonequilibrium statistical mechanics based on chaos theory, the 
extraordinary conceptual difficulties of such an undertaking have so far 
prevented its achievement.  
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Fig. 17. The American-Russian mathematician Yakov G. Sinai with Crown 
Prince Haakon of Norway when he received the 2014 Abel Prize. 
 
3.4 The Path towards Chaos through Nonlinear Oscillators 
 
The construction of nonlinear dynamics is like that of a large river to which 
numerous tributaries contribute. One of these tributaries is the study of 
nonlinear oscillators. Among the pioneers in this path we can find the 
English physicist John William Strutt, Lord Rayleigh (1842-1919), 
motivated by his interest in understanding the physics of musical 
instruments. For this type of system, a first approximation based on the use 
of linear oscillators is not effective because the real instruments do not 
produce a simple tone, as it happens to a linear oscillator, so it is necessary 
to add friction on one side and terms not linear recovery by another. That is, 
it is necessary to use an elastic force different from that provided by Hooke's 
law: ut tensio sic vis. By clever use of the basic dynamical elements of the 
problem, Lord Rayleigh created models that explained the sound emitted by 
musical instruments. In his famous book The Theory of Sound published in 
1877, Rayleigh introduced a series of fairly general methods such as the 
notion of a limit cycle, which is a periodic motion that has the physical 
system regardless of the initial conditions. 
 
German engineer Georg Duffing (1861-1944) is known primarily for his 
symmetric nonlinear oscillator model with a cubic nonlinearity: Duffing 
oscillator. This model is a paradigmatic model for the study of many 



phenomena in nonlinear dynamics. The theory was later developed in the 
late 1940s, just after World War II, by two English mathematicians at 
Cambridge University: Mary L. Cartwright (1900-1998) and John E. 
Littlewood (1885-1977) who showed that many of the experiments of 
experimental physicists and many of the conjectures of theoretical physicists 
were derived directly from the analysis of differential equations of motion. 
In fact, these mathematicians had followed the ideas of George Birkhoff. 
 
The school of nonlinear thought in Russia was started by the work of Leonid 
I. Mandelstam (1879-1944) on nonlinear oscillators, who had trained with 
the German physicist August Kundt (1839-1894) in Strasbourg, well known 
for his works on acoustics and the Kundt tube. This line of work was 
continued by Alexander A. Andronov (1901-1952) (Fig. 18) and by Lev S. 
Pontryagin (1908-1988), who introduced the notion of structural stability of 
a system of equations, a concept associated with that of bifurcations of 
dynamical systems. 
 

 
 
Fig. 18. The Russian mathematician Alexander A. Andronov (1901-1952) 
one of the pioneers in nonlinear science. 
 
The concept of bifurcation of limit cycles that had been suggested by 
Poincaré in 1892, was tested by Andronov in 1930 and by Hopf in1940, and 
is called the Andronov-Hopf bifurcation, although it is better known simply 
as a Hopf bifurcation. This school continued later in the 50s and 60s in 
Gorky, current Nizhnii Novgorod, obtaining parallel results to the 
development of the theory in the West. Many methods of nonlinear physics 
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were developed under the paradigm of nonlinear oscillators and self-
oscillations.  
 
Another important school on nonlinear thought in Russia was the Kiev 
School of Nonlinear Oscillations Research that was initiated by Nikolai M. 
Krylov (1879–1955) and his student Nikolai N. Bogolyubov (1909–1992) 
(Fig. 19), at the beginnings of the 1930s. They developed much fundamental 
work on quasi-periodic solutions for non-autonomous systems and 
established the discipline of Nonlinear Mechanics as a part of Physics. Most 
of their work was published in the book Introduction to Nonlinear 
Mechanics (1937) [16] in Russian. An English version was published in 
1943 by Princeton University Press after the translation carried out by the 
Russian mathematician Solomon Lefschetz (1884-1973) who led the 
Nonlinear Oscillation Project (ONR) in Princeton, and translated work 
available in Russian for the English-speaking world. 
 

 
 
Fig. 19. Nikolai M. Krylov and his student Nikolai N. Bogolyubov who 
develop the Nonlinear Mechanics School in Kiev in the 1930s. 
 
In Japan, the theory of nonlinear oscillators and their applications to 
radiophysics were developed at the school of Japanese engineer Chihiro 
Hayashi (1911-1986) at Kyoto University. Hayashi made notable 
contributions to the study of nonlinear oscillators and their practical 
applications in electrical engineering, publishing his famous book Nonlinear 
Oscillations in Physical Systems in 1964 [17]. 
 
In 1961 a remarkable event takes place on the part of the Japanese engineer 
Yoshisuke Ueda, who was a doctoral student of Chihiro Hayashi. Ueda 
studied the dynamics of various nonlinear oscillators such as the van der Pol 



oscillator and the Duffing oscillator, and it is precisely in a particular model 
of the latter that he apparently found solutions for the first time that we now 
designate as chaotic solutions. 
 
3.5 Population Dynamics and the Logistic Map 
 
The logistic map was popularized by Robert M. May (1936-2020) (Fig. 20) 
after the publication of his influential paper “Simple mathematical models 
with very complicated dynamics” [18], and constitutes one of the paradigms 
of the chaotic behavior of nonlinear dynamical systems. Robert May started 
his scientific career as a physicist, but soon he moved into biology 
becoming one of the pioneers in theoretical ecology, what led him to 
become a pioneer in chaos theory. Despite the apparent simplicity of the 
logistic map, it displays complex dynamics including chaotic behavior. Its 
formulation derives from the logistic equation, introduced in 1838 as a 
model of growth in population dynamics by the Belgian mathematician 
Pierre François Verhulst (1804-1849) in his writing “Notice sur la loi que la 
population poursuit dans son accroissement”. The quadratic map, very 
similar to the logistic map, had also been extensively studied in other 
contexts by the French Gaston Julia (1893-1978), by the Hungarian-
American John von Neumann (1903-1957), and by the American Norbert 
Wiener (1894-1964).  
 

 
 
Fig. 20. Robert M. May (1936-2020), Baron May of Oxford. A physicist 
and pioneer of theoretical ecology who led him to contribute to chaos 
theory. 
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One of the most influential articles in the field was undoubtedly the 
previously quoted article by Edward Lorenz Deterministic nonperiodic flow 
[13]. The American mathematician and physicist at the University of 
Maryland Prof. James A. Yorke (Fig. 21) immediately recognized the 
implications of such a discovery, as well as its philosophical repercussions, 
making Lorenz's work known to the scientific community. 
 

 
 

Fig. 21. The American mathematician and physicist James Yorke. He 
coined the term chaos in the modern scientific literature. 
 
Later he introduced the term chaos in the article entitled Period Three 
Implies Chaos [19] published together with his PhD student Tien-Yien Li in 
The American Mathematical Monthly magazine in 1975. A few years 
earlier, in 1963, the Ukrainian mathematician A. N. Sharkovskii had proved 
a theorem (now known as Sharkovskii's theorem), which was published in 
Russian in the Ukrainian Mathematics Journal, and where part of the Li and 
Yorke's result appeared as a corollary. However, one of the fundamental 
novelties in the article by Li and Yorke is that they wrote that the 
appearance of a period three orbit implied the appearance of all the others, 
including the chaotic orbits, while Sharkovskii did not talk about the chaotic 
orbits. 
 
Subsequently, the American physicist Mitchell Feigenbaum (1944-2019) 
discovered the existence of universal critical exponents that characterized 
the transition from periodic to chaotic motion in one-dimensional maps with 
the property of period doubling. Simultaneously, the same discovery was 
made by the French Pierre Coullet and Charles Tresser, who at the time 
were doctoral students at the University of Nice, and by the German 



physicists at the University of Marburg, Siegfried Grossmann and Stefan 
Thomae. 
 
The renormalization group concept had previously been applied in the field 
of statistical mechanics to study the so-called critical phenomena and phase 
transitions and its development in these fields had earned the Nobel Prize 
for the American physicist Kenneth Wilson in 1982. These methods were 
applied by Feigenbaum and others to develop the mathematical theory of 
period doubling bifurcations. Until the beginning of the eighties, most of the 
works were of a theoretical nature or the result of numerical explorations 
with computers. In any case, the important consequences that these 
theoretical discoveries had for physics were always considered, as well as 
the possible importance for understanding the transition to fluid turbulence. 
French physicist Albert Libchaber (Fig. 22), currently at Rockefeller 
University in New York, carried out one of the first experiments where the 
phenomenon of period-doubling was shown when studying Rayleigh-
Bénard convective cells in the late 1970s. American physicist Robert Shaw 
of the University of California at Santa Cruz performed a simple and 
particularly relevant experiment with a simple dripping faucet. Another 
important experimental milestone was carried out by the American 
physicists Jerry Gollub and Harry Swinney (Fig. 22), who also found the 
period doubling phenomenon by reproducing the classical Taylor-Couette 
experiment of fluid motion. Their contributions to the experimental 
verification of some of some of the ideas derived from chaos theory have 
stimulated much experimental work in nonlinear dynamics and chaos. 
 

 
 
Fig. 22. The physicists Albert Libchaber, Harry Swinney and Jerry Gollub 
have been pioneers on experimental work on chaos. 
 
3.6 Fractional dimensions, fractals and chaos 
 
There are many complex geometric shapes in nature such as shorelines, 
river beds, the biological forms and even the complex curves of the financial 
markets. A common feature in all of them is self-similarity. This is the 
property that consists in that when a part of this form is increased, the same 
type of structure appears. To characterize objects with this universal 
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property, the use of fractional dimensions is necessary, which led to the 
physicist and mathematician Benoit Mandelbrot (1924-2010) (Fig. 23) to 
call these objects "fractals". His work in collecting the enormous work that 
had been done by mathematicians before him such as the French Gaston 
Julia, the Swedish Helge von Koch, the Polish Wacław Sierpiński, as well 
as the works on dimensions by the German Felix Hausdorff and the Russian 
Abram S. Besikovich had a remarkable influence that he gave to the field of 
fractal geometry. 
 

 
 

Fig. 23. Benoit Mandelbrot (1924-2010) and the famous set that bears his 
name. 
 
The notion of dimension is fundamental when measuring geometric objects. 
There are several ways to define the concept of dimension, but it is clear 
that a point has dimension zero, a straight line has dimension one, a plane 
has dimension two and a cube has dimension three. However, and as strange 
as it may seem, there are geometric objects whose dimensions are not an 
integer, turning out to be a fractional value. 
 
This is a simple notion of what is meant by a fractal dimension or a 
Hausdorff dimension, such that the Cantor set, mentioned above, has a 
dimension from log2 / log3 » 0.63, the Koch curve has a dimension of log3 / 
log4 » 1.26 and the Sierpinski set has a dimension of log3 / log2» 1.585. All 
of them are self-similar fractal sets, since they are obtained by means of an 
iterative rule so that the basic structure is repeated at all scales. 
 
The Koch curve (Fig. 24) was devised by the Swedish mathematician Helge 
von Koch (1870-1924), and is constructed as follows: We start with an 
interval that we divide into three equal pieces, and in the middle piece we 
build a triangle and equal sides as it appears in the figure.  
 
 



 
 

Fig. 24. The Koch curve is a fractal set 
 
Next, we repeat the same strategy in each of the four pieces, giving rise to 
the figure in the middle, and we repeat the process in successive iterations 
giving place to a figure that resembles a snowflake. The Sierpinski fractal is 
due to the Polish mathematician Wacław Sierpiński (1882-1969) and is 
constructed as follows. We consider a triangle with equal sides, like the one 
shown in Fig. 25. Next, we remove the white triangle from inside it and in 
each of the remaining triangles we remove the white triangle and so on, 
finally giving rise to successive iterations to the Sierpinski triangle, which is 
a self-similar fractal object. 
 

 
 

Fig. 25. Sierpinski fractal set 
 

Although in principle fractal geometry and nonlinear dynamics are two 
disciplines that apparently have nothing to do with it, nevertheless, as 
previously noted, chaos and fractals are intimately linked. One of the main 
ideas is due to the fact that associated with the notion of chaos exists that of 
the chaotic attractor that constitutes a geometric object of a fractal nature 
that lives in the phase space, so that it is impossible to speak of chaos 
without speaking of fractals and vice versa. 
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4.   On the Origins of Complexity 
 

At the beginning of the 20th century, fundamental developments took place 
in two new fields of research in Physics that represent a huge conceptual 
revolution in the development of science. On the one hand, the theory of 
relativity that helped us understand the world on cosmic scales and quantum 
mechanics that involved the knowledge and exploration of the microscopic 
world at the atomic and subatomic levels. On the other hand, during the 
second half of the 20th century, we have been able to see how nonlinear 
dynamics and chaos theory emerged as one of the very fruitful fields of 
activity in research. Likewise, the discipline of complexity, or the physics of 
complex systems, has received a huge push, including new lines of research 
and bringing a new way of doing things. 
 

 
 

Fig. 26. Warren McCulloch (1898-1969) 
 
Talking about the origins of things is never easy and of course the origins of 
complexity are no exception. In spite that for many it is a relatively new 
notion, since its use has become widespread in recent years, its origins date 
back to much earlier times. When exploring certain ideas and activities that 
have contributed to the development of this set of ideas that complexity 
encompasses, it is worth mentioning the American neuroscientist Warren 
McCulloch (Fig. 26), who together with the mathematician Walter Pitts, 
proposed in 1943 the well-known McCulloch-Pitts neuron model to analyze 
brain properties. McCulloch also played a prominent role in the organization 
in the 1940s of the Macy Conferences, with the support of the Macy 
Foundation, where numerous scientists from various disciplines participated 
in a highly interdisciplinary environment, among which we can mention the 
psychiatrist William Ross Ashby, the anthropologist Gregory Bateson; 



mathematicians John von Neumann, Walter Pitts and Norbert Wiener, 
biophysicist Max Delbrück, information theorist Claude Shannon and 
Warren McCulloch himself as moderator. 

 
On the other hand, it is of special interest the figure of the American 
scientist Warren Weaver (1894-1978) (Fig. 27), who among other things 
was co-author with Claude E. Shannon of the famous book The 
Mathematical Theory of Communication published by The University of 
Illinois Press in 1949. 
 

 
 

Fig. 27. Warren Weaver (1894-1978) pioneer in the use of computers in 
scientific research. 

 
In 1948 he published a very interesting article, considered foundational, 
entitled Science and Complexity [20] in the American magazine American 
Scientist. In fact, he used material that had been published in 1947 and the 
most important thing is that it is premonitory of many aspects of the 
complexity that have been discussed in recent years. 
 
4.1 Physics and Emergence 
 
One of the fundamental ideas in complexity is the idea of emergence. In 
physics there are numerous examples of systems where emerging properties 
are evident, such as superconductivity and superfluidity. It should also be 
noted that there is all a fundamental research that seeks to investigate 
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complex phenomena, where instead of resorting to reductionism, which has 
been the approach that has governed the evolution of Physics in recent 
years, the primary engine of this research is the emergence. A fundamental 
point is that these emerging complex phenomena do not derive from the 
underlying microscopic laws, although of course they do. 
 
Some of these ideas were masterfully presented by the physicist Philip W. 
Anderson (1923-2020) (Fig. 28), 1977 Nobel Prize in Physics, in an article 
published in the journal Science in 1972 and entitled More is different [21], 
where he leaves very clear the idea that: 
 
"At each level of complexity entirely new properties appear, and the 
understanding of the new behaviors requires research which I think is as 
fundamental in its nature as any other.” 
 

 
 

Fig. 28. Philip W. Anderson (1923-2020), 1977 Nobel Prize in Physics. 
 
Philip W. Anderson introduces some aspects of the physics of complex 
systems in the article entitled Physics: The Opening to Complexity [22], 
where he points out, among other things:  
 
“But another large fraction are engaged in an entirely different type of 
fundamental research: research into phenomena that are too complex to be 
analyzed straightforwardly by simple application of the fundamental laws. 
These physicists are working at another frontier between the mysterious and 
the understood: the frontier of complexity. At this frontier, the watchword is 
not reductionism but emergence. Emergent complex phenomena are by no 
means in violation of the microscopic laws, but they do not appear as 
logically consequent on these laws.” 



In relation to the physics of emergence, it is also worth mentioning Robert 
Laughlin, 1998 Nobel Prize in Physics and professor at Stanford University, 
who proposed to his best students the problem of deducing the laws of 
superfluidity from first principles, knowingly that it is impossible. Precisely 
to show them the importance of emergent properties in physics, which is the 
fundamental argument of his book A Different Universe: Reinventing 
physics from the bottom down [23]. 
 
The book is based on an interesting article entitled The Science of 
Everything [24], where among the many questions he points out we can 
highlight the following two paragraphs:  
 
The central task of theoretical physics in our time is no longer to write down 
the ultimate equations but rather to catalogue and understand emergent 
behavior in its many guises, including potentially life itself. We call this 
physics of the next century the study of complex adaptive matter. For better 
or worse we are now witnessing a transition from the science of the past, so 
intimately linked to reductionism, to the study of complex adaptive matter, 
firmly based in experiment, with its hope for providing a jumping-off point 
for new discoveries, new concepts, and new wisdom. 
 
"End of Reductionism, for it is actually a call to those of us concerned with 
the health of physical science to face the truth that in most respects the 
reductionist ideal has reached its limits as a guiding principle. Rather than 
a Theory of Everything we appear to face a hierarchy of Theories of Things, 
each emerging from its parent and evolving into its children as the energy 
scale is lowered. The end of reductionism is, however, not the end of 
science, or even the end of theoretical physics.” 
 
In fact, when one looks at the world what one observes is of amazing 
complexity. Although, for the moment, there are no laws of complexity, as 
there are laws of physics, the authors cited above list a number of simple 
lessons on complexity that derive from the analysis and observation of 
numerous complex systems that exist in the universe. 
 
Hungarian physicist Tamas Vicsek from the Department of Biophysics at 
Eötvös University in Budapest argues in an essay published in Nature [25] 
that when a concept is not well defined, as is the case with complexity, there 
is a danger of abusing it. It is true that on many occasions the term can be 
used indiscriminately as a sign of modernity. However, the fundamental 
idea derived from this essay is that the laws that describe the behavior of 
complex systems are qualitatively different from those that govern the units 
of which they are composed. 
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4.2 Complexity and Life Sciences 
 
The enormous development of scientific activity in recent years has caused 
many disciplines to find fields of application in other sciences. This is what, 
among many other cases, has happened with the application of disciplines 
such as physics, mathematics and engineering in the development of some 
aspects of the life sciences, in which we could include not only biology, but 
also biomedical sciences and biotechnology. You might think that it is a 
simple fashion and something that for some reason has been happening for 
just a few years. However, it is important to note that the influence of these 
sciences and their contributions to the life sciences are very old. 
 

 
 

Fig. 29. Erwin Schrödinger, 1933 Nobel Prize in Physics and known above 
all for his contributions to quantum mechanics, who authored the influential 
book What is life? published in 1944 
 
There are many eminent physicists, including Nobel Laureates, whose work 
has been related in some of the aspects related to the issues of complexity. 
Among them are: Erwin Schrödinger, 1933 Nobel Prize in Physics and 
known above all for his contributions to quantum mechanics, who authored 
the influential book What is life? published in 1944 (Fig. 29). Physicist Max 
Delbrück (1906-1981), Nobel Prize in Medicine in 1969 for his pioneering 
work in Molecular Biology. Philip W. Anderson, 1977 Nobel Prize in 
Physics, well known for his work in condensed matter physics, has also 
played a relevant role in the development of some ideas related to 
complexity, especially emergence. Physicist Murray Gell-Man, 1969 Nobel 
Prize in Physics; who coined the term quark. 



Another fundamental character in this relationship that we are making is the 
mathematician Norbert Wiener (1894-1964) (Fig. 30), professor at the 
Massachusetts Institute of Technology (MIT), who was one of the founders 
of Cybernetics, and knew how to create a highly interdisciplinary 
environment around him with numerous applications to life sciences. We 
could continue quoting numerous physicists, such as Nicholas Metropolis, 
George Gamow, Leo Szilard, Jack Cowan or Geoffrey West. 
 

 
 
Fig. 30. Norbert Wiener (1894-1964) one of the founders of Cybernetics. 
 
Among the most widely used mathematical models in computational 
neuroscience, which aim to analyze the brain as a complex system, we can 
consider the Hodgkin-Huxley model. In 1952 Alan L. Hodgkin and Andrew. 
F. Huxley (Fig. 31) wrote a series of five articles [26] in which they 
described the experiments they carried out to determine the laws of ion 
motion in nerve cells during an action potential. 
 

  
 

Fig. 31. Alan L. Hodgkin and Andrew F. Huxley received the Nobel Prize in 
Nobel Prize in Physiology or Medicine in 1963 for his neural model. 
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They formulated a mathematical model to explain the behavior of nerve 
cells in a giant squid. Remarkably, this model was formulated long before 
the existence of electron microscopes and computer simulations and allowed 
scientists basic knowledge of how nerve cells function without knowing 
how membranes behaved. They received the Nobel Prize in Physiology or 
Medicine in 1963, along with Sir John C. Eccles for their discoveries 
regarding the ionic mechanisms involved in excitation and inhibition in the 
peripheral and central portions of the nerve cell membrane. 
 
5.   Conclusions 

 
One of the key ideas that should be highlighted here is that although the 
physics of complex systems is currently one of the frontiers of current 
physical research, the ideas of complexity go back to the beginning of the 
20th century and have been developed along various paths until we reach 
the vision we have as of today, although their evolution and development 
throughout the 21st century are quite open. 
 
The concept of emergence versus reductionism is another of the 
fundamental ideas in the physics of complex systems. The ones concerning 
emergence go back even to the origins of thermodynamics, and they appear 
in various phenomena studied by that science. Concepts such as chaos and 
fractals are mentioned in a special way, which have been a catalyst for many 
of the notions around which complexity moves. Without a doubt, 
interdisciplinarity is of the utmost importance in this context, since, as it has 
been pointed out, many ideas associated with complexity help to integrate 
disciplines, as well as breaking traditional disciplinary barriers. 
 
At all times it has been wanted to put on record that many of the ideas 
discussed in this article have been beating in the thought and action of many 
physicists in the past and present, who have been open to problems about 
the complexity of life and nature, including some Nobel Prizes. 
 
In recent years, numerous scientists have contributed to the development of 
chaos theory. In 2003 the Japan Prize, which is awarded each year by the 
Japanese government through the The Japan Prize Foundation was 
dedicated to Complexity Science and Technology. The award was won by 
the scientists Benoit Mandelbrot for his contributions to fractals and James 
A. Yorke for his contributions to the foundation of chaos theory. This award 
was very special to the community of scientists working in these fields, 
since for the first time an award of this magnitude was awarded to scientists 
working on complex science issues.  
 



Following the efforts of numerous scientists, as we have just shown, the 
entire field of research covering nonlinear dynamics, chaos theory and 
complexity continues to develop and influence numerous disciplines with 
new methods and novel ideas, showing great prospects for the future. 
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