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Influence of the gravitational radius on asymptotic behavior of the relativistic Sitnikov problem
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The Sitnikov problem is a classical problem broadly studied in physics which can represent an illustrative
example of chaotic scattering. The relativistic version of this problem can be attacked by using the post-
Newtonian formalism. Previous work focused on the role of the gravitational radius λ on the phase space portrait.
Here we add two relevant issues on the influence of the gravitational radius in the context of chaotic scattering
phenomena. First, we uncover a metamorphosis of the KAM islands for which the escape regions change insofar
as λ increases. Second, there are two inflection points in the unpredictability of the final state of the system when
λ � 0.02 and λ � 0.028. We analyze these inflection points in a quantitative manner by using the basin entropy.
This work can be useful for a better understanding of the Sitnikov problem in the context of relativistic chaotic
scattering. In addition, the described techniques can be applied to similar real systems, such as binary stellar
systems, among others.
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I. INTRODUCTION

The three-body problem is a broadly studied subject in
physics and classical mechanics [1]. Generally speaking, it
consists in describing the dynamics of three point masses
under mutual forces by the resolution of the correspondent
equations of motion, taking into consideration the initial po-
sitions and velocities of the objects. It is well known that
the three-body problem does not have a general analytic so-
lution. Therefore, the use of numerical techniques is almost
mandatory when we want to solve it. Although initially the
three-body problem arose in the context of celestial mechan-
ics, we may consider a three-body problem as any problem
that models the motion of three particles due to their inter-
action forces, either gravitational or electromagnetic forces
[2,3]. For example, the helium atom model, in which a he-
lium nucleus and two electrons interact according to the
inverse-square Coulomb interaction, is an analogue of the
gravitational three-body problem in classical mechanics [4].
In fact, there are many simplifications and restricted cases of
the three-body problem that allow us to get useful insights
about real phenomena in nature without the need for solving
more realistic and complex models. One of those paradigmatic
models is the Sitnikov problem, which, despite its simplicity,
has contributed to the understanding of the dynamics of mo-
tion of small bodies around eccentric primaries [5]. It consists
of two primary bodies with the same mass which move in
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circular or elliptical orbits around their center of mass. More-
over, a third body, which is substantially smaller than the
primary bodies, with negligible mass, moves under the gravi-
tational interaction of the primary bodies along the z axis. For
the sake of clarity, in this paper we call this particle a massless
body, third body, or, simply, test particle.

The Sitnikov problem is a very illustrative first approach
for testing mathematical techniques that can be applied later
on to more realistic problems [6]. It is important to highlight
that the Sitnikov problem is an unrealistic model. It is really
useful for getting physical insights from interesting phenom-
ena that may be described in nature, but the results cannot
be directly extrapolated to real physical examples. From this
point of view, the main flaws of the Sitnikov problem is that
all the calculations depend on the unrealistic assumption that
the planetoid moves only along the z axis. This is unrealistic
since the z-axis orbit may be unstable with respect to trans-
verse deviations, and even a very, very small initial transverse
deviation in position or velocity builds up to a large lateral
deviation within the time of the several hundred back and forth
oscillations along the z axis. Taking this into consideration,
we consider that some characteristics of the physical insights
we have obtained in our work can be observed in nature.
We can cite, for instance, scattering processes resulting when
small bodies arrive nearly perpendicular to the orbital plane
of a binary stellar system [7], or when one analyzes the flyby
of an interstellar probe arriving perpendicular to the orbital
plane of a planetary system [8]. It can also be seen as a first
step in modeling the full motion of dust particles (with size
larger than 1 μm) falling around an eccentric binary star, a star
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orbiting a double-nucleus galaxy [9], or a Keplerian dumbbell
satellite [10]. It is worthwhile noting that we will use the term
Sitnikov problem or Sitnikov system in this paper to refer to
the three-body problem aforesaid.

The Sitnikov system may be considered as a paradigmatic
example of chaotic scattering since the massless body inter-
acts with the region affected by the gravitational forces of
the two primaries, and, while moving in the z axis due to the
influence of the primaries, it may escape to infinity or may
remain trapped in the scattering region forever. While it keeps
in the scattering region, the particle may exhibit periodic and
aperiodic oscillations as well as chaotic motions [11].

In general terms, chaotic scattering is defined as the inter-
action between an incident particle and a potential region or
massive object that scatters it [12,13]. The equations of mo-
tion of the test particle modeling this interaction are nonlinear,
and the resultant dynamics can be chaotic. Therefore, slightly
different initial conditions may result in completely different
trajectories. The region where the particle is affected by that
potential field or massive object is called the scattering region.
Outside the scattering region, the influence over the particle
may be considered negligible and its motion is uniform and,
essentially, free. On many occasions, the scattering region
possesses different exits from which the particles may enter or
escape after bouncing back and forth there for a while. In this
case, we say that the system is open. From this point of view,
chaotic scattering is regarded as a physical manifestation of
transient chaos [14,15].

The scattering motion of the massless particle is originated
by the gravitational forces from the primaries. The Newto-
nian equations can be considered a first approach as long
as the velocities v of the bodies are small compared to the
speed of light and ( v

c )2 = β2 � 1 [16]. The post-Newtonian
formalism [17] finds an approximate solution to the field
equations expressing the nonlinear Einstein’s equations of
gravity as a power series expansion, adding deviations from
classical Newtonian dynamics with (1/c)2 as an expansion
parameter. The post-Newtonian approximation assumes weak
gravity, slow motion of the matter, and internal energies in
order to make a simultaneous expansion in small parameters
characterizing these quantities. Only in the case of strong
fields is it usually preferable to solve the complete equations
numerically [18,19].

Previous works regarding relativistic chaotic scattering
have studied the discrepancies between the predictions com-
ing from the Newtonian laws of motion and special relativity,
even for low velocities [20–23], because of the strong sen-
sitivity to initial conditions of chaotic systems. In fact,
discrepancies from the Newtonian and the relativistic schemes
for low velocities are also present in relevant global prop-
erties of the chaotic scattering systems, such as the average
escape time of the particles and the particle decay law [24].
Additionally, qualitative and quantitative differences in the
topological character of the chaotic systems escape basins
have been described as dependent on the effect of the Lorentz
transformations [25].

Regarding the relativistic Sitnikov problem, the influence
of the gravitational radius on the structure of the phase space
portraits in the first post-Newtonian approximation was stud-
ied in Ref. [26]. However, the relativistic effects on many

general properties of the chaotic system that give us crucial
information about its asymptotic behavior predictability have
received less attention. In chaotic systems we are not usually
interested in the prediction of individual trajectories. Con-
versely, we may just want to know the final asymptotic state
of the system.

In this context, we will refer here to the predictability of the
system as the capacity to forecast this final state of a system.
We will focus our work on characterizing the predictability of
the massless particle in the relativistic Sitnikov problem, in
the weak field approximation, when the post-Newtonian ap-
proximation is valid. The goal of this paper is to show that the
asymptotic predictability of chaotic systems like this, charac-
terized by its underlying escape basin topology, does depend
on relativistic gravitational effects, even for weak fields. We
also aim to show that this dependency is neither linear nor
monotonous, but it is related to many subtle phenomena that
take place in phase space.

This paper is organized as follows. In Sec. II we describe
the Sitnikov problem in the first post-Newtonian approxima-
tion. A qualitative description of the gravitational effects of
the primaries over the test particles’ escape basin topology is
shown in Sec. III. In Sec. IV we analyze two global properties
of the Sitnikov system that characterize the prediction of the
final state of the system: the decay law of the particles and
the uncertainty dimension of a typical scattering function. We
also describe here the changes in the KAM islands. In Sec. V
we quantify the uncertainty of the system based on the study
of the exit basin topology. We explain the results in the light of
the analysis of the basin entropy. Last, in Sec. VI we discuss
the influence of the gravitational radius over the predictability
of the asymptotic behavior of the Sitnikov system as well as
some physical applications.

II. DESCRIPTION OF THE RELATIVISTIC
SITNIKOV PROBLEM

As mentioned in the Introduction, the Sitnikov problem is
a special case of the three-dimensional restricted three-body
problem, when the massless body moves along the z axis due
to the gravitational effects of the primaries, although it has
no influence on the inner dynamics of the primaries. From
this point of view, the model description can be separated into
two terms: the one describing the post-Newtonian approxima-
tion for the motion of the primaries, and the term modeling
the dynamics of the massless particle due to the relativistic
gravitational forces originated by the primaries. The post-
Newtonian approximation for the primaries is based on the
hypothesis that their gravitational interaction is weak and the
orbital motions are slow. From this perspective, the equation
of the relative motion of the primaries can be obtained from
the Lagrangian given in Ref. [27],

d2r
dt2

= dv
dt

= − r
r3

+ λ

[
− (1 + 3ν)

r
r3

v2 + 3

2
ν

r
r5

(rv)2

+ (4 + 2ν)
r
r4

+ (4 − 2ν)
r
r3

(rv)

]
, (1)

where r and v are, respectively, the vectors characterizing the
relative position and the relative velocity of the primaries. The
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parameter ν = m1m2/(m1 + m2)2 measures the difference be-
tween the masses of both primaries, m1 and m2. In the Sitnikov
system described here m1 = m2 = m, therefore, ν = 1/4. The
dimensionless gravitational radius λ is defined as

λ = 2km

ac2
, (2)

where a is the classical semimajor axis of the orbit, k repre-
sents the gravitational constant, and c is the speed of light.
Therefore, we may say that the parameter λ is the one that
gathers the gravitational effects of the primaries over the
spacetime, including any object allocated in the spacetime as
the massless particle.

For convenience, the classical semimajor axis a will be the
selected unit length,

a = −km2

2Ec
, (3)

where Ec is the classical energy in the center of the mass
frame. The energy unit is taken as km2/a. Therefore, in these
units, the classical energy is Ec = −0.5. Likewise, according
to Kepler’s third law, the time unit is T = a3/2[2km]−1/2.

The Lagrangian used to derive Eq. (1) is invariant under
translations and rotations, which implies the existence of four
integrals. The total energy of the primaries in the center-of-
mass frame is given by

E = 1

2
v2 − 1

r
+ λ

2

{
3

4
(1 − 3ν)v4

+ 1

r

[
(3 + ν)v2 + ν

(rv)2

r2
+ 1

r

]}
, (4)

and the angular momentum is

J = r × v
{

1 + λ

[
1

2
(1 − 3ν)v2 + (3 + ν)

1

r

]}
. (5)

The conservation of the angular momentum J implies that
the motion of the primaries takes place always on a two-
dimensional surface.

On the other hand, the classical eccentricity is defined as

ec = [
1 − J2

c

]1/2
, (6)

where Jc is the classical angular momentum, that is, Jc =∑
ri × mivi.
Finally, the equation of motion of the massless body is ob-

tained from the Lagrangian of the post-Newtonian three-body
system as [26]

d2z

dt2
= − z

ρ3
+ λ

[
5

4

z

rρ3
+ 16

2

z

ρ4
− v2z

ρ3

+ 6
v2

z z

ρ3
+ 3

2

(vr)vz

ρ3
+ 3

16

(vr)2z

ρ5

]
, (7)

where z and vz are the position and the velocity module of the
massless body, respectively. The parameter ρ =

√
z2 + (r2/4)

depends on the position of the massless body and the relative
position of the primaries. In Fig. 1 we see a schematic drawing
of the Sitnikov problem. In this paper, we have chosen the
value rperic = (1 − ec, 0) with ec = 0.2, as the initial condi-
tion for the position the primaries, where the variable rperic

FIG. 1. Schematic configuration of the Sitnikov problem. Two
primary bodies with the same mass (m1 = m2 = m) move in circular
or elliptical orbits around their center of mass. A third body, sub-
stantially smaller than the primary bodies (m3 ≈ 0), moves under
the gravitational interaction of the primary bodies in a line that is
perpendicular to the orbital plane of the primary bodies. Therefore,
the third body moves in only one dimension along the z axis. The
parameter a is the semimajor axis, r is the relative position of the
primaries, and ρ is the relative position of the massless body with
regard to the primaries, ρ = √

z2 + (r2/4).

denotes the pericenter of the elliptic movement. Likewise,
the initial velocity of the relative position of the primaries
is v = [0,

√
(1 + ec)/(1 − ec)]. For the massless particle, the

initial conditions are given by the pair (z, vz ).
In order to solve Eq. (7) we need to know the time-

dependent value of the relative position r and velocity v of
the primaries. Therefore, the solution of Eq. (1) provides the
time-dependent driving for the relativistic Sitnikov problem.

Figure 2 illustrates the effects of the gravitational radius
λ on the chaotic dynamic of the massless particle according
to Eq. (7). We can see the evolution of the relative vector
position r in the plane (x, y) and the trajectory of the massless
particle in the phase space (z, vz ), for different values of λ.
All trajectories in this figure have the same initial condition,
(z, vz ) = (1, 0). The leftmost panels represent the position of
the relative vector of the primaries, and the rightmost panels
the phase portrait of the massless particle. Figures 2(a) and
2(b) are plotted using λ = 0.01. The massless particle exhibits
a periodic motion, and it never leaves the scattering region.
Likewise, in Figs. 2(c) and 2(d), we show the relative motion
of the primaries and the test particle for λ = 0.035. In this
case, the massless particle leaves the scattering region quickly.

Following Ref. [26], the numerical results for the post-
Newtonian approximation are just valid in the range λ ∈
(0, 0.035]. For higher values of the gravitational radius, the
post-Newtonian approximation of the two-body problem dif-
fers from the analytical results in more than 10%. For this
reason, the maximum value considered for gravitational radius
in this research is λ = 0.035.

III. GRAVITATIONAL EFFECTS OF THE PRIMARIES
DYNAMICS ON THE TEST PARTICLE ESCAPE BASINS

As we have seen in the previous section, two plane-
toids, with similar initial conditions z, vz, may have different
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FIG. 2. Relative trajectories of the primaries (left panels) and
the test particle (right panels) for different values of the gravita-
tional radius λ. The initial condition for the massless particle is
(z, vz ) = (1, 0). Panels (a) and (b) use λ = 0.01: the test particle has
a periodic motion, and it remains in the scattering region forever.
Panels (c) and (d) use λ = 0.35: the massless test particle leaves the
scattering region quickly.

transient trajectories due to the gravitational influence of
the primaries. Here we deal with the gravitational effect of
the dynamics of the primaries over the asymptotic behavior
of the test particle, as is reflected in the structure of the
corresponding escape basins.

In Hamiltonian systems, we define an exit basin or es-
cape basin as the set of initial conditions whose trajectories
converge to an specific exit [28]. In the specific case of the
Sitnikov problem, the massless particle moving along z axis
may escape upwards (to +∞), hereafter called Exit 1, or
downwards (to −∞), called Exit 2. In addition, it may also
remain in the scattering region, bouncing back and forth along
the z axis forever. Therefore, the massless particle has three
possible asymptotic behaviors: remaining in the scattering
region forever, escaping by Exit 1, or escaping by Exit 2.

Generally speaking, we say that an initial condition g is a
boundary point of a basin B if every open neighborhood of
g has a nonempty intersection with basin B and at least one
other basin. The basin boundary is the set of all boundary
points of that basin. The basin boundary could be a smooth
curve, but in chaotic systems the boundaries are usually
fractal. In that case, those fractal structures impose an
extremely sensitive dependence on the initial conditions,
which obstructs the prediction of the system final state. For
that reason, the understanding of the exit basin topology is
crucial to foresee the final fate of the system.

In order to determine the escape basins of the relativistic
Sitnikov system, we integrate 106 particles during a maximum
time Tmax = 300 time units, regularly shot over the range z ∈
[0, 8], with initial velocities in the interval vz ∈ [−1.5, 1.5].
Then we follow each trajectory and we register by which
exit the particles have escaped from the scattering region.
If a particle leaves this region by Exit 1, then we color the

FIG. 3. Evolution of the exit basins of the Sitnikov system for
different values of the gravitational radius λ. The sets of red and
white dots denote initial conditions resulting in trajectories that es-
cape through Exit 1 (to z → +∞) and Exit 2 (to z → −∞). The
yellow regions are the initial conditions which do not escape. As
we are drawing the range z ∈ [0, 8], the pictures show asymmetry
and the particle bias for escaping to +∞ when they are shot from
vz ∈ (0,+1.5) and to escape to −∞ when shot from vz ∈ (0, −1.5).
(a) A very low gravitational radius, λ = 1 × 10−5: the exit basins are
quite mixed throughout the central region of the phase space, and
there is a KAM island that can be easily recognized around z � 2.0.
We have highlighted this area with a blue circle. (b) λ = 0.01: the
KAM island at z � 2 has disappeared, and the exit basins are still
fairly mixed in the central region. There can be seen bigger regions
of particles escaping by Exit 1 and Exit 2 in that central region.
(c) λ = 0.02: the exit basin regions are larger in the central region.
The exit basin boundaries are still fractal. There are no KAM islands
apart from the big yellow area, which corresponds to the stable region
surrounding z = 0. (d) λ = 0.035: the exit basins in the central region
are bigger, and the boundaries are fractal. There is a new stable
region of trapped particles at z � 3.7 (surrounded by a blue circle).
The large KAM island surrounding (z, vz ) = (0, 0) has decreased
ostensibly.

initial condition in red. Likewise, we color the initial condition
in white if the particle escapes by Exit 2. Finally, when a
particle remains in the scattering region up to the maximum
computation time, we color its initial condition in yellow. We
may consider that the condensed yellow regions are KAM
islands, and, in those regions the motion of the test particles
remain quasiperiodic. The rest of the yellow points that are
spread throughout the phase space are boundary points.

We have run different simulations to plot the exit basins
of the Sitnikov system for a wide range of the gravitational
radius λ values. The evolution of these exit basins is seen
in Fig. 3. Figure 3(a) represents the case of influence of a
very low gravitational radius, λ = 1 × 10−5. It corresponds
almost to the Newtonian case. There is a large KAM island
corresponding to the stable region surrounding z = 0. There
is also another KAM island that can be easily recognized as
the yellow area in z � 2.0. For the sake of clarity, we have
highlighted this area with a blue circle. The exit basins are
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FIG. 4. Magnification of the KAM islands from Figs. 3(a) and
3(d). The sets of red and white dots denote initial conditions resulting
in trajectories that escape through Exit 1 (to z → +∞) and Exit 2 (to
z → −∞). The yellow regions are the initial conditions which do not
escape. (a) Zoom-in of Fig. 3(a) for the region vz ∈ [−0.5, 0, 5] and
z ∈ [1, 3]. (b) Zoom-in of Fig. 3(b) for the region vz ∈ [−0.5, 0, 5]
and z ∈ [3, 4].

quite mixed throughout the central region of the phase space.
In Fig. 3(b) we can see the relativistic effects of the gravita-
tional radius when λ = 0.01. The KAM island at z � 2 is not
present anymore, and the exit basins are still fairly mixed in
the central region. In Fig. 3(c) we represent the exit basins
of the system for λ = 0.02. One can see bigger regions of
particles escaping by Exit 1 and by Exit 2 in the central region.
The exit basins are still quite mixed, and the boundaries are
fractal. Last, in Fig. 3(d) we show the Sitnikov exit basins for
λ = 0.035. The exit basins are still fairly mixed on the phase
space although the escape regions are larger. The fractality
of the boundaries has decreased. Apart from that, the main
novelty from the previous cases is the appearance of a new
KAM island at z � 3.7 (surrounded by a blue circle). This
is a transition of the KAM island in the phase space due to
the variation of the parameter λ. Our numerical findings point
out this change in the topology of the escape basins to occur
from λ � 0.0285 until λ � 0.0350. It is also important to note
that the large KAM island surrounding (z, vz ) = (0, 0) has de-
creased ostensibly. In order to see in more detail the qualitative
effects of the variation of λ in the creation and destruction
process aforesaid described, we show in Fig. 4 the zoom-ins
from Fig. 3 in the areas surrounding the KAM islands.

As we can see, the relativistic gravitational effect of the pri-
maries over the test particle is very relevant since it modifies
the exit basin topology of the system. These changes will be
discussed in detail in the following sections.

IV. KAM ISLAND METAMORPHOSIS
AND CROSSOVER PHENOMENON

We have seen in a qualitative manner how the asymptotic
behavior of the test particles, represented by the exit basins, is
affected by the variation of the gravitational radius of the pri-
maries λ. In this section we will use the uncertainty dimension
as quantitative tool to determine that transformation process
and to extract more physical insights about the asymptotic
predictability of the Sitnikov system.

First, we need to introduce the concept of time delay statis-
tics. Suppose that we pick many different initial conditions at
random in some interval of the domain. Then we examine the
resulting trajectory for each value and determine the time t
that its trajectory spends in the scattering region. The fraction

1.0×10
3

2.0×10
3

3.0×10
3

log
10

t

3.2

3.3

3.4

3.5

3.6

3.7

lo
g 10

P
(t

)

FIG. 5. Algebraic decay law of the system for λ = 0.02. 10 000
particles are shot towards the scattering region from z ∈ (0.5, 8.0)
and initial velocity vz = 0. We get the fraction of particles inside the
scattering region between t and t + dt , and we represent log10P(t )
vs log10t . The slope of the red dotted straight line is the exponent of
the decay law, the parameter κ [see Eq. (8)].

of trajectories with time delay between t and t + dt is P(t )dt .
For open nonhyperbolic dynamics with bounding KAM sur-
faces in the scattering region, one finds that for large t the time
delay statistics, P(t ), decays algebraically as

P(t ) ∼ t−κ , (8)

where κ is the exponent of the algebraic decay law, and it is
directly related to the speed of escape of the particles. As we
saw in Sec. III, there is a large KAM island surrounding z ≈ 0
for all λ. Apart from that, there is a KAM island at z � 2.0,
in the interval λ ∈ (0, 0.01), and, after the metamorphosis
process λ � 0.0285, there is a new KAM island at z � 3.7.
Therefore, we may state that the Sitnikov system exhibits a
nonhyperbolic regime for the whole range of energies and
initial conditions we have considered, and the decay law is
algebraic.

We have considered here 104 particles shot towards the
scattering region with z ∈ (0.0, 8.0) and initial velocity vz =
0. Then we get the fraction of particles P(t )dt inside the
scattering region between t and t + dt . Now, we represent
log10P(t ) versus log10t . The value of the parameter κ is the
slope of the resulting straight line, according to Eq. (8). To
illustrate this, we show in Fig. 5 the algebraic decay law
represented by log10P(t ) versus log10t for λ = 0.02.

We have computed the parameter κ for different values of
the gravitational radius λ. In Fig. 6 we show the evolution of
κ with λ. A blue (black) line is used to help the eye to get a
better insight into the trend of the points.

As we can see, the value of the parameter κ decreases
from λ = 0.0 to λ � 0.005. Here the particles, in average,
stay in the scattering region longer. Afterwards, the value
of the exponent κ grows in the interval λ ∈ (0.005, 0.02).
Indeed, κ reaches a maximum around λ � 0.02. That means
the particles stay in the scattering region shorter and escape
sooner than before. Finally, as the λ values keep growing from
λ ≈ 0.02 to λ ≈ 0.035, κ decreases. We consider that the vari-
ation process of κ with λ is mainly governed by the evolution
of the KAM island topology with λ. The KAM islands exhibit
the stickiness property, in the sense that its presence in the
phase space leads to longer transients of the particles inside
the scattering region [29]. As we will see later, changes in the
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FIG. 6. Influence of the gravitational radius λ over the exponent
of the decay law κ . 10 000 particles are shot towards the scattering
region from z ∈ (0.5, 8.0) and initial velocity vz = 0. We calculate
the parameter κ , that is, the slope of the straight line log10P(t ) vs
log10t (as it was illustrated in Fig. 5) for different values of the
gravitational radius λ. A blue line is used to help the eye to get a
better insight into the trend of the points. The value of the parameter
κ decreases in the interval λ ∈ (0.0, 0.005]. It grows from λ � 0.005,
and it reaches a maximum value around λ � 0.02, then it decreases
in the range λ ∈ (0.02, 0.035]. The reason behind this behavior is the
process of destruction of the KAM island at z � 2.0 and the creation
of a new one due to the variation of the gravitational radius λ.

gravitational radius values lead to the creation, modification,
and destruction of the KAM islands in the phase space.

In order to better illustrate the relation between the evo-
lution of κ with λ, we show in Fig. 7 the escape basin
evolution of the trapped particles with the gravitational ra-
dius λ. We use the same conditions used to obtain Fig. 3,
but now we represent only the particles that do not escape
from the scattering region (represented by the black dots). In
Fig. 7(a) we represent the trapped particles of the Sitnikov
system for λ = 1 × 10−5. There is a large black area which
corresponds to the stable region surrounding z = 0, and there
also is a large KAM island in z � 2.0. In Fig. 7(b) we can
see that the aforesaid KAM island at z � 2 no longer exists
for λ = 0.02. Indeed, it does not exist in λ ∈ (0.005, 0.02].
Many trapped particles are spread along the central region of
the phase space. These are the initial conditions laying in the
basin boundaries. In Fig. 7(c) we can see the effects of the
gravitational radius at λ = 0.02. There are no KAM islands
apart from the big one centered at (z, vz ) = (0, 0), and there
are fewer trapped particles spread over the phase space. It is a
qualitative expression of the decay in the boundary fractality.
However, just at a slightly higher value of the gravitational
radius, λ = 0.0207, a new KAM island appears at z � 2.5.
Therefore, it demonstrates that a small variation in the gravi-
tational radius provokes a relevant change in the topology of
the phase space. It is also worth noting that, from λ � 0.02
to λ � 0.0285, there are two processes that take place in
parallel: the destruction of the recently created KAM island
at z � 2.5 and the creation of another KAM island at z � 3.7.
This last KAM island grows from λ � 0.0285 to λ = 0.0355.
In Fig. 7(d), corresponding to the case of λ = 0.035, the KAM
island can be easily identified in the phase space at z � 3.7.

These figures show that the variation of the gravitational
radius yields to different transformations in the phase space,
and it hinders the predictability of the final state of the system.
In order to quantify the evolution of the predictability of this
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FIG. 7. Evolution of the particles that are trapped in the scatter-
ing region after Tmax for different values of the gravitational radius λ.
Black dots are the initial conditions which do not escape. To generate
the plots, we launched 1 000 000 particles from the set of initial
conditions (z, vz ) in [0, 8] × [−1.5, 1.5]. (a) λ = 1 × 10−5: there is a
big black region surrounding z = 0 and a large KAM island around
z � 2.0. (b) λ = 0.02: no KAM islands are in the phase space, and
there are fewer trapped particles in the phase space although they are
still all over the central region. (c) λ = 0.0207: a new KAM island
appears at z � 2.5. Just a small variation in λ provokes an important
variation of the phase space topology. (d) λ = 0.035: there is a new
stable region of trapped particles at z � 3.7. This KAM island grows
from λ � 0.0285 to λ = 0.0355. We can see the manifestation of the
metamorphosis phenomenon taking place in phase space due to the
increasing of the parameter λ.

asymptotic behavior, we use one fundamental feature of any
chaotic system, the scattering function. The scattering func-
tion relates an input variable of the incident particle with an
output variable that characterizes the trajectory of the particle,
once the scattering phenomenon takes place. These scattering
functions can be obtained empirically and are useful to infer
relevant information about the system.

In Fig. 8 we can see a typical scattering function for the
Sitnikov system. It shows the average escape time of a test
particle when it is shot from different values of initial posi-
tion z. The initial velocity in all cases is vz = 0.5, and the
gravitational radius is fixed to λ = 0.03. We use two pan-
els to represent the scattering function. The lower left panel
shows the scattering function for a range of initial positions
z ∈ [1.5, 3.0]. The upper right panel is a magnification of
the scattering function, just varying the initial position in a
narrower range, z ∈ [1.9, 2.0]. In Fig. 8 we can see that the
scattering function contains some regions where the escape
time of the particle varies smoothly with z, while there are
some other fractal regions with singularities. This pattern is
present in both scales, being a qualitative insight of the self-
similarity of the fractal regions.

In the fractal regions of the scattering functions, any small
variation in the neighborhood of the input variable z implies a
huge variation in the output variable, which in our case is the
escape time Te. Moreover, this variation of the output variable
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FIG. 8. Typical scattering function of the escape time Te vs the
initial position z of 103 particles shot into the scattering region with
initial velocity v = 0.5. The gravitational radius is λ = 0.03. The
lower left panel shows the scattering function for the initial position
z ∈ [1.5, 3.0]. On the other hand, the upper right panel is a zoom-in
of the scattering function, taking a narrower initial position range,
z ∈ [1.9, 2]. The scattering function contains some regular regions
where the escape time varies with z in a smoothly manner. However,
there are others where a slightly different initial condition implies an
abrupt change in the particle escape time.

does not tend to zero when the variation of z goes to zero. This
type of behavior of the scattering function means that a small
uncertainty in the determination of the input variable could
make impossible any prediction about the future value of the
output variable. For this reason, the fractal dimension of the
set of values of singular input variables provides a quantitative
characterization of the magnitude of this uncertainty. That is
why the fractal dimension α is also typically defined as the
uncertainty dimension.

Here we investigate the evolution in a typical scatter-
ing function of the uncertainty dimension α as λ changes.
We have used the uncertainty algorithm from Ref. [30], in
order to compute α. We select a certain interval in the z
axis, z ∈ [1.5, 2.5), from which we shoot the test particles
towards the scattering region with initial velocity v = 0.5.
For a certain initial condition on the line segment, i.e., z0,
we choose a perturbed initial condition z′

0 = z0 + χ , where
χ is the amount of perturbation. For convenience, in our
calculations we choose χ ∈ [1 × 10−8, 1 × 10−1). Then we
let both trajectories evolve according to Eq. (7). We track the
time they spend in the scattering region and by which exit
they escape. In the case that two trajectories escape from the
scattering region at the same time or throughout the same
exit, we consider that the trajectories are certain with regard
to the perturbation χ . Otherwise, we say the trajectories are
uncertain. After taking a large number of initial conditions for
each value of χ , the fraction of uncertain initial conditions
f (χ ) scales algebraically with χ as f (χ ) ∼ χα . Therefore, α

is the so-called uncertainty dimension. Due to the algebraic
scaling, if the boundary is fractal, then α < 1. Any improve-
ment of the initial condition accuracy by, for instance, a factor
of 10 reduces f (χ ) by a factor much less than 10. That is why

0.01 0.02 0.03 0.04
λ

0.94

0.96

0.98

1

α

FIG. 9. Evolution of the uncertainty dimension α in a scatter-
ing function defined on the initial line segment at z0 = [1.5, 2.5)
with the variation of the gravitational radius λ. For many values of
λ ∈ (0, 0.035] we randomly launch 1000 test particles from that line
segment. The particles are shot towards the scattering region with
initial velocity v = 0.5. The results point out three different regions
in the figure, First, there is a linear decay in the range λ ∈ (0, 0.020).
Then, at λ � 0.02, there is an inflection point. Later, there is an
abrupt decay of the uncertainty dimension α, at λ � 0.0285. At this
point, there is a crossover behavior since, for values λ > 0.0285,
there is a drop of α.

we say there is a final state sensitivity, and the situation with
respect to the potential improvement predicted by increasing
initial condition accuracy is less favorable the smaller α is.

Figure 9 plots the evolution of the uncertainty dimension
α with different values of the gravitational radius λ, with the
blue lines showing the general decreasing trend in the whole
range λ ∈ [0, 0.035]. We can distinguish three different re-
gions. First, there is a linear decay in the range λ ∈ (0, 0.020).
Then, there is an inflection point at λ � 0.02 where the slope
of the line changes. Later, at λ � 0.0285, there is an abrupt
decay of the uncertainty dimension α. These three regions
are directly related to the influence of the variation of the
gravitational radius over the exit basin topology and the re-
lated creation and destruction of KAM islands. This is also
highlighted in Figs. 6 and 7.

We can gain insight into the dependence of the uncertainty
dimension α with the parameter λ, by following the approach
described in Ref. [31]. We consider the iterative construction
of the middle-third Cantor set so that at the nth iteration there
are N = 2n intervals, each of length εn = 2−n[2/(n + 2)]. The
middle-third Cantor set possesses a Lebesgue measure zero
and a fractal dimension equal to 1.

The total length of all the intervals is εnN ∼ n−1, and it
goes to zero as n goes to infinity. The required number of
intervals of size εn that are needed for covering the set is
N (ε) ∼ ε−1(ln ε−1)−1. The fractal dimension is defined as
α = limε→0[ln(N (ε))/ ln(ε−1)], which clearly yields 1. The
exponent of the dependence N (ε) ∼ 1/εα is the uncertainty
dimension α.

Despite the fact that the weaker logarithmic term does not
have any influence on the determination of the dimension, this
term is the one that makes the Cantor set to be a Lebesgue
measure zero since εN ∼ (ln ε−1)−1 tends to 0 as ε → 0.

In order to generalize this example, we may consider that in
each stage we remove a fraction ηn = a/(n + b), where a and
b are constants, from the middle of each of the 2n remaining
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intervals. Then we find that

N (ε) ∼ (1/ε)[ln(1/ε)]−a. (9)

According to Eq. (9), the slope at any point of the curve
ln N (ε) versus ln(1/ε) is, by definition, d ln N (ε)/d ln(1/ε),
and it is always less than 1 for small ε, although it approaches
1 logarithmically as ε → 0. Therefore, the result about the
fractal dimension is still α = 1.

Now, we can do a parallelism between the fractal dimen-
sion of Cantor-like structures and the relativistic Sitnikov
problem we are studying. First, we note that chaotic scattering
occurs due to a nonattracting chaotic set (i.e., a chaotic saddle)
in phase space where the scattering interactions take place
[32]. Moreover, both the stable and the unstable manifolds of
the chaotic saddle are fractals [33].

The scattering particles are launched from a line segment
straddling the stable manifold of the chaotic saddle outside
the scattering region [34]. The set of singularities is the set of
intersections of the stable manifold and the line segment, and
it can be effectively considered a Cantor-like set.

There is an interval of the input variables which leads to
some trajectories that remain in the scattering region for at
least a duration T0. By time 2T0, there is a fraction η of these
particles leaving the scattering region. In the case that these
particles are all located in the middle of the original interval,
there are then two equal-length subsets of the input variable
that lead to trajectories that remain in the scattering region
for, at least, 2T0.

Likewise, we may consider that a different fraction η of
incident particles, whose initial conditions were located in the
middle of the first two subintervals that remain at time 2T0,
are now leaving the scattering region by 3T0. There are then
four particle subintervals that remain in the scattering region
for at least 3T0.

If we continue this iterative procedure, we can easily recog-
nize a parallelism of the emerging fractal structure produced
by the particles that never escape and a Cantor-like set of zero
Lebesgue measure.

The fractal dimension α of the Cantor set then is given by

α = ln 2

ln[(1 − η)/2]−1
. (10)

As we have previously seen, the time delay statistics of the
particles, P(t ), decays in an algebraic fashion in the nonhyper-
bolic regime. This implies that the fraction η is not constant
during the iterative process of construction of the Cantor set.
At the nth stage (being n large enough), the fraction ηn is
approximately given by

ηn ≈ −T0P−1dP/dt ≈ κ/n. (11)

This expression obviously yields a Cantor set with dimension
α = 1 when we substitute ηn ≈ κ/n in Eq. (10).

If we compare this result with the mathematical expression
obtained for the middle-third Cantor set as shown in Eq. (9),
then we realize that the exponent κ of the algebraic decay law
corresponds to the exponent a of Eq. (9).

Taking this into consideration, we obtain the relation

α = ln 2

ln
(

2
1−κ/n

) , (12)

which explains the behavior observed in Fig. 9. As λ → 0, we
have α → 1 for large n. Moreover, when λ → 0, we obtain
that dα/dλ ≈ 0, recovering the Newtonian system. When λ

increases, α decreases, and for large values of n, the value
of α is always between 0 and 1 because the exponent κ of
the algebraic decay law is bound ∈ (0.52, 0.72) for the range
λ ∈ (0, 0.035), as we noted in Fig. 6.

We have seen here how the asymptotic behavior of the Sit-
nikov system can become less predictable under the influence
of the gravitational radius. This has been illustrated with the
evolution of the decay law of the particles with λ, when the
KAM islands are created and destroyed in the phase space.

These changes are related to having longer or shorter
transients in the scattering region. Being the uncertainty di-
mension α a decreasing function with the gravitational radius
λ, we can state that the system is more unpredictable when λ

values are higher. Moreover, the relation of the uncertainty
dimension with the gravitational radius is not monotonous,
which makes the prediction more difficult. Conversely, it
presents inflection points which reflect the changes taking
place in phase space and the KAM islands.

V. QUANTIFICATION OF THE ASYMPTOTIC
PREDICTABILITY EVOLUTION DUE TO THE

GRAVITATIONAL RADIUS VARIATION

In this section we quantify the lack of predictability of the
Sitnikov system due to the influence of primaries on the test
particles. For that purpose, we will characterize the changes in
the escape basin topology using the concept of basin entropy
[35]. The basin entropy is based on the discretization of the
continuous phase space of the system in a discrete grid. This
discretization is valid because any experimental or numerical
procedure to determine any point of the phase space has a
finite resolution.

Considering the same exit basins of the Sitnikov system
seen in Fig. 6, we can easily create a discrete grid if we
assume a finite precision δ in the determination of the initial
conditions. When we cover the phase space with boxes of size
δ, every piece of the grid is surrounded by other pieces, and
we may define a ball around each piece as the pieces share
some side with it.

For computing the basin entropy, this ball can be taken as
a random variable, with the potential results of the different
exit basins. Considering that the pieces inside the ball are
independent and applying the concept of Gibbs entropy, the
basin entropy Sb is defined as

Sb =
kmax∑
k=1

N0
k

N0
δαk log(mk ), (13)

where k is the label for the different exit basin boundaries, mk

is the number of exit basins contained in a certain ball, and αk

is the uncertainty dimension of the boundary k as defined in
Sec. IV. The ratio N0

k /N0 is a term related with the portion of
the discretized phase space occupied by the boundaries, that
is, the number of pieces lying in the boundaries divided by the
total number of pieces in the grid.

Therefore, there are three sources that increase the basin
entropy: (1) N0

k /N0, that is, the larger portion of the phase
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FIG. 10. The figure shows the evolution of the basin entropy Sb

of the relativistic Sitnikov system with λ. There are two regions
where Sb evolves differently. In the range λ ∈ (0, 0.02] there is a
linear decrease of the basin entropy Sb with λ, while in the range
λ ∈ (0.0, 0.035] there is an almost flat variation of Sb with λ.

space occupied by the boundaries, the higher Sb; (2) the un-
certainty dimension term δαk , related to the fractality of the
boundaries; and (3) log(mk ), which is a term related to the
number of different exit basins mk .

In Fig. 10 we can see the evolution of the basin entropy Sb

of the Sitnikov system with the gravitational radius λ. First,
there is a linear decrease of the basin entropy Sb with λ within
the range λ ∈ (0, 0.02). In this region, there are fewer pieces
in the grid of the discretized phase space occupied by the
boundaries, as can be seen in panels (a–c) from Figs. 3 and
6. Therefore, the ratio N0

k /N0 decays within that range of
λ. Moreover, in λ ∈ (0, 0.02), the uncertainty dimension also
decreases as λ is increased, as can be seen in Fig. 10. Then the
second source of variation of Sb, the uncertainty dimension
term δαk , is reduced as λ grows. As long as λ � 0.02, there is
greater dispersion in the values of the basin entropy. However,
we see a linear and almost flat variation of Sb with λ.

The observed dispersion is a clear signal of the creation and
destruction of KAM islands in phase space [36]. We consider
that this is the result of the added effects of both inflection
points in the uncertainty dimension α at λ � 0.02 and λ �
0.0285, and the growth of the term N0

k /N0 since there are more
pieces in the grid of the discretized phase space occupied by
the boundaries in the range λ ∈ (0.02, 0.035].

We consider that the evolution of the basin entropy Sb with
α shown in Fig. 10 reinforces the conclusions reached in the
previous sections: changes in the gravitational radius λ make
the Sitnikov system more unpredictable, as reflected by the
dispersed values of the basin entropy we have computed.

VI. CONCLUSIONS AND DISCUSSION

Relevant progress in understanding special relativity ef-
fects on chaotic scattering has been observed in the past few
years. Most of the results have been focused on studying the
trajectories of single particles when the relativistic approach
is taken into consideration. More recently, some works have
also demonstrated the variation of the global properties of the
system with the Lorentz transformations and have shown the
discrepancies between the Newtonian approach and special
relativity. However, less attention has been paid to the analysis
of the changes on the global system characteristics derived

from the escape basin topology. In the present work we have
focused on describing the influence of the gravitational ra-
dius of the primaries on the metamorphosis of the exit basin
topology and their consequences over the predictability of the
asymptotic behavior of the system. We have demonstrated that
the modification of the escape basin topology has a strong
influence over relevant global properties of the system, such
as the particle decay law, the uncertainty dimension, and the
basin entropy. These properties are relevant since they give
significant a priori information about the final fate of the
system and its predictability.

The influence of the gravitational radius λ in the alge-
braic decay law of the particle has been highlighted, and a
maximum at λ � 0.02 related to the transformation of the
escape basin topology with λ has been found. In the range
λ ∈ (0.02, 0.035] there is a rich variety of phenomena where
we could find the creation and destruction of KAM islands.

Interestingly, the evolution of the uncertainty dimension,
α, in a typical scattering function as the parameter λ is varied
as been observed, and furthermore α decreases as λ increases.
However, the results point out three different regions in the
evolution of α with λ. First, there is a linear decay in the
range λ ∈ (0, 0.020). Then, at λ � 0.02, there is an inflection
point with a change in the slope of the decay. Later, there is an
abrupt decay of the uncertainty dimension α, at λ � 0.0285,
that is, a crossover behavior. The evolution of the uncertainty
dimension α varies with λ, and this has physical implications
since that means that the asymptotic behavior of the system
cannot be predicted in a direct and clear manner, but it varies
in a nonlinear way, and we have provided a theoretical reason-
ing for it.

The use of the basin entropy Sb has helped us to quantify
the evolution the complexity of the exit basins with the vari-
ations of the gravitational radius λ. All our results point out
that the uncertainty in the prediction of the final fate of the
system depends on the considered value of λ, and this relation
is not monotonous. Curiously enough, Sb decreases linearly
as λ grows in the range λ ∈ (0, 0.02], while Sb evolves almost
flat for λ ∈ (0.02, 0.035].

According to the obtained results, when chaos is present,
the escape basin topology may change with the addition of
relativistic approximations, and this implies a higher difficulty
to foresee the asymptotic behavior of the system. Therefore,
we conclude that, in chaotic systems like this, one has to
take into account the relativistic approach when we want to
make accurate predictions about the final state, even when
considering low velocities or weak gravitational fields.

There are some problems which may be approached using
scenarios like the one described here. One could be interested
in guessing the characteristics of a particle falling from the
z axis towards a binary system, using post-Newtonian cor-
rections as those presented here. If we write the gravitational
radius in terms of the Schwarzschild radius Rs of one of the
primaries, we have

λ = 2km

ac2
= Rs

a
. (14)

Hence, if we model a particle of negligible mass approaching
a binary system with λ = 0.005, the binary should have a ∼
0.2 × 103Rs. In physical units, when considering primaries
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of 10M�, one should take a ∼ 10−3R�, and we would be
possibly facing a particle falling towards a stellar-mass black
hole binary system once the inspiral phase has started towards
the final coalescence. Another relevant result is that when λ

is small, and the problem is close to the classical Newtonian
limit, small changes in initial conditions still can lead to
large changes in the global asymptotic behavior. Very small
gravitational radii such as λ = 5.0 × 10−6 point to binaries
that would have a ∼ 0.2 × 106Rs. A primary with m = 1.0M�
would make us consider a ∼ 10−1R�. Here we may be mod-
eling masses falling down towards a white dwarf binary.

Of course, the Sitnikov problem model is a very specific
one, an overly clean case of the three-body problem. This is
because it just aims to demonstrate how even the simplest case
of the three-body problem can show a very complex behavior.

However, the techniques presented here are of general interest
and can be applied as a starting point for work on more
complex and physical meaningful problems. These are quite
interesting research topics to extend our current research.
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