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a b s t r a c t 

We study the effect of switching the order of administration of cytotoxic drugs and radia- 

tion in cancer therapy by comparing a sequential and a concurrent protocol of chemoradi- 

ation. For this purpose, we derive a nonlinear ordinary differential equation model based 

on well-accepted knowledge of chemotherapy and radiotherapy for in vitro solid tumors. 

Using the bifurcation theory, we demonstrate that the administration of radiotherapy con- 

currently, once the chemotherapeutic regime has caused a considerable reduction of the 

tumor burden, might be more pertinent than the reverse strategy in those circumstances 

where bistability occurs. Consequently, our analysis suggests that an adequate time order 

and concurrency may have potential benefits in chemoradiation of solid tumors. 

© 2021 Published by Elsevier B.V. 

 

 

 

 

 

 

 

 

1. Introduction 

It is well accepted that the combination of chemotherapy and radiotherapy is a beneficial strategy for the treatment 

of many solid malignancies, as for example the treatment of low grade glioma [1–3] or lung cancer [4–6] . Apart from

the minimization of the toxic side effects impaired by drugs and radiation on healthy tissues, as well as the avoidance of

the development of tumor resistance through clonal evolution, the particular strategy that is adopted when arranging the 

schedules of these protocols can be of great relevance as well [7–9] . 

In particular, when chemoradiation is the therapeutical choice, the dose of the drugs and radiation play a key role in

the success of the therapy. Depending on their specific values, the two modalities of treatment can synergize to produce an

increased overall destruction of tumor cells or, on the contrary, they can antagonize leading to an infra-additivity effect [10] .

Two fundamental strategies are frequently considered in chemoradiotherapy, namely, concurrent and sequential therapy [1] . 

The former approach delivers chemotherapy and radiotherapy together within the same cycle of treatment, while the second 

strategy uses one treatment after the other. Despite the fact that there is no general consensus on which strategy is better

for certain specific cancers, some recent studies point towards the former method in non-small cell lung cancer [4] . In those

cases in which both sequential and concurrent therapy constitute a viable choice, it is then natural to ask if, in addition to

an adequate drug dosage planning, there exists any benefit between using one setting or the other. Furthermore, hesitation 
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about the most convenient time ordering also arise, which demand investigation of the conditions under which it is more 

beneficial to use some therapy before the other and vice versa. 

Sometimes, an increased understanding of the complex dynamics of tumor growth in the presence of traditional thera- 

pies for the treatment of cancer can be achieved through the development of mathematical models [11–13] . These models

allow to represent the evolution of these nonlinear dynamical systems, which can then be tested against experimental data 

[14] to ascertain their degree of accuracy and range of application. Then, a detailed study of the fixed points and the bi-

furcation phenomena that take place when some parameters of the model of empirical relevance are varied, might provide 

useful guidance in the development or falsification of hypotheses. These hypotheses, in addition, could turn out to be of 

certain usefulness concerning the arrangement of new therapy protocols. 

Considering previous effort s in the mathematical modeling of chemoradiotherapy, there exists an increasing amount of 

recent literature dedicated to its study [15–21] . Some of these models focus on optimal radiation fractionation for specific

tumors [17,18] , while some others concentrate on global asymptotic stability properties [20] . However, as far as the authors

are concerned, no previous mathematical study has dedicated its efforts to the issue pointed out here, which concerns any 

possible advantage of administering chemotherapeutic agents in advance to radiotherapy. In addition to the well-known 

benefits of radiosensitivization [10] , dynamical phenomena arising from the nonlinear nature of the growth of solid tumors 

and its response to therapy ( e. g. the Norton-Simon hypothesis) could possibly favor the use of this practice. 

In the present work, we focus on the importance of the role played by the time ordering in sequential and concurrent

chemoradiotherapy by studying a treatment with a single dose of radiation and continuous chemotherapy. Given the funda- 

mental character of the model, it is not our purpose to suggest this strategy for the treatment of any specific malignancy,

but rather to illustrate in simple terms and to provide insights about a dynamical effect that leads to an asymmetry con-

cerning the time-order in the treatment. For this reason, continuous administrations are considered as an approximation 

of repeated cycles of chemotherapy and the effect of chemotherapy on the healthy tissue is disregarded. Apart from these 

approximations, we adopt the point of view of dynamical systems theory, providing a detailed description of the model in 

terms of attractors, basins of attraction, the separatrices and their associated zones of stability. The paper is organized as 

follows. In Section 2 we develop the general model and describe in detail its basic features. In Section 3 the dynamics of

the model under the usage of chemotherapy alone is thoroughly described. Then, in Section 4 we develop the main topic of

the present work, by studying chemoradiotherapy and how the time ordering of the schedule and its concurrency can affect 

the outcome of a treatment. We close this work by discussing the main findings of the present analysis. 

2. Model description 

In general terms, cancer chemotherapy is frequently represented using a multicompartment approach [22–25] . The usage 

of several compartments is very relevant because most chemotherapeutic protocols use combination of drugs, each of which 

destroy cells in a specific phase of the cell cycle [26,27] . This occurs because different drugs take advantage of different

biomolecular mechanisms of action. Nevertheless, in the present work, we are investigating the effect of a single cytotoxic 

cycle non-specific drug in combination with radiotherapy. Therefore, we can reduce the population of tumor cells P (t) to just

one cell compartment, gathering even mitotic and quiescent cells. Following previous works [28] , the differential equation 

governing the dynamics of the tumor in the presence of chemoradiotherapy can be written as 

dP 

dτ
= r P 

(
1 − P 

K 

)
− r b 

K 

K + sP 

(
1 − e −ρC 

)
P −

N ∑ 

i =1 

c i δ(t − T i ) P, (1) 

where we recall that P is the size of the cell population, while τ represents the time. The first positive term models the

growth of the tumor, while the other two negative contributions represent the cell destruction mediated by cytotoxic drugs 

and radiation, respectively. We thoroughly describe this differential equation in the following lines. 

As can be read from the first term in Eq. (1) , we assume that tumor cells follow a sigmoid growth curve. For mathemat-

ical simplicity, but without loss of generality, we consider a logistic growth with a growth rate r and carrying capacity K

[29] . For some avascular tumors, typical values of these parameters are r = 0 . 8 weeks 
−1 

and K = 10 9 cell , for example [28] .

In connection with chemotherapy, we consider the most simple model that allows to represent the Norton-Simon hy- 

pothesis. This hypothesis states that the rate of destruction of a cytotoxic agent is proportional to the rate of growth of the

unperturbed tumor. The fractional cell kill impaired by cytotoxic agents can then be described by means of the Exponential 

Kill Model, which has been tested against experimental results [14,30] . This model describes the rate of cell kill by the math-

ematical function b(1 − e −ρC ) , where b represents the relative maximum fractional cell kill, C is the drug concentration, and 

the constant ρ stands for the sensitivity of the tumor cells to the drugs [9,30] . More precisely, ρ is directly proportional to

the sensitivity. To complete the description of chemotherapy, we consider a Holling type II functional response in the form 

rK/ (K + sP ) . This function allows to represent the Norton-Simon hypothesis in a feasible way. It has as a main effect the re-

duction of the fractional cell kill as the tumor cell population P gets close to its carrying capacity K. The bounded nature of

this function can be justified by recalling that the action of certain cytotoxic agents resemble enzyme kinetics, suggesting a 

Michaelis-Menten type law. The maximum value at the carrying capacity is r/ (1 + s ) , and therefore the parameter s controls

in a simple way the extent to which the Norton-Simon effect is operating. As the value of s increases, such effects becomes

more pronounced. Specific values of the parameters b, ρ and s can be found in previous works [28] . 
2 
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Finally, the administration of one or more sessions of radiotherapy can be represented by means of a sequence of Dirac

delta distributions δ(t − T i ) , where the index i runs from one to the total number N of radiotherapeutic fractions delivered,

and T i is a time of this deliver [31] . Just as an example, a typical treatment for low grade glioma can harbor thirty daily

fractions of radiotherapy [17] . The Dirac delta approximation is acceptable if we bear in mind that the sessions of radiother-

apy are short in comparison with the rates of tumor growth. Then, the intensity of each administration can be represented

using the linear-quadratic model [32] . In this regard, each constant c i appearing in Eq. (1) can be written as c i = αD i + βD 

2 
i 
,

where D i represents the i th dose of radiation delivered, which is frequently measured in grays. The parameters α and β are

called the linear and quadratic coefficients of cell damage, and describe how destructive is radiation on the affected tissues. 

We refer the reader to specialized literature [33] for an inspection of the particular values of these parameters in different

malignancies. 

In the present study we do not need to concern with the pharmacokinetics of the drug, since the drug concentration will

be treated here as a parameter, which is enough to explain the fundamental phenomenon that leads to the time asymmetry

and the benefits of concurrency. Given this approximation, and also because we are not modeling the effect of the drugs

on the healthy tissue, our conclusions should be restricted to in vitro tumors. In order to study this model, we shall first

examine the dynamics of chemotherapy alone in the following lines. 

3. Effects of chemotherapy alone 

To investigate the effects of chemotherapy in the absence of radiation (c i = 0) , we first nondimensionalize the model by

rescaling the cell population to the value of the carrying capacity x = P/K and the time scale to the typical constant rate of

growth t = rτ . These transformations yield the simplified model 

dx 

dt 
= x ( 1 − x ) − b 

1 + sx 

(
1 − e −ρC 

)
x. (2) 

This model possesses three equilibrium points, which are nicely written as 

x ∗ = 0 , x ∗1 , 2 = 

s − 1 ±
√ 

(s + 1) 2 − 4 sb(1 − e −ρC ) 

2 s 
. 

Naturally, in absence of chemotherapy ( C = 0 ), we observe the typical dynamics of the logistic or Gompertzian growth of

solid tumors. The concentration of tumor cells tends to the equilibrium x ∗1 = 1 , regardless of the initial value x 0 of tumor

cells. This value corresponds to a malignant attractor, representing the point above which the tumor can develop increased 

vascularity and metastatic potential. In the framework of this model, we refer to such equilibrium as an active tumor (AT)

with an unacceptable level of tumor cells. Another equilibrium, x 0 = 0 , which is unstable, represents tumor extinction. We

refer to such equilibrium as a dead tumor (DT). Because of the instability of this equilibrium, even for an arbitrary small

value x 0 , the concentration of tumor cells x tends to the state of active tumor. This instability, which represents the fact

that just a single residual cell might be capable of repopulating a whole tumor, constitutes one among the many difficulties

encountered in the treatment of cancer. 

Let us now evaluate how the chemical therapy with increasing concentration C of drugs affects the changes in the con- 

centration x of tumor cells for various values of the parameter b, which characterizes the maximum intensity of the influ-

ence of drugs on the tumor cell kill. Since the parameter ρ can be absorbed in the dose of the drug, we settle its value

equal to one, hereafter. Then, we study the system dynamics depending on the parameters b, s and C, by inspecting the

parameter space. 

Firstly, we consider the parameter values b = 1 and s = 0 . 1 , when the Norton-Simon hypothesis is negligible ( e.g. an

haematological tumor). In Fig. 1 (a), we show the stable equilibrium x ∗
1 
(C) (solid line) and the unstable equilibrium x ∗ = 0

(dashed line) versus the drug concentration C. As it is evident from the figure, the dynamical system appearing in Eq. (2) is

monostable when the impact of the drug is small, even if such drug is administered uninterruptedly. For any C, a quantity

of the tumor cells stabilizes to the equilibrium x 1 (C) independently of the initial data x 0 > 0 . Therefore, the effect of the

drug is to reduce the carrying capacity of the tumor, driving it close to elimination as the dose-intensity C is increased. As

expected, the function x ∗1 (C) monotonically decreases with increasing C. 

To gain insight into this situation, some details of a treatment consisting of a continuous everlasting administration of 

drugs is shown in Fig. 1 (b). As can be seen, several treatment programs C(t) affect the dynamics of tumor cells x (t) by

reducing the tumor size following a rather exponential decay. In this simulations, it is assumed that the initial state of the

system is x 0 = 1 and that the treatment starts at the time t = T C . For 0 < t < T C , the concentration of drugs is C = 0 and the

tumor exists at its carrying capacity. In the top panel of the Fig. 1 (b), three programs of the treatment with constant values

 = 0 . 2 (blue), C = 1 (green), and C = 5 (brown) are shown. The evolution of the tumor cell population for such treatment

is demonstrated on the bottom panel using the same colors. As can be seen, the concentration of tumor cells decreases and

stabilizes to the different levels defined by x ∗
1 
(C) . The greater it is the value of C, the lower the size at equilibrium x ∗

1 
(C) . 

Further on, we consider in the second place the behavior of the Eq. (2) for the fixed value s = 2 and different values

of the relative maximum cell kill rate b (see Fig. 2 ). This represents a solid tumor where the Norton-Simon hypothesis is

considerable. For b = 1 , the Eq. (2) is monostable again (see Fig. 2 (a)). We show the stable equilibrium x ∗
1 
(C) by a solid line

and the unstable equilibrium x ∗ = 0 with a dashed line. For any value of C, any quantity of initial tumor cells stabilizes to the
3 



I. Bashkirtseva, L. Ryashko, Á.G. López et al. Commun Nonlinear Sci Numer Simulat 96 (2021) 105693 

Fig. 1. Inefficient chemotherapy . (a) A bifurcation diagram showing the dependence of the size of the tumor fixed point x ∗1 with the drug concentration 

C of a continuous protocol with parameters s = 0 . 1 and b = 1 . 0 is shown. In this case a sufficiently high dose is able to reduce the tumor considerably, but 

not to eliminate it. (b) Three protocols showing the drug concentration evolution as time goes by. A low dose protocol uses C = 0 . 2 (blue), a middle one 

considers C = 1 (green), and the most dose-intense delivers a dose of C = 5 (brown). Every continuous protocol starts at time t = T C . (c) The time series 

of the tumor when the three continuous treatments are administered. After a brief decay, the tumor stabilizes at a size below its carrying capacity. It is 

evident that chemotherapy is not being effective in this regime of parameters, since a very high dose of a continuously administered drug is required to 

reduce the tumor sufficiently (brown). 

Fig. 2. Bifurcation diagrams . Several bifurcation diagrams showing the different fixed points for a value of s = 2 are shown. (a) An inefficient scenario with 

b = 1 . 0 . In the present case there is one fixed point attractor representing the tumor size x ∗1 . (b) A more efficient drug is here represented with b = 1 . 1 . As 

the drug concentration increases above a critical value, a transcritical bifurcation ( C 1 ) turns the system bistable. In this region the tumor can be eliminated 

depending on its size at the onset of the treatment. (c) When the drug is more cytotoxic, for b = 1 . 2 , there exists a new region of monostability, which 

is reached by a saddle-node bifurcation ( C 2 ), forming a hysteresis region. For values of the dose higher that this threshold, the tumor free equilibrium 

becomes stable. (d) A further increase in efficiency with b = 2 . 0 leads to a reduction of the region of bistability. 

 

 

 

 

 

 

 

 

 

 

equilibrium x ∗
1 
(C) irrespective of such initial data x 0 > 0 . It should be noted that even an essential increase of C decreases

the value of x only in two times. Mathematically, we can write that x 1 (C) → 0 . 5 as C → ∞ . Therefore, beyond some point,

the concentration of tumor cells remains high (active tumor) no matter how much we increase the dose of drug. This is a

consequence of the nature of the cell kill dependence with C. The tumor size plateaus at some point, what means that the

increase in the dose of drug has no relevant effects [28] . Thus, as a consequence of the nonlinearity in the Exponential Kill

Model, even if we disregard the toxicity impaired to the healthy tissues, the paradigm that states the more dose the better,

is not here attained. This means that for b = 1 the drug therapy can not be very effective when the Norton-Simon effect is

considerable. 

As we further increase b, the situation changes dramatically. Indeed, for b > 1 the trivial equilibrium x ∗ = 0 is unstable

only in the interval 0 < C < C 1 = ln (b/ (b − 1)) . However, for C > C 1 this equilibrium becomes stable through a transcritical

bifurcation and bistability can be observed. In this configuration the tumor is metastable and a transition from an active 

tumor to an extincted cell population can be furnished. In Fig. 2 (b) we show a bifurcation diagram for b = 1 . 1 . Along with
4 
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Fig. 3. Parameter space . The parameter space (s, b) for very high doses of drug C → ∞ . Below the value b = 1 we see that the tumor is always active 

(AT) and can not be eliminated, since the drug is inefficient. In the gray and white regions the tumor is always asymptotically dead (DT), since the drug is 

effective and the Norton-Simon effect is comparably small. Finally, in the green zone bistability can occur. The tumor might be eradicated or not depending 

on its original size. Here the drug is efficient, but the Norton-Simon effect is important and can lead to ineffective therapy. 
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the zone of monostability 0 < C < C 1 = 2 . 40 , one can also see the bistability zone C > C 1 . The basins of attraction of the two

coexisting stable equilibria x ∗ and x ∗
1 

are separated by the unstable equilibrium x ∗
2 

(dashed line). 

When the drugs are more destructive b, as for example when b = 1 . 2 , the bistability interval becomes limited to

a region C 1 < C < C 2 , which progressively shrinks as b increases. Indeed, for b = (s + 1) 2 / 4 s its right border is C 2 =
ln 

(
4 bs/ (4 bs − (s + 1) 2 ) 

)
. The equilibrium x ∗

1 
is stable on the interval 0 < C < C 2 . At the saddle-node bifurcation point C 2 ,

the equilibrium x ∗
1 

merges with an unstable equilibrium x ∗
2 

and disappears. This scenario is illustrated in Fig. 2 (c) for b = 1 . 2

and in Fig. 2 (d) for b = 2 . 0 . These two figures show a qualitative change in the behavior of the system represented by

Eq. (2) by increasing C. In this scenario, increasing the dose-intensity up to the critical value is certainly beneficial. One

can see a sharp jump from the equilibrium x ∗
1 
(C) to x ∗ = 0 at the point C 2 . If further, after this jump, we decrease the

drug concentration C, then the system will stay at x ∗ = 0 if the tumor extincts when a sufficient low value of x has been

achieved. However, it is important in this regard to avoid a rapid decay of the drug concentration below C 1 before the tumor

is extincted. Otherwise, the hysteresis loop could not be completed, leading to the regrow of the tumor to its original size. 

A general parametric description of zones of mono and bistability of the dynamical system in the (s, b) -plane is presented

in Fig. 3 . In the former case we can see that, in the limit of very high drug concentration C → ∞ , the parameter set (s, b)

shows four different regions. For b < 1 , the chemotherapeutic treatment is not efficient enough to destroy the active tumor

(AT), but it can only reduce its carrying capacity. However, when the drugs are effective ( b > 1 ), a richer scenario appears. If

the Norton-Simon effect is small and the effectiveness of the cytotoxic agents is considerable ( b > 1 + (s − 1) 2 / 4 s ), then the

tumor can be driven to extinction (DT) independently of its size at the beginning of the treatment (white zone in Fig. 3 ). In

this case, and at the expense of delivering very high doses, it would not be needed to reduce the size of the tumor before

applying the chemotherapeutic agents, as it is usually done in the clinical practice. This situation seldom occurs in real 

situations, since adjuvant chemotherapy is frequently used to destroy residual tumor cells, rather than to treat the tumor 

alone at intolerable doses. The remaining region (green zone in Fig. 3 ) is a region of bistability, where the tumor can be

destroyed or not depending on its size at the beginning of the treatment. 

We now study the parameter space (C, b) to gain insight into the dependence on the dose of drug. We consider a moder-

ate Norton-Simon effect by setting s = 2 . In the bottom, a monostability zone (lime green color in Fig. 4 ) where the system

has a stable equilibrium x ∗
1 

corresponding to a rather big active tumor (AT) can be identified. In the upper monostabil-

ity zone (white color), the system has the stable equilibrium x ∗ = 0 corresponding to a dead tumor (DT). In the middle

zone (blue color), we find that it is bistable and possesses both stable equilibria x ∗
1 

and x ∗ (AT+DT). The boundary between

these zones can be computed as follows. The lower curve is defined as C = ln (b/ (b − 1)) , and the upper curve is defined as

 = ln 

(
4 bs/ (4 bs − (s + 1) 2 ) 

)
. These curves have horizontal asymptotes b 1 ≡ 1 and b 2 ≡ (s + 1) 2 / 4 s. 

Consider now the effectiveness of the drug therapy in dependence on the parameter b that characterizes the maximum 

rate of tumor cell kill by the drugs. For 0 < b ≤ b 1 , even large doses of drugs only slightly decrease the level of tumor cells.

This means that drug therapy with such value of the parameter b is not able to push the system out of the active tumor

state (see again Fig. 2 (a)). For b 1 < b < b 2 , the equilibrium x ∗ = 0 becomes stable for C > C 1 . However, the drug therapy, even

with large doses of C, can not throw the system across the unstable equilibrium x ∗
2 

and stabilize to the dead state x ∗ = 0

(see, e.g. Fig. 2 (b) for b = 1 . 1 ). Such a jump can be achieved by radiotherapy and, as shown below, it is precisely in this

region where the benefits of time ordering are mostly achieved. 

When the relation b > b 2 holds, we have a region where the tumor can be destroyed. A schematic program and the effect

of the drug therapy is shown in Fig. 5 for b = 1 . 2 , s = 2 . In Fig. 5 (b) the evolution of chemotherapy is clearly appreciated.

First of all, it is needed a considerable dose of drug ( C > C 2 ) to transfer the system from the zone where the equilibrium

x ∗
1 

is stable to the zone of monostability of equilibrium x ∗ = 0 . For b = 1 . 2 and s = 2 we have C 2 = 2 . 77 , so C = 3 will be

sufficient therefore. As a result of this transition, a sharp decrease in x occurs. Next, the drug dose C can be relaxed, but
5 
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Fig. 4. Parameter set. The parameter set (C, b) for a value of s = 2 is shown. Again, three regions can be distinguished. For b < b 1 = 1 the therapy can 

not destroy the active tumor (AT). When the drug concentration is enough destructive b > b 2 = 1 . 125 and the dose of a continuously administered drug 

is sufficiently high, the tumor can be driven to a dead state (DT). An intermediate region of bistability subsists. Our simulations show that this region 

enlarges when s increases. Importantly, we note the saturation effect of the curves separating the different regions to the values b 1 and b 2 . This critical 

values represent the relative maximum fractional cell kill limits separating the three regions when high values of the drug concentration C are delivered. 

This saturation is a consequence of the nonlinear dependence between the survival fraction and the drug impact. 

Fig. 5. Successful chemotherapy . A chemotherapeutic protocol consisting on two continuous administrations of a drug for the parameter region s = 2 and 

b = 1 . 2 . (a) The drug initially increases beyond C 2 driving the tumor from a region of tumor dominance, through a region of bistability and finally to a 

region of tumor elimination (blue arrows). (b) The chemotherapeutic protocol starting at T 1 with a reduction of dose administration at T 2 . (c) The decrease 

of the tumor cell population as the times goes by. For these parameter values the treatment is successful and the drug administration can be stopped when 

x goes below a certain nadir. However, the reduction of the drug dose should not occur too quickly to avoid going below C 1 before the tumor extincts. 

 

 

 

 

 

 

 

 

 

 

the reduction should not be done to a value lower than C 1 . Here, we have approximately C 1 = 1 . 79 , so a value C = 2 is

admissible. 

A temporal program of the treatment can be represented as a dynamics in the bifurcation diagram, by regarding C as a

parameter. The blue arrows in Fig. 5 (a) show the evolution of the treatment through the bifurcation diagram. The tumor cell

population corresponding to such evolution is shown in Fig. 5 (c). We suppose that in the interval 0 < t < T 1 the concentra-

tion of drugs is C = 0 . Later on the treatment starts with high drug intensity C = 3 at time t = T 1 and continues up to T 2 .

Finally, we progressively reduce the drug concentration to a value C = 2 . Note that this reduction must be performed with

care, since if the transition is done too quickly we might cross the separatrix and arrive back to the original point. This fact

reveals the importance of adjusting timing properly when transient phenomena are taking place. In the right panels, we 

show the drug schedule and the time series for this chemotherapy regime. As can be seen, this program gradually reduces

the concentration of tumor cells and allows to transfer the tumor from the active state to a dead state. 

4. Effects of combination therapy 

Now we will return to the case b 1 < b < b 2 , where b 1 and b 2 represented the values of the maximum drug efficiency de-

limiting the region of bistability when the drug concentration is high (see again Fig. 4 ). Then, we consider a treatment that
6 
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Fig. 6. Combined therapy . A concurrent administration of radiotherapy for a tumor with parameter values s = 2 and b = 1 . 1 . Note that radiotherapy 

(red arrow) is given once chemotherapy (blue arrow) has caused a considerable reduction of the tumor, allowing it to drift from the region where x ∗1 is 

monostable ( C < C 1 ) to the region (C > C 1 ) where it is metastable. Once this transition has taken place, an impulse of radiotherapy permits to cross the 

boundary between the two basins of attraction of the active tumor and dead tumor states. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

combines chemotherapy and radiotherapy. We recall that the effects of radiotherapy are very localized, while chemother- 

apy has a systemic effect on the organism. Then, radiotherapy allows to decrease more or less sharply the concentration 

of tumor cells at a specific location, depending on the dose administered. The addition of radiation therapy together with 

chemotherapy can be useful given this complementary role, but also due to the capacity of some drugs to radiosensitize. 

Here we show that when chemotherapy alone is already ineffective, radiotherapy can be incorporated to increase the ef- 

ficiency of the whole treatment. As shown above, for b 1 < b < b 2 the chemotherapy can not provide the positive desired

result. Let us consider the following nondimensionalized model 

dx 

dt 
= x ( 1 − x ) − b 

1 + sx 

(
1 − e −ρC 

)
x − cδ(t − T ) x. (3) 

In our conceptual study, we restrict ourselves by a case of a single administration of radiation therapy at time T . In

the mathematical model appearing in Eq. (3) , we use an impulse δ-function, where the intensity c of the radiotherapy

satisfies the mathematical restriction 0 ≤ c < ∞ . In practice, typical values can be computed from the experimental data

[33] , which frequently give small values of c. Here we use rather high values of c, since we approximate a coarse-grained

dose of radiotherapy to represent a series of daily doses. This δ-term in the Eq. (3) causes the following fall down of the

concentration of tumor cells at the time T , since x (T + ) = S(c) x (T −) , where T + and T − are the limits of T when approached

from above and from below in time, which are different due to the effect of the Dirac delta distribution. We note that the

survival fraction S(c) = e −c has been introduced here. This factor represents the fraction of cells that survive the treatment

of radiotherapy. 

We now consider details of the combined treatment for b = 1 . 1 (see Fig. 2 (b)). In this case, monostability and bistability

zones are detached by the point C 1 = 2 . 40 . For C < C 1 the system is monostable and independently of the initial value x 0 ,

it stabilizes in the state x ∗1 representing an active tumor. For C > C 1 the system is bistable, and two stable states x ∗1 and

x ∗ corresponding to the active and dead tumor coexist. In absence of chemotherapy ( C = 0 ), the concentration of tumor

cells is high. As can be seen in Fig. 6 (upper solid curve), a significant increase of the drug concentration C decreases the

concentration of tumor cells x only in two times. As previously discussed, it means that even intensive chemotherapy can 

not remove the system from the unwanted regime of the active tumor state. In these circumstances, the treatment that 

combines the chemotherapy and the impulse radiation therapy may provide a positive result. 

Note that the impulse radiation therapy for C < C 1 is meaningless. In this zone of monostability, even after a sharp de-

crease of the concentration x, the tumor returns back to the active state after some time. In this situation, the following

constructive strategy of treatment can be suggested. First, we transfer the system from the monostability zone to the bista- 

bility zone using chemotherapeutic drugs with a certain drug concentration, for example, C = 3 > C 1 (see blue arrow in

Fig. 6 ). Later on, we apply an intensive impulse of radiotherapy, which allows to decrease sharply the concentration of tu-

mor cells (see the red arrow in Fig. 6 ). The intensity of the impulse therapy should be chosen so as to obtain x < x ∗
2 
, where

x ∗2 is the unstable equilibrium (green dashed line). Certainly, this can be achieved by the application of several fractions of

daily repeated radiotherapy. Then, being in the basin of attraction of the stable equilibrium x ∗ corresponding to the dead

tumor, we continue to provide the drug therapy with C = 3 , for example. This allows us to keep the system in the state of

the dead tumor. Once the tumor has approached a very low number of cells, chemotherapy can be canceled. 

It is illustrative to compare the treatment described right above to the reverse situation, where radiotherapy is given right 

before the chemotherapeutic treatment begins. We refer to these two programs of the treatment as plan A and plan B. They

are shown in Fig. 7 (a) and (b), respectively. In the top panel, the temporal programs of the treatment are shown in blue. We
7 
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Fig. 7. Sequential versus concurrent chemoradiotherapy . Comparison of two programs of treatment for the system in Eq. (2) with s = 2 and b = 1 . 1 . (a) 

The sequential arm delivers an initial session of radiotherapy before chemotherapy starts. As can be seen, the tumor regrows after radiotherapy and makes 

the subsequent chemotherapeutic doses irrelevant. (b) Now chemotherapy precedes radiotherapy, and the chemotherapeutic treatment is continued after 

it. This concurrent setting is better, due to both a correct time ordering and a more intense combined effect. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

suppose that in the interval 0 < t < T C the concentration of drugs is C = 0 , and the treatment starts at a time t = T C . During

the interval t > T C , the concentration of drugs is kept at a high value of C = 3 . These two programs of chemotherapy are the

same in Fig. 7 (a) and (b). The difference between the strategies consists in the moment of administration of radiotherapy T R .

In the first plan A, an impulse of radiotherapy with c = 2 . 3 is applied sequentially before the chemotherapeutic treatment

(marked by red triangles). This produces a survival fraction of the 10% of the cells. Therefore we have that ( T R < T C ), while

in the plan B the impulse therapy is applied after the chemotherapy starts ( T R > T C ). In the two bottom panels ( Fig. 7 (c)

and (d)), the results of these two treatment programs are shown (result A and result B). It is supposed again that the initial

state of the system is x 0 = 1 . 

On the one hand, the result of plan A (see Fig. 7 (a)) shows that the impulse therapy gives a sharp decrease of the

tumor cells, however in the absence of subsequent “immediate” chemotherapy (concurrency), the population of tumor cells 

is quickly restored to its original active state. In these circumstances, the subsequent cycle of chemotherapy can not remove 

the system from this active state. Note that such program of the combined treatment gives the same result as the treatment

without radiotherapy. In this regard, radiotherapy is useless, or even counterproductive, if we bear in mind its toxic effects. 

The result of plan B with a concurrent impulse point in time is much more positive (see Fig. 7 (b)) in comparison. At first

glance, a continuous protocol of chemotherapy with concentration C = 3 applied at T C is ineffective, since the concentration

of tumor cells decreases only to half its initial value and, therefore, the tumor is still active. However, after the application

of the impulse radiotherapy with the same intensity as in the plan A, the same level C = 3 of chemotherapeutic agent leads

the system progressively to the dead state. 

One more important circumstance of the treatment strategy in conditions of bistability should be noted. Here there is a 

natural desire to keep the system in a state of the dead tumor, using minimal doses of drugs (the closest as possible to the

threshold value C 1 , where the transcritical bifurcation takes place). However, in the system with the parameter C close to 

the critical point C 1 , inevitable disturbances can transfer the system to the active tumor state. Therefore, and as previously

discussed, it is important that the drug dose is not decreased too quickly after the administration of radiotherapy, since 

otherwise the active tumor could regrow due to a transition to the monostability zone below C 1 . 

5. Conclusions and discussion 

In the present work we have shown that solid tumor growth in the presence of cytotoxic chemotherapy can exhibit mul-

tistability and hysteresis. To our knowledge, the importance of hysteresis had been noticed in the study of tumor-immune 

interactions [34] , but not sufficiently in the study of chemotherapy. In light of this phenomenon, we have tried to illuminate

the effect of switching the time order in a combination therapy consisting of sequential chemotherapy and radiotherapy, 

and a concurrent schedule as well. The main conclusion is that a concurrent strategy with chemotherapy first is a much

better strategy. Although this is partly in accordance with some clinical trials on lung small cell carcinoma, which favor the

concurrent strategy [6] , an unequivocal conclusion cannot be drawn in the absence of a careful study of the toxicity effects

of the drugs. In that direction a similar analysis may be done in order to investigate in vivo solid tumors, including the

healthy cells compartment in the model. By this way, there will be possible to check the extension of our conclusions for

situations with low or even high citotoxity. 

We also note that, from the point of view of our model, the sequential use of chemotherapy before radiotherapy would

not be a good strategy, because the only situation in which a positive effect can be achieved is when chemotherapy alone is
8 
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already effective, but in such a case there would be no point in adding radiation to the therapy, since in this approach we

have not represented radiosensitivization. 

In our model, chemotherapy is used to transfer the tumor from a region of monostable active tumor dominance to a

bistable region, where a concurrent session of intense radiotherapy can lead to a point close to the dead tumor attractor.

This effect can be explained as follows. In those situations where monostability of an active tumor occurs, chemotherapeutic 

drugs alone are incapable of providing a sufficiently small nadir of the tumor. This is due to the combined effect of the

saturation of cell kill as the dose of drug increases and to the Norton-Simon effect, as well. On the one hand, the nonlinear

relation between drug dose and survival fraction limits the potential of increasing doses. On the other hand, when the 

tumor is big enough, a different nonlinearity comes into play, since the effect of the drug decreases due to the limited

cycling activity of the cells. 

We note that in this study, since our main purpose was to show the mechanism in a clear way, the drug concentration

has been maintained constant whenever applied, which is certainly very toxic. The dose of radiotherapy is very aggressive 

compared to normal dosages of drugs as well. Moreover, we also recall that in the plan B the chemotherapeutic agent

has been kept at a high dose all the time, while a strict alternate regime should suspend chemotherapy briefly during

radiotherapy, since they are too toxic to be given in a complete simultaneous way. As is well known, chemotherapeutic 

drugs are frequently delivered in cycles to avoid excessive toxicity and bone marrow depletion [28] . However, the same

result can be also achieved in our model by using cycles of efficient chemotherapy and also by fractioning daily doses of

radiotherapy. Therefore, we have used the simplest modeling approach as possible, since in this study we are not concerned 

with the modeling of toxicity, which was not necessary to illustrate the phenomenon at investigation. Again, the results 

are not conclusive, since as it has been pointed out in recent works [35] , toxicity effects might turn sequential treatment

beneficial over the concurrent schedule, without a clear distinction between the time ordering of the therapy. Thus, it is 

evident that further research is deserved by using a more accurate simulation of protocols, time dosages and the tumor 

environment. 

To conclude, we suggest that the present model can be used as a basic model for theoretical chemoradiotherapy, since it

incorporates typical nonlinear effects (bistability, separatrices, basins of attraction and hysteresis) that appear when studying 

the chemotherapy of solid tumors, as a consequence of nonlinear growth and response to therapy. As is well known, when

a tumor does not grow exponentially, the log-kill hypothesis does not hold in conformity, and the Norton-Simon nonlinear 

effect becomes relevant. As we have shown, these nonlinearities can produce unexpected results when considering com- 

bined therapies at a very fundamental dynamical level. Furthermore, the incorporation of complex pharmacokinetics, the 

usage of multiple compartments that allow to study combination of drugs [9] , or the evolution towards tumor resistance to

drugs and the influence of radiotherapy in this evolution, represent straightforward extensions of the present model. Finally, 

the impact of chemotherapy impaired to the healthy tissue and the dynamical evolution of cell clones under the admin- 

istration of drugs, together with the presence of the humoral and the cell-mediated immune response, are of the greatest 

importance for the development of in vivo tumors and clinical strategies. Certainly, from a mathematical point of view, all 

these very complex processes can suggest counterintuitive therapeutical combination strategies, by using simple principles 

derived from the nonlinear nature of the growth of solid tumors and its response to cytotoxic substances. 
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