Universidad Rey Juan Carlos,

Diciembre 2019

Jornada Homenaje a Miguel Ángel Fernández Sanjuán en sus 60

Cayley-Klein geometries: a modern historical perspectiveMariano SantanderUniversidad de Valladolid

- Estudios de Licenciatura
 - ***** Universidad de Valladolid
- Tesina:
 - * Contracciones ultrarelativistas del grupo de Poincaré, 1981
- I. M. Yaglom

A Simple Non-Euclidean Geometry and Its Physical Basis

I.M. Yaglom

• The nine two-dimensional CK spaces $S^2_{[\kappa_1],\kappa_2} = SO_{\kappa_1,\kappa_2}(3)/SO_{\kappa_2}(2)$.

 \checkmark Singularized by two real parameters κ_1, κ_2

Spherical: S^2 $S^2_{[+],+} = SO(3)/SO(2)$	Euclidean: \mathbf{E}^2 $S^2_{[0],+} = ISO(2)/SO(2)$	Hyperbolic: \mathbf{H}^2 $S^2_{[-],+} = SO(2,1)/SO(2)$
Oscillating NH: \mathbf{NH}^{1+1}_+ (Co-Euclidean) $S^2_{[+],0} = ISO(2)/ISO(1)$	Galilean: \mathbf{G}^{1+1} $S^2_{[0],0} = IISO(1)/ISO(1)$	Expanding NH: \mathbf{NH}_{-}^{1+1} (Co-Minkowskian) $S_{[-],0}^2 = ISO(1,1)/ISO(1)$
Anti-de Sitter: \mathbf{AdS}^{1+1} (Co-Hyperbolic) $S^2_{[+],-} = SO(2,1)/SO(1,1)$	Minkowskian: \mathbf{M}^{1+1} $S^2_{[0],-} = ISO(1,1)/SO(1,1)$	De Sitter: \mathbf{dS}^{1+1} (Doubly Hyperbolic) $S^2_{[-],-} = SO(2,1)/SO(1,1)$

• All these geometries appear realized in Nature

• Projective view

- \star κ_1 >, =, < 0 \equiv Eliptic, Parabolic, Hyperbolic type of measure of distances
- \star κ_2 >, =, < 0 \equiv Eliptic, Parabolic, Hyperbolic type of measure of angles

• Old synthetic view

- * $\kappa_1 > = < 0 \equiv \text{a number } 0, 1, \infty$ of lines through a given point P and not meeting a given line l (not through P).
- * $\kappa_2 > = < 0 \equiv$ a number $0, 1, \infty$ of points on a given actual line l and not joined to a given point P by an actual line (P not on l).

• Differential Geometry view

- $\star \kappa_1 >, =, < 0 \equiv$ Positive, Zero, Negative constant curvature κ_1
- * $\kappa_2 > =, < 0 \equiv$ Positive Definite, Degenerate, Lorentzian, metric reducible to $diag\{+1, \kappa_2\}$ at each point: signature κ_2 .
- Limiting view: Cases where either κ_1, κ_2 are zero are limiting approximations to the generic cases where both κ_1, κ_2 are different from zero
 - $\star \kappa_1
 ightarrow 0$ limit around a point
 - $\star \kappa_2
 ightarrow 0$ limit around a line

¿Two separate families? Riemannian ... and Lorentzian

- Riemannian spaces Riemann's far-reaching extension of the Euclidean space \mathbf{E}^n
 - \star **Two steps** Zero Curvature \rightarrow Constant Curvature \rightarrow General Curvature.
- Constant curvature Riemannian spaces
 - ✓ Essentially, a one-parameter family of n-d Riemannian spaces of constant curvature grouped in three types $\mathbf{S}_{\kappa}^{n}, \mathbf{E}^{n}, \mathbf{H}_{k}^{n}$ according as $\kappa > 0, = 0, < 0$.
 - ✓ Standard choice $\kappa = 1, 0, -1$ gives the three standard $\mathbf{S}^n, \mathbf{E}^n, \mathbf{H}^n$.
- Lorentzian spaces A (similar) extension of the Lorentz-Minkowski space $\mathbf{M}^{1,n}$
 - ***** No essential changes from Riemannian
- Constant Curvature PseudoRiemannian (Lorentzian) spaces
 - ✓ Essentially, a one-parameter family of (1+n)-d Lorentzian spaces of constant curvature $\mathbf{AdS}_{\kappa}^{1+n}$, \mathbf{M}^{1+n} , \mathbf{dS}_{k}^{1+n} according as $\kappa > 0, = 0, < 0$.
 - \checkmark Standard choice $\kappa = 1, 0, -1$ gives the three standard $\operatorname{AdS}_{\kappa}^{1+n}, \operatorname{M}^{1+n}, \operatorname{dS}_{k}^{1+n}$.

- The spaces discussed so far can be seen under the Riemannian and Kleinian perspectives
- Simplest example: Ordinary Euclidean space \mathbf{E}^2 is a symmetric homogeneous space of the Euclidean group ISO(2), $\mathbf{E}^2 \approx ISO(2)/SO(2)$.
 - $\checkmark\,$ Elements of this space are the points in Euclidean geometry, and the involution Π_1 correspond to reflection in a point.
- Yet there is another symmetric homogeneous space in Euclidean Geometry: The set of all lines in \mathbf{E}^2 . This is $\tilde{\mathbf{E}}^2 \approx ISO(2)/ISO(1)$.
 - ✓ Elements of this space are the lines in Euclidean geometry, and the involution Π_2 correspond to reflection in a line.
- (Symmetric) Geometry: An interlinked set of homogeneous spaces associated to the same group G but with a set of commuting involutive automorphisms.

- I discuss only the real 2d case, everything works for the real, Hermitian complex and quaternionic spaces, in any n.
- Look for 3d Lie groups G which allow for two commuting involutive automorphisms in the corresponding Lie algebra.
 - \star These would provide two symmetric homogeneous spaces of the Lie group G
- Approach Look in the common eigenbasis $\{P_1, P_2, J\}$ The more general such (quasi-simple) Lie algebra having $\Pi_{(1)}, \Pi_{(2)}$ as automorphisms depends on two real parameters κ_1, κ_2

$$\begin{split} \Pi_{(1)} &: (P_1, P_2, J) \to (-P_1, -P_2, J), \quad \Pi_{(2)} : (P_1, P_2, J) \to (P_1, -P_2, -J) \\ & [P_1, P_2] = \kappa_1 J \qquad [J, P_1] = P_2 \qquad [J, P_2] = -\kappa_2 P_1 \end{split}$$

Denote SO_{κ1,κ2}(3) the Lie groups obtained by exponentiation
 * One-parameter subgroup invariant under involution Π₍₁₎ generated by J:

$$\exp(\gamma J) = \begin{pmatrix} 1 & 0 & 0\\ 0 & C_{\kappa_2}(\gamma) & -\kappa_2 S_{\kappa_2}(\gamma)\\ 0 & S_{\kappa_2}(\gamma) & C_{\kappa_2}(\gamma) \end{pmatrix}$$

 $SO_{\kappa_2}(2)$

Symmetric homogeneous spaces of Cayley-Klein type' [2]

• Labeled Trigonometric functions: Labelled 'cosine' $C_{\kappa}(x)$ and 'sine' $S_{\kappa}(x)$:

$$C_{\kappa}(x) := \begin{cases} \cos\sqrt{\kappa} x & \kappa > 0\\ 1 & S_{\kappa}(x) := \begin{cases} \frac{1}{\sqrt{\kappa}} \sin\sqrt{\kappa} x & \kappa > 0\\ x & \kappa = 0\\ \frac{1}{\sqrt{-\kappa}} \sinh\sqrt{-\kappa} x & \kappa < 0 \end{cases}$$

 \star Deformations of the two basic functions 1 and x

- Natural realization of the CK group $SO_{\kappa_1,\kappa_2}(3)$ as a group of linear transformations in an ambient linear space $R^3 = (x^0, x^1, x^2)$.
 - * Therefore $SO_{\kappa_1,\kappa_2}(3)$ acts in R^3 as linear isometries of a bilinear form with $\Lambda_{\kappa_1,\kappa_2} = \text{diag}\{+1,\kappa_1,\kappa_1\kappa_2\}$ as metric matrix.

***** CK space as Homogeneous symmetric space: $S^2_{[\kappa_1],\kappa_2} \equiv SO_{\kappa_1,\kappa_2}(3)/SO_{\kappa_2}(2)$

- Natural structures in these homogeneous symmetric spaces:
 - \star A canonical connection (compatible with the metric).
 - * A metric coming from the Killing-Cartan form in the Lie algebra. The metric is of constant curvature κ_1 and of 'signature type' κ_2 .
- Hence this family includes precisely the spaces of constant curvature (either > 0, -0, < 0) and (quadratic) metric of either signature type

The nine CK 2d spaces as 'spheres' in ambient space coordinates

Spherical: \mathbf{S}^2 $S^2_{[+],+} = SO(3)/SO(2)$	Euclidean: \mathbf{E}^2 $S^2_{[0],+} = ISO(2)/SO(2)$	Hyperbolic: \mathbf{H}^2 $S^2_{[-],+} = SO(2,1)/SO(2)$
Oscillating NH: \mathbf{NH}^{1+1}_+ (Co-Euclidean) $S^2_{[+],0} = ISO(2)/ISO(1)$	Galilean: \mathbf{G}^{1+1} $S^2_{[0],0} = IISO(1)/ISO(1)$	$\begin{array}{llllllllllllllllllllllllllllllllllll$
Anti-de Sitter: \mathbf{AdS}^{1+1} (Co-Hyperbolic) $S^2_{[+],-} = SO(2,1)/SO(1,1)$	Minkowskian: \mathbf{M}^{1+1} $S^2_{[0],-} = ISO(1,1)/SO(1,1)$	De Sitter: \mathbf{dS}^{1+1} (Doubly Hyperbolic) $S^2_{[-],-} = SO(2,1)/SO(1,1)$

***** Weierstrass ambient description as 'CK spheres'

$$(x^0)^2 + \kappa_1 (x^1)^2 + \kappa_1 \kappa_2 (x^2)^2 = 1$$

 $\kappa_1 = 1, 0, -1$ (columns, left to right) $\kappa_2 = 1, 0, -1$ (rows, up to down) \star Metric in the ambient space $dl^2 = (dx^0)^2 + \kappa_1 (dx^1)^2 + \kappa_1 \kappa_2 (dx^2)^2$.

 \checkmark Metric in the CK space $ds^2 := rac{1}{\kappa_1} dl^2$

The nine CK 2d spaces as 'spheres' in ambient space coordinates

The three S^2 , E^2 , H^2 CK 2d spaces

 \checkmark For distances r and angles θ , business as usual

Something new in the three AdS^2 , M^2 , dS^2 spaces? I

- ✓ In Minkowski space, rapidities appear through hyperbolic trig functions. $\kappa_2 < 0$ is a negative (hyperbolic) label. Standard choice $\kappa_2 = -1$
- $\checkmark\,$ But real rapidities ('angles') do not cover the full Minkowski, AntiDeSitter or DeSitter spaces
- ✓ Introduce a 'quadrant' with negative label $\kappa = -1$ defined so that \vdash_{-1} is the 'rapidity' between ortoghonal vectors in this space. $\vdash_{-1} = \frac{\pi}{2!}$
- ✓ Allow values $\chi, \ \chi + \sqcup_{-1}, \ \chi + 2 \sqcup_{-1}, \ \chi + 3 \sqcup_{-1}$ for the rapidity

 \checkmark Now rapidities cover the full Minkowski space (and AdS and dS too)

Something new in the three AdS^2 , M^2 , dS^2 spaces? II

- * In Minkowski space ($\kappa_1 = 0$, proper times (the 'distances', denoted r) appear through parabolic trig functions
 - \checkmark These real 'distances' do not cover the full Minkowski M^2
 - $\checkmark\,$ The basic metric is a quadratic form which is not definite positive
 - \checkmark Introduce 'ideal' distances and allow the 'distances' to be either real r or pure imaginary ir

 \checkmark Now these 'distances' jointly with the extended 'angles' cover all M^2 \checkmark How about to extend this idea to all CK spaces?

• Labeled Trigonometric functions: Recall 'cosine' $C_{\kappa}(x)$ and 'sine' $S_{\kappa}(x)$ with 'label' κ are defined initially for real variable x (later for some particular complex values of x) as:

$$C_{\kappa}(x) := \begin{cases} \cos\sqrt{\kappa} x & \kappa > 0\\ 1 & S_{\kappa}(x) := \begin{cases} \frac{1}{\sqrt{\kappa}} \sin\sqrt{\kappa} x & \kappa > 0\\ x & \kappa = 0\\ \frac{1}{\sqrt{-\kappa}} \sinh\sqrt{-\kappa} x & \kappa < 0 \end{cases}$$

• **Define a quadrant:** $\lim_{\kappa} = \frac{\pi}{2\sqrt{\kappa}}$.

 \checkmark Expression for the ambient space coordinates in terms of 'naive' polar coordinates

$$\begin{pmatrix} x^0 \\ x^1 \\ x^2 \end{pmatrix} = \begin{pmatrix} C_{\kappa_1}(r) \\ S_{\kappa_1}(r) C_{\kappa_2}(\theta) \\ S_{\kappa_1}(r) S_{\kappa_2}(\theta) \end{pmatrix}$$

- \checkmark but, what is the domain of the coordinates r, θ ?
- ✓ For an hyperbolic quantity, (e.g, the minkowskian rapidity angle θ), \vdash_{-1} is a pure imaginary quantity. Should this mean that we have to accept any complex argument in the sine and cosine functions?

The full CK domain for the CK trigonometric functions

- ✓ No!. The natural requirement is to enforce that the squares of $S_{\kappa}(x)$ and $C_{\kappa}(x)$ should be real.
- \checkmark This determines a subset of the complex plane, which is a kind of 'branched one dimensional set'. This is called the full domain of the CK variable with label κ

 \checkmark This the the full CK domain with label $\kappa=-1$

 \checkmark Branching points at $0, \ \pm oxdot_{-1}, \ \pm 2oxdot_{-1} \equiv oldsymbol{ heta}_{-1}$ and as $\pm\infty$

The full CK domain of a variable with positive label $\boldsymbol{\kappa}$

The full CK domain of a variable with any label $\boldsymbol{\kappa}$

- ✓ The CK domain of a CK variable, for any value of κ is the set of the following values (here x, y are real, and $\theta \equiv 2$ 上)
- \checkmark Actual and antiactual values, $x, 2 \vdash +x$ (depicted in deep blue)
- \checkmark Ideal and antiideal values, iy, $2 \pm +iy$ (depicted in red and orange)

 \checkmark Essential fact: The domain of a variable depends on its label

The stereocentral (stereognomonic) model of the nine CK spaces

• A new 'projection' to display the nine spaces at once

 $\checkmark\,$ Essentially, extends the visually 'good' traits of the stereographic projection in the S^2

The stereocentral model of the nine CK spaces

- $\checkmark\,$ For any CK space, geodesics are represented as 'affine' circles cutting the equator antipodally
- $\checkmark\,$ The 'North' and 'South' hemispaces are represented as the interior and exterior of the 'Equator' circle

- Fix the point O at the origin
 - ***** For any other point P (in the 'full' CHK space) passes a unique geodesic linking P to O
 - \checkmark Antipodal exception
 - \star Define r the coordinate r as the 'extended' parameter of separation along this geodesic
- This r is defined in the 'full' CK space
 - \checkmark r could be either actual, coactual or ideal, coideal, or its anti versions

Coordinate lines r =cte in the nine CK spaces

 $\checkmark\,$ The coordinate lines $r{=}{\rm cte}$ are circles with center at O_0 in the geometry of each CK space

Coordinate lines θ = cte in the nine CK spaces

✓ The coordinate lines θ =cte are geodesics through O_0 in the geometry of each CK space

• Duality is an interchange between the basic elements in the CK original space and the ones in the dual, according to:

Dual CK space $\mathcal{D}(\mathbf{S})$ versus Original CK space S Points (invariant under $\mathcal{J} = -P_1$) Actual lines (invariant under P_1) • Distance between points (along $\mathcal{P}_1 = -J$) Angle between actual lines (along J) • Actual lines (invariant under $\mathcal{P}_1 = -J$) Points (invariant under J) • Angle between actual lines (along $\mathcal{J} = -P_1$) Distance between points (along P_1) • Ideal lines (invariant under $\mathcal{P}_2 = -P_2$) Ideal lines (invariant under P_2) Angle between ideal lines (along $\mathcal{J} = -P_1$) Actual distance between ideal lines (along P_1) Ō

- * The map \mathcal{D} leaves the Lie algebra invariant, interchanges the two constants $\kappa_1 \leftrightarrow \kappa_2$, and hence the space of points with the space of (actual) lines, $S^2_{[\kappa_1],\kappa_2} \leftrightarrow S^2_{\kappa_1,[\kappa_2]}$.
- \star In the sphere \mathbf{S}^2 this is the well known polarity.
- * Duality relates two CK geometries which are different in general. Only when $\kappa_1 = \kappa_2$ the CK geometry is self-dual. Examples: S^2 , G^{1+1} , dS^{1+1} .
- **Theorem** The dual of a CK space with curvature κ_1 and metric of signature type $(+, \kappa_2)$ is the CK space with curvature κ_2 and metric of signature type $(+, \kappa_1)$.

The duality in the CK scheme [3]

Spherical: \mathbf{S}^2 $S^2_{[+],+} = SO(3)/SO(2)$	Euclidean: \mathbf{E}^2 $S^2_{[0],+} = ISO(2)/SO(2)$	Hyperbolic: \mathbf{H}^2 $S^2_{[-],+} = SO(2,1)/SO(2)$
Oscillating NH: \mathbf{NH}_{+}^{1+1} (Co-Euclidean) $S_{[+],0}^2 = ISO(2)/ISO(1)$	Galilean: \mathbf{G}^{1+1} $S^2_{[0],0} = IISO(1)/ISO(1)$	Expanding NH: \mathbf{NH}_{-}^{1+1} (Co-Minkowskian) $S_{[-],0}^2 = ISO(1,1)/ISO(1)$
Anti-de Sitter: \mathbf{AdS}^{1+1} (Co-Hyperbolic) $S^2_{[+],-} = SO(2,1)/SO(1,1)$	Minkowskian: \mathbf{M}^{1+1} $S^2_{[0],-} = ISO(1,1)/SO(1,1)$	De Sitter: \mathbf{dS}^{1+1} (Doubly Hyperbolic) $S^2_{[-],-} = SO(2,1)/SO(1,1)$

• Duality is realized by a symmetry along the main diagonal.

$$\mathcal{D}: \underbrace{\mathbf{S}^2}_{(1,1)} \longleftrightarrow \underbrace{\mathbf{S}^2}_{(1,1)}, \qquad \mathcal{D}: \underbrace{\mathbf{H}^2}_{(-1,1)} \longleftrightarrow \underbrace{\mathbf{AdS}^{1+1}}_{(1,-1)}, \qquad \mathcal{D}: \underbrace{\mathbf{dS}^{1+1}}_{(-1,-1)} \longleftrightarrow \underbrace{\mathbf{dS}^{1+1}}_{(-1,-1)}$$

- \star The sphere \mathbf{S}^2 and the DeSitter space \mathbf{dS}^{1+1} are autodual
- \star Hyperbolic plane ${\bf H}^2$ and the AntiDeSitter space ${\bf AdS}^{1+1}$ are mutually dual.

Visualizing duality in the stereocentral model: The dual of H^2 is AdS^{1+1}

- All the lines orthogonal to l_1 meet in a single point.
- This point is in the Ideal sector of H², which is AdS^{1+1} .
- Lines orthogonal to l₁ and the complete system of associated orthogonal coordinate net, covering the Actual and Ideal Sectors of H².

• Generic systems

- ✓ Elliptic (actual foci, actual focal separation)
- \checkmark Parabolic (one foci actual, other focus coactual, coactual focal separation)
- ✓ CoElliptic (coactual foci, actual focal separation)
- Limiting systems (non generic)
- Particular systems, for special values of the focal separation, e.g.
 - $\checkmark\,$ Equiparabolic systems, with focal separation equal to a quadrant
 - \checkmark Isoelliptic (two focus with isotropic separation)
 - **√** ...

* Horosystems

- \checkmark HoroElliptic (one actual focus, other focus at infinity)
- \checkmark HoroCoElliptic (one coactual focus, other focus at infinity)

***** Coalescing foci

✓ Polar, parallel, horocyclic

A sample

- J. A. de Azcárraga, F. J. Herranz, J. C. Pérez Bueno Complete description of the central extenand M. Santander: "Central Extensions of the quasi- sions of all Lie algebras $so_{\kappa_1...\kappa_N}(N+1)$, orthogonal Lie Algebras". J. Phys. A., 31, 1373-1394, $su_{\kappa_1\dots\kappa_N}(N+1)$ and $sp_{\kappa_1\dots\kappa_N}(N+1)$ in (1998).
- F. J. Herranz, J. C. Pérez Bueno and M. Santander: "Cen- type' Cayley Klein series, for any N and tral Extensions of the families of quasi-unitary Lie Alge- general κ_i bras". J. Phys. A., 31, 5327-5347, (1998).
- F. J. Herranz, and M. Santander: "The family of quaternionic quasi-unitary Lie Algebras and their central extensions". J. Phys. A., 32, 4495-4507, (1999).

the three 'real, complex and quaternionic

 F. J. Herranz, R. Ortega, M. Santander: "Trigonometry of space-times: a new self-dual approach to a curvature/signature (in)dependent trigonometry". math-ph/9910041, J. Phys. A 33 4525-4553 (2000). R. Ortega, M. Santander: "Trigonometry of 'complex Hermitian' type homogeneous symmetric spaces". J. Phys. A., 35, 7877-7917 (2002) 	An exhaustive and complete study of trigo- nometry in all rank-one spaces of real and 'complex' type, both made in a completely general CK fashion, with κ_1, κ_2 and η as parameters. Real spaces are related to space-time (they include all homogeneous models of non-relativistic and relativistic space-times), and complex 'hermitian' ones include the quantum space of states.
 A. Ballesteros, F. J. Herranz, M. A. del Olmo y M. San- tander: "Quantum Structure of the Motion Groups of the Two Dimensional Cayley-Klein Geometries". J. Phys. A, 26, 5801–5823, (1993). 	Several papers where the CK κ_1, κ_2 scheme is used in relation to quantum deforma- tions of the classical CK groups and alge- bras

• A. Ballesteros, F. J. Herranz, M. A. del Olmo y M. Santander: "Quantum (2+1) Kinematical Algebras: A Global Approach". J. Phys. A, 27, 1283-1297, (1994).

• The scheme encompasses all symetric homogeneous spaces

- \checkmark Real, complex, quaternionic type symetric homogeneous spaces in any dimension, and exceptional ones as well (connection with octonions).
- \star For instance, in the complex hermitian case (the CK general version of su(N)), it turns out that there are n commuting involutions). The extra involution appear as a Cayley-Dickson parameter, leading to spaces over the three composition algebras of complex numbers, Study numbers and split complex numbers.
- \star Dynamics, Integrability and superintegrability in CK spaces

General Properties or propositions should be more easily demonstrable than any special case of it

• J. I. Sylvester Note on Spherical Harmonics, *Phil. Mag. (1876)*

Thank you very much,

Any comment, criticism, reference, ..., welcome at msn@fta.uva.es